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NON-ISOTROPIC DISTANCE MEASURES FOR

LATTICE-GENERATED SETS

Alexander Iosevich and Misha Rudnev

Abstract

We study distance measures for lattice-generated sets in R
d, d ≥ 3,

with respect to non-isotropic distances | · |
K

, induced by smooth
symmetric convex bodies K. An effective Fourier-analytic ap-
proach is developed to get sharp upper bounds for the second
moment of the weighted distance measure.
The implications of these estimates are discussed in the context
of the general Erdös-Falconer distance problem.

1. Introduction

1.1. In this paper we study distance sets, corresponding to the integer
lattice Z

d, d ≥ 3, with respect to non-isotropic distances, defined in
terms of the Minkowski functional of some well-curved central-symmetric
convex body K ⊂ R

d, with a smooth boundary ∂K. Namely we assume
that the Gaussian curvature on the boundary ∂K is bounded from above
and below by some fixed pair of positive constants. The boundary itself
should be Cr, for a large enough r, and we do not discuss how small r
can possibly be. Suppose the volume of K equals the volume of the
Euclidean unit ball, which is denoted as B throughout the paper. Let K
denote the class of such convex bodies.

For K ∈ K, let |·|K be the Minkowski functional of K, or the K-norm.
Let | · |K∗ be the dual norm to | · |K , defined as

(1) |x|K∗ = sup
y∈K

|x · y|, K∗ = {x ∈ R
d : |x|K∗ ≤ 1}.

The dual K∗ also belongs to the class K.
For a Borel set S ⊂ R

d, define its K-distance set as

(2) ∆K(S) = {|a− b|K : a, b ∈ S}.
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Let ∆(S) ≡ ∆B(S) be the distance set of S with respect to the Euclidean
metric ‖ · ‖.

An infinite discrete set A ⊂ R
d is called homogeneous if all its elements

are separated by some c > 0, while any cube of side length C > c contains
at least one element of A.

Let q � 1 be a large real, consider a homothety qK of K, with respect
to the center of K. For a homogeneous discrete set A, let Aq = A ∩ qK
be a truncation of A (which strictly speaking depends on K).

In the special case of A = Z
d and K = B, it is well known that

(3) #∆(Aq) ≈







q2, d ≥ 3,

q2

√
log q

, d = 2.

To fix the notation, # denotes the cardinality of a finite set, | · | stands
for the Lebesgue measure of a Borel measurable set. The symbols O
or . absorb constants depending only on K (and hence d). Also we
write a & b, or equivalently a = Ω(b), if b . a and a ≈ b if both a . b
and a & b. The symbol ∼ will indicate proportionality, up to some
constant c(K).

The main goal in this paper is to develop a technically transparent
Fourier-analysis based approach which would extend estimate (3) to the
case of K-distances. We are able to do so in d ≥ 4; if d = 3 we are
off by a logarithmic factor. The result follows by estimating the second
moment of the corresponding distance measure; it is stated in Theorem 2
further in the paper, after all the notations have been developed.

Theorem 1. If A = Z
d, the d-dimensional integer lattice, one has

(4) #∆K(Aq) &

{

q2, d ≥ 4,

q2 log−2 q, d = 3.

1.2. Theorem 1 can be given interpretation in terms of the borderline
dimension d

2 in the Falconer distance problem. The Falconer distance

problem states that if the Hausdorff dimension of a Borel set S ⊂ R
d,

d ≥ 2 is greater than d
2 , then the Lebesgue measure of the distance

set |∆(S)| > 0. (See [5], [11], [2], [16], [17], [3], and the references
contained therein for the description of this open for every d ≥ 2 problem
and progress over the years. The best known results are due to Wolff
in R

2 and Erdog̃an in R
d, who vindicate the conjecture if the dimension

of S exceeds d(d+2)
2(d+1) rather than d

2 .) The discrete analogue of the Falconer

distance problem is the Erdös distance conjecture (see e.g. [13] and the
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references contained therein for thorough discussion and the state-of-the-
art) restricted to homogeneous sets, which states

(5) #∆(Aq) ≥ Cεq
2−ε.

Falconer [5] showed that the borderline dimension d
2 cannot be im-

proved, due to the following construction. Fix a rapidly growing se-
quence of positive integers {qi}i≥1, with q1 = 2 and qi+1 > qi

i . Let A=Z
d

and Si be the union of Euclidean balls of radius q
− d

s

i , for some 0 < s < d,
centered at the points of 1

qi
Aqi

. Let us call SF = ∩iSi the Falconer set.

Then (see e.g. [4]) the Hausdorff dimension dimH SF = s. On the other
hand, the Lebesgue measure

(6) |∆(Si)| ≈ q
− d

s

i · #∆(Aqi
).

It follows from (3) that |∆(SF )| = 0 if s < d
2 . More precisely, |∆(SF )|>0,

provided that s ≥ d
2 for d ≥ 3 and s > d

2 for d = 2.
An immediate consequence of Theorem 1 is that the same conclusion

can be drawn in the case d ≥ 4 for the Falconer set SF with respect to
K-distances, K ∈ K, irrespective of the pair of constants that bound the
curvature. Consequently, as the basis for the Falconer construction one
can use any d-dimensional lattice, in which case Theorem 1 will be valid
as well.

Corollary 1.1. Let SF be the Falconer set with dimH SF = s. Suppose,
s ≥ d

2 , and d ≥ 4. Then |∆K(SF )| > 0, for any central-symmetric K,
which is smooth and has bounded and everywhere non-zero curvature
on ∂K.

