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Abstract

We apply an effective multidimensional Ω-result of Voronin in
order to obtain effective universality-type theorems for the Rie-
mann zeta-function. We further use this approach to study ap-
proximation properties of linear combinations of derivatives of the
zeta-function.

1. History of Voronin’s work and related results

In 1975, Voronin [17] proved a remarkable universality theorem
for ζ(s) which states, roughly speaking, that any non-vanishing analytic
function can be approximated uniformly by certain purely imaginary
shifts of the zeta-function in the critical strip:

Theorem 1. Let 0 < r < 1
4 and suppose that g(s) is a non-vanishing

continuous function on the disk |s| ≤ r which is analytic in the interior.

Then, for any ǫ > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ
(

s +
3

4
+ iτ

)
− g(s)

∣∣∣∣ < ǫ

}
> 0.

It is natural to ask for an effective version of this theorem. Given an
admissible function g and some positive ǫ, is it possible to give an upper
bound for the first τ > 0 such that

max
|s|≤r

∣∣∣∣ζ
(

s +
3

4
+ iτ

)
− g(s)

∣∣∣∣ < ǫ,

or is it possible to give a lower bound for the positive lower density
in Theorem 1? This is indeed a very difficult problem and neither the
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known proofs of Voronin’s universality Theorem 1 nor its generalizations
or extensions are effective. However, there are some remarkable attempts
towards a solution of this problem.

First of all, Good [4] combined Voronin’s universality Theorem 1 with
the work of Montgomery [10] on extreme values of the zeta-function,
which enabled him to complement Voronin’s qualitative picture with
Montgomery’s quantitative estimates. His result is rather complicated
and a more satisfying statement was recently given by Garunkštis [1],
building on Good’s ideas. Garunkštis proved that if f(s) is analytic in
|s| ≤ 0.05 with max|s|≤0.05 |f(s)| ≤ 1, then for any 0 < ǫ < 1

2 there exists
a real number τ with

(1) 0 ≤ τ ≤ exp
(
exp

(
10ǫ−13

))

such that

max
|s|≤0.0001

∣∣∣∣log ζ

(
s +

3

4
+ iτ

)
− f(s)

∣∣∣∣ < ǫ,

and further

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤0.0001

∣∣∣∣log ζ

(
s +

3

4
+ iτ

)
− f(s)

∣∣∣∣ < ǫ

}

≥ exp
(
−ǫ−13

)
.

The original theorem is too complicated to be given here. Laurinčikas [6],
[7] found another approach which gives conditional effective results sub-
ject to certain assumptions on the speed of convergence of the related
limit distribution. However, the rate of convergence of weakly conver-
gent probability measures related to the space of analytic functions is
not understood very well. Steuding [12], [13] obtained non-trivial upper
bounds for the upper density of universality.

The purpose of the present paper is to give another approach to
obtain effective statements on the approximation by ζ(s). The ori-
gin of Voronin’s universality Theorem 1 seems to be a density theorem
from [15]:

Theorem 2. For any fixed numbers s1, . . . , sn with 1
2 < Re sk < 1 for

1 ≤ k ≤ n and sk 6= sℓ for k 6= ℓ, the set

{(ζ(s1 + it), . . . , ζ(sn + it)) : t ∈ R}

is dense in Cn. Moreover, for any fixed number s in 1
2 < σ < 1,

{(ζ(s + iτ), ζ′(s + iτ), . . . , ζ(n−1)(s + iτ)) : τ ∈ R}

is dense in Cn.
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This theorem is a significant improvement of classic results due to
Harald Bohr and his collaborators from the first half of the twentieth
century. Of course, Theorem 2 is a simple consequence of Theorem 1,
but Theorem 2 was proved earlier than Theorem 1. In [16], Voronin ex-
tended his approach in order to prove the joint functional independence
of Dirichlet L-functions to pairwise inequivalent characters. Actually,
this paper may be regarded as forerunner of his universality Theorem 1.
As indicated by Laurinčikas [8], the missing link for obtaining (joint) uni-
versality was the absence of a rearrangement theorem for Hilbert spaces
which was proved by Pečerskĭı [11] on Voronin’s request. Garunkštis [2]
found a slight modification of Voronin’s proof which does not make use
of the rearrangement theorem.

