A simple proof of the optimal power in Liouville theorems
Article Sidebar
Main Article Content
Salvador Villegas Barranco
Universidad de Granada. Departamento de Análisis Matemático
Consider the equation div(ϕ2∇σ) = 0 in RN , where ϕ > 0. It is well known [4, 2] that if there exists C > 0 such that R BR (ϕσ) 2 dx ≤ CR2 for every R ≥ 1, then σ is necessarily constant. In this paper we present a simple proof that this result is not true if we replace R2 with Rk for k > 2 in any dimension N. This question is related to a conjecture by De Giorgi.
Paraules clau
Allen–Cahn equation, Liouville theorems, Dirichlet and potential energies
Article Details
Com citar
Villegas Barranco, Salvador. «A simple proof of the optimal power in Liouville theorems». Publicacions Matemàtiques, 2022, vol.VOL 66, núm. 2, p. 883–892, https://raco.cat/index.php/PublicacionsMatematiques/article/view/402275.
Referències
G. Alberti, L. Ambrosio, and X. Cabre´, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday, Acta Appl. Math. 65(1-3) (2001), 9–33. DOI: 10.1023/A:1010602715526
L. Ambrosio and X. Cabre´, Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi, J. Amer. Math. Soc. 13(4) (2000), 725–739. DOI: 10.1090/S0894-0347-00-00345-3
M. T. Barlow, On the Liouville property for divergence form operators, Canad. J. Math. 50(3) (1998), 487–496. DOI: 10.4153/CJM-1998-026-9
H. Berestycki, L. Caffarelli, and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1-2) (1997), 69–94 (1998).
X. Cabre, E. Cinti, and J. Serra ´ . Stable solutions to the fractional Allen–Cahn equation in the nonlocal perimeter regime, Preprint (2021). arXiv:2111.06285
L. Caffarelli, N. Garofalo, and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47(11) (1994), 1457–1473. DOI: 10.1002/cpa.3160471103
E. De Giorgi, Convergence problems for functionals and operators, in: “Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis” (Rome, 1978), Pitagora, Bologna, 1979, pp. 131–188.
M. del Pino, M. Kowalczyk, and J. Wei, On De Giorgi’s conjecture in dimension N ≥ 9, Ann. of Math. (2) 174(3) (2011), 1485–1569. DOI: 10.4007/annals.2011.174.3.3
F. Gazzola, The sharp exponent for a Liouville-type theorem for an elliptic inequality, Rend. Istit. Mat. Univ. Trieste 34(1-2) (2002), 99–102 (2003).
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311(3) (1998), 481–491. DOI: 10.1007/s002080050196
L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38(5) (1985), 679–684. DOI: 10.1002/cpa.3160380515
L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, in: “Partial Differential Equations and the Calculus of Variations”, Vol. II, Progr. Nonlinear Differential Equations Appl. 1, Birkhauser Boston, Boston, MA, 1989, pp. 843–850. DOI: 10.1007/978-1-4615-9831-2_14
A. Moradifam, Sharp counterexamples related to the De Giorgi conjecture in dimensions 4 ≤ n ≤ 8, Proc. Amer. Math. Soc. 142(1) (2014), 199–203. DOI: 10.1090/S0002-9939-2013-12040-X
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2) 169(1) (2009), 41–78. DOI: 10.4007/annals.2009.169.41
S. Villegas, Sharp Liouville theorems, Adv. Nonlinear Stud. 21(1) (2021), 95–105. DOI: 10.1515/ans-2020-2111
L. Ambrosio and X. Cabre´, Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi, J. Amer. Math. Soc. 13(4) (2000), 725–739. DOI: 10.1090/S0894-0347-00-00345-3
M. T. Barlow, On the Liouville property for divergence form operators, Canad. J. Math. 50(3) (1998), 487–496. DOI: 10.4153/CJM-1998-026-9
H. Berestycki, L. Caffarelli, and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1-2) (1997), 69–94 (1998).
X. Cabre, E. Cinti, and J. Serra ´ . Stable solutions to the fractional Allen–Cahn equation in the nonlocal perimeter regime, Preprint (2021). arXiv:2111.06285
L. Caffarelli, N. Garofalo, and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47(11) (1994), 1457–1473. DOI: 10.1002/cpa.3160471103
E. De Giorgi, Convergence problems for functionals and operators, in: “Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis” (Rome, 1978), Pitagora, Bologna, 1979, pp. 131–188.
M. del Pino, M. Kowalczyk, and J. Wei, On De Giorgi’s conjecture in dimension N ≥ 9, Ann. of Math. (2) 174(3) (2011), 1485–1569. DOI: 10.4007/annals.2011.174.3.3
F. Gazzola, The sharp exponent for a Liouville-type theorem for an elliptic inequality, Rend. Istit. Mat. Univ. Trieste 34(1-2) (2002), 99–102 (2003).
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311(3) (1998), 481–491. DOI: 10.1007/s002080050196
L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38(5) (1985), 679–684. DOI: 10.1002/cpa.3160380515
L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, in: “Partial Differential Equations and the Calculus of Variations”, Vol. II, Progr. Nonlinear Differential Equations Appl. 1, Birkhauser Boston, Boston, MA, 1989, pp. 843–850. DOI: 10.1007/978-1-4615-9831-2_14
A. Moradifam, Sharp counterexamples related to the De Giorgi conjecture in dimensions 4 ≤ n ≤ 8, Proc. Amer. Math. Soc. 142(1) (2014), 199–203. DOI: 10.1090/S0002-9939-2013-12040-X
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2) 169(1) (2009), 41–78. DOI: 10.4007/annals.2009.169.41
S. Villegas, Sharp Liouville theorems, Adv. Nonlinear Stud. 21(1) (2021), 95–105. DOI: 10.1515/ans-2020-2111