Remark. The assumption of central symmetry is not essential: one can
always consider Z

d
+ only. We do not study to what extent the curvature

assumption can be weakened so thatK may still qualify as “well-curved”,
which for our purposes is determined by the validity of Lemma 2.1 further
in the paper.

As a separate issue, our result shows that if one fixes the Euclidean
metric ‖ · ‖, the scope of Falconer’s construction can be extended to a
class A of homogeneous sets

(7) A =

{ |a|K
‖a‖ a : a ∈ Z

d

}

, K ∈ K.

The difficult part in Theorem 1 is the endpoint issue, namely the
precision of the exponents in estimates (4), which transcribes into the
inequality s ≥ d

2 , inclusive of the endpoint, in Corollary 1.1. Otherwise,
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that is if an extra qε were allowed in the right-hand side of (4), the proof
can be made somewhat shorter, using the techniques by Müller [12] and
Iosevich et al. [8] developed to study the quantity

(8) E(t) = #{tK ∩ Z
d} − td VolK.

1.3. It appears to be important to understand how much the ana-
lytic methods for geometry of numbers, i.e. in the present context the
case A = Z

d, can apply to study the Erdös-Falconer problem, dealing
with general homogeneous sets A. The motivation for doing so it comes
from a hypothesis closely related to (5) that lattice sets yield local min-
ima for second moments of the corresponding distance measures, with
respect to variations of the sets. Hence our approach is developed on the
basis of the general distance measure formalism, set up by Mattila [11].
The distance measure ν(t), relative to the set Aq counts the number of
points of Aq in 1

q
-thin K-annuli of radius t, centered at points of Aq ,

average with respect to the position of the center. (In the case of a
lattice it suffices to fix the center at the origin.) The L1-norm ‖ν‖1 is
approximately the number of points of A in qK. The main task is to
estimate the square of L2-norm, or the second moment ‖ν‖2

2. This is the
content of the forthcoming Theorem 2, after all the definitions have been
made. Beyond this non-technical introduction, we will be using various
weighted measures ν, which will carry extra identification.

The distance measure formalism however has nothing to do with the
lattice structure, in the sense that any finite compactly supported Borel
measure µ in R

d generates a well-defined distance measure ν in R+. To
this effect, Mattila [11] proved a general theorem for the Euclidean dis-
tance, which generalizes to K-distances (see [1]) as follows. The second
moment of the K-distance measure ν, generated by µ is finite in case
what we call the Mattila integral

(9) M(µ) =

∫ ∞

1

(∫

|µ̂(tx)|2 dωK∗(x)

)2

td−1 dt <∞.

Above, ωK∗ is the Lebesgue measure on ∂K∗. Hence, if M(µ) <∞, the
Lebesgue measure of the support of ν is positive. As for the Falconer
construction (see 1.2), for the natural (i.e. induced by the Lebesgue
measure in R

d) measure on the set SF , in the case dimH SF < d
2 the

integral (9) diverges.
In essence, our proof of Theorem 2 consists in analyzing and estimat-

ing the Mattila integral for a natural measure µ on the set Si = Sqi
, in the

Falconer construction, when SF = ∩Si has Hausdorff dimension s = d
2 ,

after fixing qi = q and appropriate scaling.
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Looking back at the construction of the set SF , it is clear that instead
of the lattice Z

d, one can use any homogeneous set A as a basis for the
construction. Unfortunately, our proof of Theorem 2 does not extend
beyond the very special case when A is a lattice. The reason is that in
the proof we use a smooth approximation E(t) of the discrepancy E(t),
see (8), as the auxiliary quantity. In the lattice case, E(t) admits a
well known analytic representation via the Poisson summation formula,
whereupon E2(t) looks very similar to the integrand in the Mattila in-
tegral. It follows that L2 estimates for the distance measure ν can be
obtained in terms of L2-estimates for E. Whether such an approach has
a prototype in the general homogeneous set context is not at all clear.

1.4. To prove our main result we develop an asymptotic method, which
enables one first to dominate the L2-estimate for E by a weighted L2 es-
timate for ν, see (46) below. Then the latter estimate can in turn be
dominated by another L2-estimate for E, see e.g. (62) below. Theorem 2
follows. L2-estimates for the quantity E were obtained in the works [12]
and [8] (see also [9] for further developments) where basically the same
trick was used. However, the asymptotic techniques of those papers did
not yield a clear cut relation like (46) between the L2 estimates for the
quantities ν and E, due to plethora of cut-off functions, truncations, etc.
used. These are the technical difficulties one encounters in the effort to
attain the endpoint result claimed in Theorem 1. We identify the esti-
mate (46) as the key display of the technical advantage of our approach,
which also yields the mean square estimates for E and E as a by-product.
In addition, throughout the proof a number of integral representations
for the distance measure ν and related quantities are obtained, which
can be interesting in their own right. The approach rests on the use of
the Hankel rather than Fourier transform for distance measures, defined
on R+, which enables to make the analysis fairly transparent.

Due to the fact that it is only a weighted estimate for the second
moment of the distance measure ν that gets majorated by the second
moment of E, our approach results in tight (modulo the logarithmic
factor in d = 3) estimates for the second moment of ν in d ≥ 3, yet
for d = 2 it does not do better than yield a trivial estimate. In d = 2,
the case of a general K is an open problem.