Voronin’s universality Theorem 1 can be seen as an infinite dimen-
sional analogue of the second part of Theorem 2: the truncated Taylor
series of the target function g(s) can be approximated by the truncated
Taylor series of a certain shift of zeta. This idea was cultivated by Mat-
sumoto [9] and in the next section we shall combine the idea from [9]
with the following Theorem 3 in order to obtain our effective results in
the present paper.

In 1988, Voronin [18] proved the following, remarkable effective ver-
sion of the second part of Theorem 2:

Theorem 3. Let σ ∈ (1
2 , 1), ǫ ∈ (0, 1) and b = (b0, b1, . . . , bn−1) ∈ Cn

with |b0| > ǫ be fixed. Then the system of inequalities

|ζ(k)(σ + it) − bk| < ǫ for 0 ≤ k < n

has a solution t ∈ [T, 2T ] provided that

(2) T ≥ C(n, σ) exp exp
(
5A(n,b, ǫ)

8

1−σ + 8

σ−1/2

)
,

where C(n, σ) is a positive, effectively computable constant, depending

only on n and σ, and

A(n,b, ǫ) = |log|b0|| +

(
‖b‖

ǫ

)n2

with ‖b‖ :=
∑

0≤k<n |bk|.

This theorem is also given in the monograph of Karatsuba and Voro-
nin [5]; unfortunately, Voronin called his results Ω-theorems which does
not really match the statement. The proof of Theorem 3 is pretty much
the same as the one for Theorem 2 with two exceptions which allow the
effectiveness of the statement: firstly, the use of systems of linear equa-
tions in as many unknowns as equations (solvable by Cramer’s rule with
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a solution in an explicit range), which replaces the ineffective rearrange-
ment theorem; secondly, Fourier analysis as substitute for Kronecker’s
diophantine approximation theorem.

Because of Voronin’s untimely death in 1997 we will never know
whether this reasoning was Voronin’s inspiration for [18]; we believe
that Voronin was aware of these applications of his late results from [18]
to the effectivity problem in universality and, if he was, we may speculate
that he was not completely satisfied.

2. Effective uniform approximation

Let K = {s ∈ C : |s− s0| ≤ r}, where r is a positive real number and
s0 = σ0 + it0 with σ0 ∈ (1

2 , 1). Notice that K is not necessarily included

in the strip 1
2 < Re s < 1. Assume that we are given an analytic target

function g : K → C. Our main tool is the Taylor series expansion of g:

g(s) =

∞∑

k=0

g(k)(s0)

k!
(s − s0)

k,

valid for all s ∈ K. By Cauchy’s formula,

g(k)(s0) =
k!

2πi

∫

|s−s0|=r

g(s)

(s − s0)k+1
ds,

where the integral is taken over the circle |s−s0| = r in counterclockwise
direction. Hence,

|g(k)(s0)| ≤ k!Mr−k

where M := max|s−s0|=r |g(s)|. We fix a number δ0 ∈ (0, 1). Then

∣∣∣∣
g(k)(s0)

k!
(s − s0)

k

∣∣∣∣ ≤ Mδk
0 for |s − s0| ≤ δ0r.