The main body of the paper is organized as follows. In Section 2 we
set up the distance measure formalism in the context of a general homo-
geneous set A. In the special case A = Z

d, we formulate Theorem 2 and
show how it implies Theorem 1. As an example of how the formalism
applies to a general A, we briefly discuss the Euclidean distance case
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and write out the integral expression for the second moment of the dis-
tance measure. We further move on to the case of K-distances and prove
the general Mattila integral identity for the second moment in Proposi-
tion 2.2. The proposition contributes little to the special case A = Z

d.
However, it establishes the proof template which is further used in Sec-
tion 3 to prove the crucial Lemma 3.1. Section 3 however is already fully
dedicated to the case A = Z

d and from its outset takes advantage of
the Poisson summation formula. Comparison of the yield of the Poisson
summation formula for the distance measure with the general formula in
Proposition 2.2 yields as a by-product Theorem 3 on duality. However,
the main result of Section 3 is Lemma 3.1. In Section 4 this lemma is
used to prove Theorem 2.

2. Distance measure

Let φ be a non-negative radial (radial henceforth means radial with
respect to the Euclidean metric) Schwartz class function, such that
∫

φ(x) = 1, φ(x) = 1 inside the ball of some radius and vanishes
outside the ball of twice the radius. Let q be a large number, de-
note φq(x) = qdφ(qx) and A ⊂ R

d a homogeneous set, Aq = A∩qK. Let
also Z

d
q = Z

d ∩ qK for the special case A = Z
d. Without loss of gener-

ality (only to discount additional trivial estimates) suppose Aq contains
no point in some c-neighborhood of the origin.

For a function f ∈ L1(Rd) ∩ L2(Rd), let

(10) f̂(ξ) =

∫

f(x)e−2πιξ·x dx

define the Fourier transform. Let

(11) µq(x) =
∑

a∈Aq

φq(x− a),

be the smoothing of the counting measure on Aq . The radius of the
atoms of the measure µq is c0/q, with 0 < c0 < 1 by the choice of φ.
Clearly

(12) µ̂q(ξ) =
∑

a∈Aq

φ̂(ξ/q)e−2πιa·ξ,

and the function φ̂ is radial.
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To study the distances between the elements of A and the origin,
define for t > 0:

νq,0(t) =

∫

ωK(x/t) dµq(x),

Nq,0(t) =

∫

ΩK(x/t) dµq(x) =

∫ t

0

dνq,0.

(13)

Above ωK is the Lebesgue measure on ∂K, ΩK is the characteristic
function of K. Note that in the first integral µq is actually a Schwartz
function, and ωK - a distribution.

Without loss of generality one can assume that every lattice cube
contains exactly one point of A (this can always be achieved for any
finite truncation Aq by sparsing it out and subsequent scaling). In this
case define the volume discrepancy

(14) Eq,0(t) = Nq,0(t) − td VolK.

Studying the quantity Eq,0 for the integer lattice has a long history,
see [8] for some references. In the general context of homogeneous sets,
the quantity Eq,0 defined relative to the origin cannot be expected to
be smaller in absolute value than O(qd−1). However, averaging with
respect to the choice of the center throughout Aq can result in a non-
trivial estimate, important in the context of the Erdös distance problem.
This issue is briefly discussed further in the paper following (30).

The seemingly redundant 0 subscripts come from the fact that in the
sequel it turns out to be more convenient to work with the weighted
quantities

(15) [νq(t), Nq(t), Eq(t)] = t
1−d
2 [νq,0, Nq,0(t), Eq,0(t)].

The quantity νq,0 is the density of the measure µq on K-spheres of
radius t, centered at the origin. The primitive Nq,0(t) counts the points
in K-balls of radius t. Clearly

(16)

∫ ∞

0

νq,0 ∼ qd.

By definition of the quantities µq and νq,0, in order to obtain estimates
in terms of q, it is legitimate to sample integrals containing νq,0 (as well
as Eq,0 and other versions of ν and E to appear later) by Darboux sums
with the step size 1

c1q
, for some constant c1.

Clearly νq,0 vanishes for t > q + q−1, while for t < q − q−1,

(17) νq,0 ≈ q−1Γ(t, q−1),
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where Γ(t, δ) is the number of points of A in a K-annulus α(t, δ) (defined
as (t+δ)K\tK) centered at the origin, with radius t and width δ; further
on δ will always be approximately 1

q
. More precisely, the statement (17)

means that there exist uniform constants c2 and c3, such that

(18) Γ

(

t,
1

c2q

)

≤ νq,0

q
≤ Γ

(

t,
c3
q

)

.

Let us cover Aq by a set of concentric K-annuli αk around the origin,
all of which have fixed width δ ∼ 1

q
. Suppose α1 has radius q−1 and

for k > 1 the inner boundary of αk+1 coincides with the outer boundary
of αk. Terminate the construction as soon as qK is covered by the union
of αk. Thus k . q2 and the K-radii tk of αk go up to q + O(q−1).
Define the annulus standard deviation Dα and the body mean square
discrepancy DK as follows:

Dα =

√

1

q2

∑

k

Γ2(tk, δ) ≈
√

1

q3

∫ q

0

ν2
q,0(t) dt,

DK =

√

1

q2

∑

k

E2
q,0(tk) ≈

√

1

q

∫ q

0

E2
q,0(t) dt.

(19)

Theorem 2. Suppose A = Z
d. Then

(20)
Dα, DK . qd−2, d ≥ 4,

Dα, DK . q log q, d = 3.

As far as the weighted quantity νq(t) is concerned, see (15), the esti-
mate (20) of Theorem 2 is tantamount to

(21) ‖νq‖2
2 =

∫ ∞

0

ν2
q (t) dt .

{

qd, d ≥ 4,

q3 log2 q, d = 3.

Theorem 2 implies Theorem 1.

Proof of Theorem 1: Assume Theorem 2. By the Cauchy-Schwartz in-
equality,

(22) q2d ≈
(∫ q

1

νq,0 dt

)2

≤ |suppνq,0|
∫ q

1

ν2
q,0(t) dt,

where |supp νq,0| is the Lebesgue measure of the support of νq,0. Sub-
stituting the estimates (20) in the right hand side, one gets the lower
bound |suppνq,0| & q for d ≥ 4 and |suppνq,0| & q

log2 q
for d = 3. Hence,

by definition of νq,0, cf. (17), there exists Ω(q2) in d ≥ 4 and Ω(q2/ log2 q)
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disjoint K-annuli, of width δ ∼ 1
q
, and whose radii do not exceed q, such

that each of these annuli contains at least one lattice point. This is
equivalent to the statement of Theorem 1.

Let us now return to the general homogeneous set A set-up. Observe
that in the same way as (22), as |supp νq,0| . q, for the second moment
of the weighted quantity νq one should always have

(23) ‖νq‖2
2 & qd.

Let us write up some integral representations for the quantities νq, Nq.
Applying the Plancherel theorem to the integrals in (13), for the weighted
quantities (15) we get:

νq(t) = t
d−1

2

∫

φ̂(ξ/q)ω̂K(tξ)
∑

a∈Aq

e−2πι a·ξ dξ,

Nq(t) = t
d+1

2

∫

φ̂(ξ/q)Ω̂K(tξ)
∑

a∈Aq

e−2πι a·ξ dξ.

(24)

Observe that νq(t) extends as zero to t = 0, as well as the fact that the
quantity Nq(t) is not in L2(R+) if d = 2.

Euclidean case.

First let us get an integral representation for the second moment ‖νq‖2
2

when K is the Euclidean ball, with the notations ωB , ΩB for the sur-
face and volume measure. In this case the Fourier transform ω̂B(ξ) is

radial, namely ω̂B(ξ) ∼ ‖ξ‖1−d
2 J d

2
−1(2π‖ξ‖), where Jv further denotes

the Bessel function of order v ≥ 0. Let us skip the factor of 2π in what
follows. This can always be accomplished by scaling. After writing the
integral (24) for νq in the spherical coordinates we have

(25) νq(t) ∼
√
t

∫ ∞

0

rJ d
2
−1(rt)ψ(r/q)

∑

a∈Aq

J d
2
−1(r‖a‖) dr,

where henceforth

(26) ψ(r) = φ̂(ξ)|‖ξ‖=r ,

so |ψ(r/q)| is asymptotically smaller than any inverse power of r/q.
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Using the Hankel formula (see e.g. [15]),

(27)

∫ ∞

0

tJv(at)Jv(bt) dt =
δ(a− b)

a
,

one gets from (24)

‖νq‖2
2 =

∫ ∞

0

ν2
q (t) dt ∼

∫ ∞

0

rψ2(r/q)
∑

a,b∈Aq

J d
2
−1(r‖a‖)J d

2
−1(r‖b‖)

(‖a‖‖b‖)
d
2
−1

dr

∼
∫ ∞

0

rd−1ψ2(r/q)
∑

a,b∈Aq

ω̂B(r‖a‖)ω̂B(r‖b‖) dr.

(28)

The representation (28) is closely related to the Mattila integral (9) for
the measure µq .

Observe that by the Hankel formula (27) with v = d
2 − 1, the expres-

sion (28) is in essence the Parseval identity for the Hankel transformation

(29) H [νq ](r)=

∫ ∞

0

√
rtJ d

2
−1(rt)νq(t) dt ∼

√
rψ(r/q)

∑

a∈Aq

J d
2
−1(r‖a‖)

(‖a‖)
d
2
−1

.

Remark. Similarly to (28) one can apply the Hankel formula with v = d
2

to the quantity Nq(t) and get for d ≥ 3:

qd+2 ≈ ‖Nq‖2
2 ∼

∫ ∞

0

1

r
ψ2(r/q)

∑

a,b∈Aq

J d
2
−1(r‖a‖)J d

2
−1(r‖b‖)

(‖a‖‖b‖)
d
2
−1

dr

∼
∫ ∞

0

rd−3ψ2(r/q)
∑

a,b∈Aq

ω̂B(r‖a‖)ω̂B(r‖b‖) dr.

(30)

It is easy to show that in order to get the order of magnitude qd+2 for
‖Nq‖2

2 in the latter integral, it suffices to restrict the domain of inte-
gration to (0, 1). On the other hand, the integral on [1,∞) would be
approximately q−2‖ν2

q‖2
2. In the special case A = Z

d, the integral (30),
taken from 1 to infinity is closely related to the quantity Eq , see the
ensuing Lemma 3.1. However, for a general homogeneous set the inte-
gral (30), taken from 1 to infinity apparently cannot be interpreted in
terms of the quantity Eq .
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Anisotropic case.

Let us move on to the case of K-distances. To proceed, we need
the following lemma on the asymptotics of the Fourier transforms ω̂K

and Ω̂K . We do not present a proof here, as for Ω̂K it can be found in [7],
and the case of ω̂K follows in the same way. For more asymptotics of
this kind see [6], [14].

Lemma 2.1. For ‖ξ‖ ≤ 1, ω̂K(ξ), Ω̂K(ξ) ≈ 1, otherwise

ω̂K(ξ) =

1
∑

j=0

uj

(

ξ

‖ξ‖

)

J d
2
−1+j(c4|ξ|K∗)‖ξ‖1−d

2
−j +O

(

‖ξ‖−d+3

2

)

,

Ω̂K(ξ) =

1
∑

j=0

Uj

(

ξ

‖ξ‖

)

J d
2
+j(c4|ξ|K∗)‖ξ‖−d

2
−j +O

(

‖ξ‖− d+5

2

)

,

(31)

where the quantities u0, U0 are strictly positive and the constant c4 de-
pends on K only.