In order to apply Theorem 3 we suppose that g(s0) 6= 0. Then we can
choose a sufficiently small ǫ satisfying 0 < ǫ < |g(s0)|. There exists a
positive integer n = n(δ0, ǫ, M) such that

(3) Σ1 :=

∣∣∣∣∣∣
g(s) −

∑

0≤k<n

g(k)(s0)

k!
(s − s0)

k

∣∣∣∣∣∣
<

ǫ

3
for |s − s0| ≤ δ0r.
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Let 0 < δ ≤ δ0. Then, needless to say, (3) is valid for |s− s0| ≤ δr. Now
we apply Theorem 3 with bk = g(k)(s0) and ǫ

3 in place of ǫ. Then, for
any sufficiently large T , there exists t1 ∈ [T, 2T ] such that

(4) |ζ(k)(σ0 + it1) − g(k)(s0)| <
ǫ

3
for 0 ≤ k < n;

the condition with respect to T is

(5) T ≥ C(n, σ0) exp exp
(
5A(n,g, ǫ/3)

8

1−σ0
+ 8

σ0−1/2

)
,

where g is the vector composed from the coefficients in the Taylor series
expansion for g. In particular, the first component of g is g(s0). Thus,

Σ2 :=

∣∣∣∣∣∣

∑

0≤k<n

ζ(k)(σ0 + it1)

k!
(s − s0)

k −
∑

0≤k<n

g(k)(s0)

k!
(s − s0)

k

∣∣∣∣∣∣

<
ǫ

3

∑

0≤k<n

(δr)k

k!
<

ǫ

3
exp(δr) for |s − s0| ≤ δr.

(6)

Now let τ = t1− t0; then σ0 + it1 = s0 + iτ . We use the Taylor expansion
of ζ(s) on the disc K+ iτ . For this purpose it is necessary that the pole
of ζ(s) is not included in this disc. This is achieved if

(7) T > r,

which is satisfied if T is sufficiently large. Under this assumption, we
have

ζ(s + iτ) =

∞∑

k=0

ζ(k)(s0 + iτ)

k!
(s − s0)

k

for s ∈ K. Put

M(τ) = max
|s−s0|=r

|ζ(s + iτ)|.

Then, again by Cauchy’s formula,
∣∣∣∣
ζ(k)(s0 + iτ)

k!
(s − s0)

k

∣∣∣∣ ≤ M(τ)δk for |s − s0| ≤ δr.

Hence,

Σ3 :=

∣∣∣∣∣∣
ζ(s + iτ) −

∑

0≤k<n

ζ(k)(s0 + iτ)

k!
(s − s0)

k

∣∣∣∣∣∣

=

∣∣∣∣∣

∞∑

k=n

ζ(k)(s0 + iτ)

k!
(s − s0)

k

∣∣∣∣∣≤M(τ)
δn

1 − δ
for |s − s0|≤δr.

(8)



214 R. Garunkštis et al.

Putting (3)–(8) together, we find

|ζ(s + iτ) − g(s)| ≤ Σ1 + Σ2 + Σ3 <
ǫ

3
+

ǫ

3
exp(δr) + M(τ)

δn

1 − δ
.

Now choose δ > 0 such that

(9) M(τ)
δn

1 − δ
=

ǫ

3
(2 − exp(δr));

this is possible since the left hand-side tends to zero as δ → 0, while
the right hand-side tends to ǫ

3 > 0, resp. when δ → 1 the left-hand side
tends to infinity, but the right-hand side remains bounded. We thus have
proved

Theorem 4. Let σ0 ∈ (1
2 , 1), g : K → C continuous, g(s0) 6= 0 and

analytic for |s − s0| < r. Then, for any ǫ ∈ (0, |g(s0)|) there exist real

numbers τ ∈ [T, 2T ] and δ = δ(ǫ, g, τ) > 0 defined by (9) such that

max
|s−s0|≤δr

|ζ(s + iτ) − g(s)| < ǫ,

where T = T (g, ǫ, σ0) has to satisfy (5) and (7), and δ is effectively

computable.

Corollary 5. The assertion of Theorem 4 holds even if g(s0) = 0, if we

replace (5) by (10) below.