Without loss of generality, assume c4 = 1 in the formulae (31) above.
The sums in the asymptotic expansions have two terms, because this is
as many as we will have to analyze. Observe that in the Euclidean case,
the expressions (31) reduce to the first term in the sum only.

Lemma 2.1 will be instrumental for our proofs. First let us use it to
derive the K-analog of the formula (28).

Proposition 2.2. For d ≥ 2,

‖νq‖2
2 ≈

∫ ∞

0

rd−1ψ2(r/q)
∑

a,b∈Aq

ω̂K∗(ra)ω̂K∗(rb) dr

≈
∫ ∞

0

rψ2(r/q)
∑

a,b∈Aq

J d
2
−1(|a|Kr)J d

2
−1(|b|Kr)

(|a|K |b|K)
d
2
−1

dr.

(32)

Proof: The proof is direct verification, done by substituting the asymp-
totic expansion for ω̂K∗ (naturally K∗∗ = K) from (31) into the interme-
diate term in (32). Given a pair (a, b) ∈ Aq ×Aq in the double sum (32),
it suffices to consider three cases, as far as the three-term expansions
in (31) are concerned: the leading terms for both a and b, the lead-
ing term for a and the second term for b, and finally the leading term
for a and the remainder for b. The contribution of other combinations
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of terms is negligible, by the order of their asymptotics. Hence the proof
has three steps.

1. Given (a, b), take the product of the leading terms in the sum (31).
Then, cf. (28), what we get is proportional to the following quantity,
involving an integral over R

d:

(33) u0(a/‖a‖)u0(b/‖b‖)

∫

φ̂2(ξ/q)ω̂B(|a|Kξ)ω̂B(|b|Kξ) dξ

≈
∫

[φq ∗ (ωB ◦ |a|−1
K )](x) · [φq ∗ (ωB ◦ |b|−1

K )](x) dx,

where ωB ◦ |a|−1
K (x) = |a|1−d

K ωB(|a|−1
K x). The integrand in the right

hand side of (33) is roughly the product of characteristic functions
of concentric Euclidean annuli, of radii |a|K and |b|K . It vanishes if

||a|K − |b|K | > 1
q
, and its integral is proportional to |a|d−1

K in case

|a|K = |b|K . Thus the average value of ωB ◦ |a|−1
K across the Euclidean

annulus of radius |a|K and width of ≈ 1
q

is proportional to q. So we get

∑

a,b∈Aq

u0(a/‖a‖)u0(b/‖b‖)

∫ ∞

0

rψ2(r/q)
J d

2
−1(|a|Kr)J d

2
−1(|b|Kr)

(|a|K |b|K)
d
2
−1

dr

≈ q

∼q2

∑

k=1

Γ2(rk, δ)

rd−1
k

≈
∫ ∞

0

ν2
q (t) dt.

(34)

The sum in the intermediate expression is taken over consecutive K-an-
nuli of radius rk and fixed width δ ∼ 1

q
, cf. (17).

2. Now let us take the first term in the sum (31) for a and the second
one for b and substitute them in the right-hand side of (32). Note that
merely using the leading order asymptotics in this case would result in
a superfluous factor

∫∞
1 r−1ψ2(r/q) dr ≈ log q.
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So, given (a, b) ∈ Aq × Aq we have, similarly to (33) and omitting
uniform constants:

∫ ∞

0

ψ2(r/q)
J d

2
−1(|a|Kr)J d

2
(|b|Kr)

|a|
d
2
−1

K |b|
d
2

K

dr

∼
∫

φ̂2(ξ/q)ω̂B(|a|Kξ)Ω̂B(|b|Kξ) dξ

=

∫

[φq ∗ (ωB ◦ |a|−1
K )](x) · [φq ∗ (ΩB ◦ |b|−1

K )](x) dx

≈
{

1

|a|d−1

K
|b|d

K

|a|d−1
K , |a|K ≤ |b|K + 1

q
,

0 otherwise,

(35)

where ΩB ◦ |b|−1
K (x) = |b|−d

K ΩB(|b|−1
K x). Summing in absolute value over

a, b ∈ Aq yields

(36)
∑

b∈Aq

|b|−d
K

∑

|a|K≤|b|K

1 ≈ qd,

cf. (23).

3. Finally, we estimate the contribution into (32) of the leading order
term for a and the remainder for b in (31). Rewrite the integral in (32)
as
∑

a,b∈Aq
Ia,b and notice that without loss of generality one can assume

|a|K ≥ |b|K . Then partition

(37)
∑

a,b∈Aq , |b|K≤|a|K

Ia,b =
∑

a,b∈Aq, |b|K≤|a|K

(

∫ |a|−1

K

0

+

∫ |b|−1

K

|a|−1

K

+

∫ ∞

|b|−1

K

)

.

In the first piece we substitute 1 for the a-term and 1 for the b-term, this
yields

∑

a∈Aq

∑

b∈Aq , |b|K≤|a|K

∫ |a|−1

K

0

rd−1 dr ≈
∑

a∈Aq

|a|−d
K

∑

b∈Aq , |b|K≤|a|K

1

≈
∑

a∈Aq

1 ≈ qd.

(38)
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For the second piece use 1 for the b-term and zero order asymptotics

(|a|Kr)−
d−1

2 for the a-term, this yields

∑

a∈Aq

∑

b∈Aq , |b|K≤|a|K

∫ |b|−1

K

|a|−1

K

|a|
1−d
2

K r
d−1

2 dt ≈
∑

a∈Aq

|a|
1−d
2

K

∑

b∈Aq , |b|K≤|a|K

|b|−
d+1

2

K

≈
∑

a∈Aq

1 ≈ qd.

(39)

Finally, for the third piece substitute (|a|Kr)−
d−1

2 for the a-term terms

and (|b|Kr)−
d+3

2 , for the b-term to get

(40)





∑

a,b∈Aq

|a|−
d−1

2

K |b|−
d+3

2

K



 ·
∫ ∞

1

ψ2(r/q)t−2 dt . qd−1.

We have shown that the upper estimates in steps 2, 3 match the lower
bound (23) for ‖νq‖2

2. This completes the proof of Proposition 2.2.

3. Poisson formula

From now on consider the case A = Z
d, Aq = Z

d
q . Then the quanti-

ties νq(t), Nq(t), Eq(t) can be computed directly, rather than via (24),
using the Poisson summation formula. By doing this, one gets expres-
sions for these quantities on the t-side, rather than on the Hankel trans-
form side, cf. (29). For example, see (13), (15), for 1

q
< t < q − 1

q
one

has

(41) νq(t) = t
1−d
2

∑

a∈Zd

∫

ωK(x/t)φq(x− a) dx.

Applying the Poisson summation formula to the convolution that the
integral in (41) represents and doing the same thing for the quanti-
ties Nq , Eq yields, for 1

q
< t < q − 1

q
:

νq(t) ∼ t
d−1

2

∑

a∈Zd

φ̂(a/q)ω̂K(ta) ≡ ν(t),

Nq(t) ∼ t
d+1

2

∑

a∈Zd

φ̂(a/)Ω̂K(ta) ≡ N(t),

Eq(t) ∼ t
d+1

2

∑

a∈Zd\{0}
φ̂(a/)Ω̂K(ta) ≡ E(t).

(42)
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Note however that the quantities in the right hand side of (42) are un-
bounded as t → ∞, besides the summation is carried over the whole
integer lattice. Still, there is a considerable resemblance between the
expression for ν(t) and the square root of the integrand in (32). Let us
introduce L2(R+) quantities

(43) [ν̃(t), Ñ(t), Ẽ(t)] = ψ(t/q)[ν(t), N(t), E(t)].

Clearly

(44) ‖νq‖2
2 . ‖ν̃‖2

2,

∫ q

0

E2
q (t) dt . ‖Ẽ‖2

2.

Now define the quantities νq∗(t), ν∗(t), ν̃∗(t) with respect to the dual
body K∗ in the same way as νq(t), ν(t), ν̃(t), have been defined for K
(see (13), (15), (43), (42)), do the same thing for the quantity E. Also
with respect to K∗, define the notation Γ∗, cf. (17). Note that ν̃∗(t) will
be given precisely by the square root of the integrand in (32), after the
summation therein has been extended over the whole Z

d by weighing

each term with φ̂(a/q). Since the dual quantities also satisfy (44), com-
parison of the expression for ν in (42) with (32) results in the following
theorem.

Theorem 3. For d ≥ 2,

(45) ‖ν̃‖2 ≈ ‖ν̃∗‖2.

Note that in the definition (43) of the quantity ν̃ there is no harm
restricting the summation to Z

d\{0}, which will be done further. Indeed,

a = 0 results in a regular term t
d−1

2 , and it is easy to check that the
contribution of this term into ‖ν̃‖2

2 is O(qd), cf. (23).
The next lemma is the central ingredient to prove Theorem 2.

Lemma 3.1. For d ≥ 2:

(46) ‖Ẽ‖2
2 .

∫ ∞

0

ν̃2
∗(t)

1 + t2
dt+ R(q),

where R(q) = O(qd−2) in d ≥ 3 and O(log q) in d = 2.

Proof: The proof follows the same pattern as the proof of Proposi-
tion 2.2. Namely, it consists in direct verification, done by substituting
the asymptotic expansion for Ω̂K from (31) into the definition (42), (43)

of Ẽ and evaluating the second moment. Given a, b ∈ Z
d \ {0} in the re-

sulting double sum, it suffices to consider three cases: the leading terms
for both a and b, the leading term for a and the second term for b, and
finally the leading term for a and the remainder for b. Hence the proof
has three steps.
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1. For the principal terms’ contribution into ‖Ẽ‖2
2, omitting uniform

positive constants we get

(47)
∑

a,b∈Zd\{0}
φ̂(a/q)φ̂(b/q)

∫ ∞

0

tψ2(t/q)
J d

2
(|a|K∗t)J d

2
(|b|K∗t)

(|a|K∗bK∗)
d
2

dt.

The integral in (47), given (a, b) can be rewritten as an integral over R
d:

(48)

∫

[(ΩB ◦ |a|−1
K∗) ∗ φq ]b(ξ)ξ · [(ΩB ◦ |b|−1

K∗) ∗ φq ]b(ξ)ξ dξ

=

∫

∇x[(ΩB ◦ |a|−1
K∗) ∗ φq ](x) · ∇x[(ΩB ◦ |b|−1

K∗) ∗ φq ](x) dx,

where, cf. (33), ΩB ◦ |a|−1
K∗(x) = |a|−d

K∗ΩB(|a|−1
K∗x). The integral in the

right-hand side of (48) is clearly zero if ||a|K∗ − |b|K∗ | > 1
q
, while if

|a|K∗ = |b|K∗ , it is O(|a|d−1
K∗ ). Hence, (47) is

(49) ≈ q

∞
∑

k=1

Γ2
∗(rk, δ)

r2kr
d−1
k

ψ2(rk/q) ≈
∫ ∞

0

ν̃2
∗(t)

1 + t2
dt,

cf. (34).