Proof: Suppose g(s0) = 0. Set gǫ(s) = g(s) + ǫ/2, so that gǫ(s0) 6= 0.
Since ǫ/3 ∈ (0, |gǫ(s0)|), we can apply Theorem 4 to find τ ∈ [T, 2T ]
and δ > 0 for which

max
|s−s0|≤δr

|ζ(s + iτ) − gǫ(s)| < ǫ/3

holds, and T has to satisfy

(10) T ≥ C(n, σ) exp exp
(
5A(n,gǫ, ǫ/3)

8

1−σ0
+ 8

σ0−1/2

)
,

where gǫ = (ǫ/2, g(1)(s0), . . . , g
(n−1)(s0)). This clearly implies the asser-

tion of the corollary.

Remark. By the same idea it is possible to show that a slightly modified

version of Theorem 3 holds even if b0 = 0. Let b̃ = (ǫ/2, b1, . . . , bn−1).
Applying Theorem 3 we find that the system of inequalities |ζ(k)(σ +

it)− b̃k| < ǫ/3 for 0 ≤ k < n (where b̃0 = ǫ/2) has a solution t ∈ [T, 2T ],
provided that

(11) T ≥ C(n, σ) exp exp
(
5A(n, b̃, ǫ/3)

8

1−σ0
+ 8

σ0−1/2

)
.
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This t is a solution of the system |ζ(k)(σ + it) − bk| < ǫ for 0 ≤ k < n,
as desired.

It is remarkable that there is no objection on g to be non-vanishing
on K as in the universality Theorem 1. Indeed, the statement of Theo-
rem 1 contradicts the Riemann hypothesis if g has a zero in K (since any
such zero would generate via Rouché’s theorem many zeros of ζ(s + iτ);
see [14, §8.1]). However, it seems that there is an inner mechanism which
prevents to obtain an extraordinarily good approximation of the target
function. We observe that a small ǫ leads to a big T in (5) and further
that the bigger T , the smaller we have to choose δ via (9). This follows
from the fact that the zeta-function is unbounded inside the critical strip
and so the quantity M(τ) is increasing with T to infinity. We illustrate
this by an example. Let s0 be a complex number with 1

2 < σ0 < 1 and
b > 0. We put g(s) = b+s−s0; then g is an entire function with a simple
zero in s0 − b. So we may choose n = 2 in the above proof of Theorem 4
(and there is no error term coming from (3)). We observe that (9) holds
for some sufficiently small δ > 0. Now assume that 0 < b < δr. Note
that δr < log 2 holds because the right-hand side of (9) is positive under
our choice of δ. If we could choose ǫ > 0 such that

(12) max
|s−s0|=δr

|ζ(s + iτ) − g(s)| < ǫ < min
|s−s0|=δr

|g(s)| = δr − b,

then we would obtain a disproof of the Riemann hypothesis (if we ad-
ditionally suppose that 1

2 < σ0 − δr and σ0 + δr < 1 in order to have a
zero off the critical line). Indeed, the zero of g(s) in s = s0− b lies inside
the disk of radius δr, and so by Rouché’s theorem ζ(s + iτ) vanishes for
some value of s with |s − s0| < δr too. The second inequality of (12)
can be fulfilled by choosing ǫ sufficiently small, comparing with the value
of δ. However, in order to fulfill the first inequality of (12), Theorem 4
yields only a large value for τ which leads to a big M(τ) so that δ has
to be chosen rather small. Here we see an indirect link between uniform
approximation and the order of growth of the zeta-function on vertical
lines.

It should be noticed that Gauthier and Clouâtre [3] obtained a non-
effective variant of Theorem 4; they proved that every function holo-
morphic on a compact set K ⊂ C having connected complement can be
approximated by translates of Taylor polynomials of the zeta-function.
Here K is not necessarily contained in the right half of the critical strip.
Their proof depends on Voronin’s theorem.
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3. Linear combinations

The approach of the previous section also applies to any deriva-
tive ζ(j)(s) of the zeta-function in place of ζ(s). Moreover, we can even
allow linear combinations.

Theorem 6. Let λ0, λ1, . . . , λJ be any complex numbers, not all equal

to zero, and define

ℓ(s) =

J∑

j=0

λjζ
(j)(s).