2. For the principal a-term and second b-term in the asymptotics (31),
omitting uniform constants, we get

(50)
∑

a,b∈Zd\{0}
φ̂(a/q)φ̂(b/q)

∫ ∞

0

ψ2(t/q)
J d

2
(|a|K∗t)J d

2
+1(|b|K∗t)

|a|
d
2

K∗b
d
2
+1

K∗

dt.

Observe that the expression (50) is reminiscent of (35), only in dimen-
sion d + 1. Let wB , WB be the Lebesgue measure on Sd and the char-
acteristic function of the Euclidean unit ball in R

d+1, respectively. Let
(y, ζ) ∈ R

d+1 × R
d+1, let the radial cutoff function ϕ be defined in the

same way as φ, only in dimension d+ 1.
Denote ϕq(y) = qd+1ϕ(qy), wB ◦ |a|−1

K∗(y) = |a|−d
K∗wB(|a|−1

K∗y), as well

as WB ◦ |a|−1
K∗(y) = |a|−d−1

K∗ WB(|a|−1
K∗y). Then given (a, b), the integral

in (50) is a constant times

(51)

∫

[(wB ◦ |a|−1
K∗) ∗ ϕq ]b(ζ) ·

(

[(WB ◦ |a|−1
K∗) ∗ ϕq ]b(ζ) ‖ζ‖

)

dζ

≈
∫

[(wB ◦ |a|−1
K∗) ∗ ϕq ](y) · ‖∇y[(WB ◦ |a|−1

K∗) ∗ ϕq ](y)‖ dy.



Non-Isotropic Lattice Distance Measures 241

Thus the integral vanishes if ||a|K∗−|b|K∗ |> 1
q

and is approximately 1
|b|d+1

K∗

if |a|K∗ = |b|K∗ . Summation in absolute values over (a, b) values results
precisely in (49).

3. We deal with the remainder in the asymptotics (31) in the same
way as it was done in Proposition 2.2. On this step, in the double
sum in a, b ∈ Z

d \ {0} representing the second moment of Ẽ we use
the leading term for a and the remainder for b. The demonstration
consists in essentially repeating (37)–(40). The presence of the cutoff

terms φ̂(a/q), φ̂(b/q) allows here for restricting the summation to Z
d
q\{0}.

Assume |a|K∗ ≥ |b|K∗ and partition each integral into three counterparts
in the summation according to (37).

For instance, for the first counterpart, cf. (38), we have

∑

a∈Zd
q\{0}

∑

b6=0, |b|K∗≤|a|K∗

∫ |a|−1

K∗

0

rd+1 dr ≈
∑

a∈Zd
q\{0}

|a|−2
K∗

≈
{

qd−2, d ≥ 3,

log q, d = 2.

(52)

The estimates of the second and third counterpart are done along the
same lines as (39) and (40) and we omit them.

Remark. It is clear that estimating the right-hand-side of (46) which is
essentially an L2-estimate for ν

t
does not suffice to get a sharp estimate

for ν, when it grows on average slower than
√
t as t → ∞. That is why

we cannot prove Theorem 2 for d = 2. The logarithmic factor in the
case d = 3 in the estimate (21) also appears to be an artifact.

4. Proof of Theorem 2

Theorem 2 will follow immediately from the bound (46) of Lemma 3.1
and the following lemma, which somewhat generalizes the results of [8].

Lemma 4.1. We have the following bound:

(53) ‖Ẽ‖2
2 . bd(q), where bd(q) =















qd−2, d ≥ 4,

q log2 q, d = 3,

q, d = 2.
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Proof: There is no harm changing in (46) the lower limit of integration
to 1 and 1 + t2 in the denominator to t2.

By definition of ν̃, for any tl, tu, with tu − tl � 1
q

and a small

enough δ ∼ 1
q
, we have the representation of the integral as a Darboux

sum:

(54)

∫ tu

tl

ν̃2
∗(t)

t2
dt ≈

∑

k

ν2
∗(t)|t∈Ik

t2k
ψ(tk/q)δ,

where the intervals Ik = [tk, tk+1) of length δ partition [tl, tu) and the
choice of t ∈ [tk, tk+1) is arbitrary.

Then one can always choose t inside each interval Ik in such a way
that

(55) ν∗(t) . max
[

t
d−1

2 , q|E∗|(t)
]

.

Indeed, the first term inside the above maximum corresponds to the case

of the existence of t ∈ Ik such that ν∗(t) . t
d−1

2 . Otherwise, let us use the

fact that dE∗(t)
dt

≈ ν∗(t)+O
(

t
d−1

2

)

, and if ν∗(t)& t
d−1

2 , the O
(

t
d−1

2

)

term

can be omitted. Then |E∗(t)| &
∫ t

t0
ν∗(τ) dτ , where at t0, |E∗| has its

absolute minimum in Ik. Which implies that q supIk
|E∗(t)| & infIk

ν∗(t)
in this case.

Note that due to (23) all the “regular” terms O
(

t
d−1

2

)

that appear

further would a-priori result in (53), and in fact stronger inequalities
for d = 2, 3.

Furthermore by (55)

(56)

∫ ∞

1

ν̃2
∗(t)

t2
dt .

∫ ∞

1

td−3ψ(t/q) dt+

∫

I

ν̃2
∗(t)

t2
dt,

where

(57) I = {t : ν∗(t) ≤ c5q|E∗(t)|},

for some c5. The first integral in (56) bounded via qd−2 for d ≥ 3
and log q for d = 2.
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Let us turn to the second integral in (56). Clearly, in order to get
the upper bound, the integral can be extended from I to R+, under
the assumption that ν∗(t) ≤ c5q|E∗(t)| everywhere (note that I can be
represented as the union of intervals of length not smaller than ≈ 1

q
each).

Under this assumption, we write out a dyadic decomposition:
∫ ∞

1

ν̃2
∗(t)

1 + t2
dt ≈

∞
∑

k=0

2−2k

∫ 2k+1

2k

ν̃2
∗(t) dt

. q

∞
∑

k=0

|ψ(2k/q)|2 d+1

4
k−2k

√

∫ 2k+1

2k

|Ẽ∗|2ν∗(t) dt.

(58)

To get the right-hand side we have applied Cauchy-Schwartz and used

the fact that in an annulus of width 2k the integral of ν∗ is O(2k d+1

2 ),
recall the scaling (15).

Furthermore, using the fact that dE(t)
dt

≈ ν∗(t) +O(t
d−1

2 ), we have

(59)

∫ 2k+1

2k

|Ẽ∗|2ν∗(t) dt

. |ψ(2k/q)|
(

|E∗(2k)|3+|E∗(2k+1)|3+2k d−1

2

∫ 2k+1

2k

E2
∗(t) dt

)

.

The cubic terms in brackets are bounded as

(60) O
[

23k( d−3+ 2
d+1 ) + 23k d−1

2 q−3
]

,

which follows from the well known, see e.g. [10], L∞ estimate

(61) |E0(t)| . td−2+ 2
d+1 + q−1td−1,

where E0(t) = t
d−1

2 E(t), in view of the scaling (15). It is a routine
calculation to show using the decay of ψ that the contribution of these
terms into (58) is well in compliance with (53).

Hence we are left with

(62)

∫ ∞

0

Ẽ2(t) dt . bd(q) + q

∞
∑

k=0

2k( d
2
−2)|ψ(2k/q)|

√

∫ 2k+1

2k

Ẽ2
∗(t) dt.

Assuming that the sum above is & bd(q), see (53), consider the case d ≥ 4
first. Then, as clearly

(63)

∞
∑

k=0

2k( d
2
−2)|ψ(2k/q)| . q

d
2
−2, for d ≥ 4,
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we have

(64)

∫ ∞

0

Ẽ2(t) dt . q
d
2
−1

√

∫ ∞

0

Ẽ2
∗(t) dt,

and it follows that ‖Ẽ‖2
2, ‖Ẽ∗‖2

2 . bd(q) = qd−2, d ≥ 4, as one can
certainly swap the subscript ∗ to the left-hand side.

The case d = 2, 3 requires some extra consideration, see [8], which
we have adopted from the latter reference for the sake of completeness.
Recall that the quantity E has been defined with respect to the param-
eter q, where 1

q
is the characteristic scale of the smoothing. To reflect

this fact, let us further write E = E(q), Ẽ = Ẽ(q). It is easy to verify by
definition of E that for t . q̄ . q, one has

(65) |E(q̄)|(t) . |E(q)|(t) +O(t
d−1

2 q̄−1).

Let us rewrite (62) as follows:

(66)

∫ ∞

0

|Ẽ(q)|2(t) dt . bd(q)

+ q sup
k





√

∫ 2k+1

0 |Ẽ(q)
∗ |2(t) dt

bd(2k+1)





∞
∑

k=0

2k( d
2
−2)|ψ(2k/q)|

√

bd(2k+1).

Evaluating the sum yields

(67)

∫∞
0

|Ẽ(q)|2 dt
bd(q)

. 1 + sup
k





√

∫ 2k+1

0
|Ẽ(q)

∗ |2 dt
bd(2k+1)



 .

The supremum above should be achieved for some finite k, because of
the decay, built into the quantity Ẽ, due to the presence of the cutoff ψ.
Then define k̄ as follows:

(68) m(q) = max sup
k





∫ 2k+1

0
|Ẽ(q)|2 dt

bd(2k+1)
,

∫ 2k+1

0
|Ẽ(q)

∗ |2 dt
bd(2k+1)





is achieved for k = k̄. Without loss of generality suppose the maximum
in (68) is effected by the first entry. Also suppose m(q) > 1, otherwise
the proof of Lemma 4.1 would be complete.
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Then by definition of k̄,

(69)

∫∞
0 |Ẽ(q)|2 dt
bd(q)

.

∫∞
0 |Ẽ(q)|2 dt
bd(2k̄+1)

,

hence 2k̄+1 . q. Consider now two cases, with the objective to show
that m(q) = O(1).

Case 1: If 2k̄+1 & q, then the quantity m(q), by its definition, has to
be bounded by a constant times the left-hand side of (67). This implies
m(q) = O(1).

Case 2: Suppose now 2k̄+1 � q, let q̄ = 2k̄+1. Look back at the expres-
sions (67) and (68) replacing q by q̄, i.e. as the statements about the

quantity Ẽ(q̄) rather than Ẽ(q). By (65), if k = k̄, then

(70)

∫ 2k+1

0

|Ẽ(q̄)|2 dt ≈
∫ 2k+1

0

|Ẽ(q)|2 dt.

Otherwise, if k < k̄, the relation (70) should in general hold with the
. sign.

This implies m(q̄) ≈ m(q), in other words m(q̄) may be thought to be
achieved when k = k̄, so by (70)

(71) m(q̄) .

∫∞
0

|Ẽ(q̄)|2 dt
bd(q̄)

.

This, similarly to Case 1, the statement (67) for the quantity Ẽ(q̄), would
imply m(q̄) = O(1), so once again m(q) = O(1).

Therefore the right-hand side of (67) always turns our to be O(1).
This completes the proof of Lemma 4.1 and Theorem 2.
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