Suppose that σ0 ∈ (1
2 , 1), g : K → C is continuous, g(s0) 6= 0, and

analytic for |s| < r. Then, for any ǫ ∈ (0, |g(s0)|) there exist real num-

bers τ ∈ [T, 2T ] and δ = δ(ǫ, g, τ) > 0 defined by (9) such that

max
|s−s0|≤δr

|ℓ(s + iτ) − g(s)| < ǫ

for all T > C = C(g, ǫ, σ0, λ0, . . . , λJ), where δ and C are effectively

computable positive constants.

Proof: The key idea for the proof of this theorem is also to use The-
orem 3. Since the case J = 0 was already treated by Theorem 4, we
assume J ≥ 1 in the following proof.

Let τ be real. Using the local power series expansion

ζ(s + iτ) =

∞∑

k=0

1

k!
ζ(k)(s0 + iτ)(s − s0)

k,

we find

ℓ(s + iτ) =
∞∑

k=0

1

k!

J∑

j=0

λjζ
(k+j)(s0 + iτ)(s − s0)

k.

Hence, different from the previous section, we now have to find τ which
is a solution of the system of inequalities

(13)

∣∣∣∣∣∣

J∑

j=0

λjζ
(k+j)(s0 + iτ) − g(k)(s0)

∣∣∣∣∣∣
<

ǫ

3

for 0 ≤ k < n. For this purpose we solve the system of linear equations

(14)

J∑

j=0

λjxk+j = g(k)(s0) for 0 ≤ k < n
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in the unknowns x0, x1, . . . , xn+J−1. Since this system consists of n equa-
tions and n + J variables, it follows that the space of solutions has a
positive dimension.

We claim that, amongst those infinitely many solutions, we can find
a solution such that x0 6= 0. In fact, if λ0 = 0 this is clear. If λ0 6= 0 we
have

x0 =
1

λ0
(g(s0) − (λ1x1 + · · · + λJxJ )).

If all λj = 0 (j ≥ 1), then x0 = λ−1
0 g(s0) 6= 0. If some λj (j ≥ 1)

does not vanish, then let c be any fixed non-zero real number. We can
solve the system (14) with the additional condition x0 = c because of
the above positivity of the dimension. Hence the claim follows.

Now we use Theorem 3 to find a positive real number τ such that

(15) |λjζ
(k+j)(s0 + iτ) − λjxk+j | <

ǫ

3(J + 1)

for 0 ≤ k + j < n + J . Summing (15) up on j = 0, 1, . . . , J and com-
bining with (14), we obtain (13). This corresponds to (4) in the proof
of Theorem 4. The rest of the proof follows as in the previous section;
the constant C can be made effective by solving the system of linear
equations explicitly. Thus the proof of Theorem 6 is complete.

In the above proof, the assumption g(s0) 6= 0 is used only in the case
when all λj = 0 (j ≥ 1). Therefore this assumption is actually not neces-
sary unless all λj = 0 (j ≥ 1). However the latter case is that we treated
in Theorem 4, and we have already seen that the condition g(s0) 6= 0
can be removed in the sense of Corollary 5. Therefore we can conclude

Corollary 7. The condition g(s0) 6= 0 can be removed from the state-

ment of Theorem 6.
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[8] A. Laurinčikas, Prehistory of the Voronin universality theorem,
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Faculty of Mathematics and Informatics
Vilnius University
Naugarduko 24
03225 Vilnius
Lithuania
E-mail address: ramunas.garunkstis@maf.vu.lt

E-mail address: antanas.laurincikas@maf.vu.lt

Kohji Matsumoto:
Graduate School of Mathematics
Nagoya University
Furocho, Chikusaku
Nagoya 464-8602
Japan
E-mail address: kohjimat@math.nagoya-u.ac.jp

Jörn and Rasa Steuding:
Department of Mathematics
Würzburg University
Am Hubland, 97
218 Würzburg
Germany
E-mail address: steuding@mathematik.uni-wuerzburg.de
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