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q-PLURISUBHARMONICITY AND

q-PSEUDOCONVEXITY IN Cn

Nguyen Quang Dieu

Abstract
We generalize classical results for plurisubharmonic functions and
hyperconvex domain to q-plurisubharmonic functions and q-hy-
perconvex domains. We show, among other things, that Bq-regu-
lar domains are q-hyperconvex. Moreover, some smoothing results
for q-plurisubharmonic functions are also given.

According to Andreotti and Grauert (see [AG]), a smooth C2 func-
tion u on an open subset Ω of Cn is called q-plurisubharmonic (q-psh.
for short, 0 ≤ q ≤ n− 1) if its complex Hessian has at least (n− q) non-
negative eigenvalues at each point of Ω, or equivalently the Levi form
of u at every point of Ω is positive definite when restricted to some
complex linear subspace of codimension q. Later on, Hunt and Murray
(see [HM]) found a natural extension of this notion to the class of upper
semicontinuous functions.

The set of q-psh. functions has most of the properties of usual plurisub-
harmonic functions e.g., invariance under holomorphic maps, satisfy the
maximum principle, etc. However, this class is not closed under addition
for q > 0 and thus standard smoothing techniques (e.g., by convolving
with an approximation of identity) available for plurisubharmonic func-
tions do not apply, a fact which hampered early work on the subject. In
fact Diederich and Fornæss [DF] constructed examples showing the im-
possibility of smoothing continuous q-psh. function by C∞ smooth q-psh.
ones. See also [Sl3, p. 154] for a related example. On the positive side,
an approximation result was obtained by Slodkowski in [Sl1], where he
shows that every q-psh. function is pointwise limit of a sequence of q-psh.
functions whose second order derivatives exist almost everywhere.
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The aim of the present paper is to investigate analogues of plurisub-
harmonicity and pseudoconvexity in the context of q-plurisubharmonicity
and q-pseudoconvexity.

Now we outline the organization of the paper. After recalling in
Section 2 some background on q-psh. functions, in Section 3 we begin
studying some properties of Bq-regular domains. Here we recall that a
bounded domain Ω in Cn is said to be Bq-regular if every continuous
function on ∂Ω can be extended continuously to a q-psh. function on Ω.
When q = 0, those are precisely the B-regular domains introduced by
Sibony in [Si]. The main result of the section is Theorem 3.6, which gives
some connections between Bq-regularity of a domain and of its boundary.
Here we encounter some difficulty in generalizing Theorem 2.1 of [Si] to
the context of q-psh. functions. The main reason is, as said before, the
non-additivity of the class of q-psh. functions, thus we do not know, for
instance, whether a smoothly bounded Bq-regular domain should have
a Bq-regular boundary. In this section we also introduce the concept of
q-hyperconvexity. This is the true analogue of classical hyperconvexity.
Moreover, the new class enjoys most of the properties of hyperconvexity,
e.g., q-hyperconvexity is purely a local concept (Proposition 3.2).

The last section is devoted to studying smoothing results for q-psh.
functions. More precisely, we show in Theorem 4.1 that on a q-pseudo-
convex domains every q-psh. function is the pointwise limit of a decreas-
ing sequence of piecewise smooth strictly q-psh. functions. This result
may be considered as an analogue of a well known approximation theo-
rem due to Fornæss and Narasimhan. In view of the above mentioned
example of Diederich and Fornæss, piecewise smoothness seems to be
the best possible regularity of the approximating sequence. The paper
ends up with another approximation theorem (Theorem 4.3), in which
we deal with approximation of bounded from above q-psh. functions. In
particular, the theorem says that on a Bq-regular domain every bounded
from above q-psh. function is the pointwise limit of a decreasing sequence
of q-psh. functions which are continuous up to the boundary. This result,
in the case q = 0 has been proved in slightly more general form in [NW]
(see also Theorem 4.1 of [Wi]).

2. Preliminaries on q-plurisubharmonic functions

In this section, we will collect some known facts about q-psh. func-
tions. For more background, the reader may consult [HM], [Sl1], [Bu].

Definition 2.1. Let Ω be an open set in Cn and u : Ω → [−∞,∞) be
an upper semicontinuous function and q be an integer, 0 ≤ q ≤ n− 1.
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(i) u is said to be q-plurisubharmonic on Ω if for every complex linear
subspace of dimension q+ 1 intersecting Ω, for every closed ball B
(in L), and for every smooth plurisuperharmonic function g defined
in a neighbourhood ofB (in L) satisfying u ≤ g on ∂B we have u≤g
on B.

(ii) If for every point z0 ∈ Ω we can find a neighbourhood U and ε > 0
such that u(z) − ε|z|2 is q-psh. on Ω then we say that u is strictly
q-psh.

(iii) u is said to be q-plurisuperharmonic if −u is q-psh.

(iv) If u is q-psh. and (n− q− 1)-plurisuperharmonic then we say that
u is q-Bremermann.

(v) If u is locally the maximum of a finite number of C2 smooth q-psh.
functions, then we say that u is piecewise q-psh.

Remarks. (i) Definition 2.1 (a) is given by Hunt and Murray in [HM].
The definition of q-plurisubharmonicity makes sense also for q ≥ n. How-
ever, in this case every upper semicontinuous function is q-psh. Observe
that the function identically −∞ is allowed to be q-psh.

(ii) According to Lemma 2.6 in [HM], if u ∈ C2(Ω) then u is q-psh. if

and only if for every z ∈ Ω the complex Hessian
(

∂2u
∂zj∂zk

)

1≤j,k≤n
has at

least (n− q) nonnegative eigenvalues, or equivalently the Levi form

〈L(u, z)λ, λ〉 =
n

∑

j,k=1

∂2u

∂zj∂zk

(z)λjλk,

where λ = (λ1, . . . , λn), is positive definite on a complex linear subspace
of codimension q in Cn. Thus, in the case of smooth functions, the
concept of q-psh. functions introduced by Hunt and Murray coincides
with the original one given by Andreotti and Grauert at the beginning
of this paper.

(iii) The concept of q-Bremermann functions has been introduced first
by Hunt and Murray in [HM] where they are called q-complex Monge-
Ampère instead. Here we follow the terminology of Slodkowski in [Sl1].
If q = 0 then 0-Bremermann functions are precisely maximal plurisub-
harmonic function (see [Kl]). Likewise, piecewise smooth q-psh. func-
tions are also called (q+1)-convex with corners by Diederich and Fornæss
in [DF].

We now list basic properties of q-psh. functions that will be frequently
referred to.
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Proposition 2.2. Let Ω be an open set of Cn and 0 ≤ q ≤ n− 1. Then

(i) If u is q-psh. on Ω then so are λu and u + v for every λ > 0 and
every 0-psh. function v.

(ii) For every family {uα}α∈A of locally uniformly bounded from above
q-psh. function on Ω, the function (sup{uα : α ∈ A})∗ is also
q-psh. on Ω.

(iii) The limit of a decreasing sequence of q-psh. functions is q-psh.

(iv) (Maximum principle) If u is q-psh. on Ω then for every relatively
compact open set U of Ω we have supU u ≤ sup∂U u.

(v) If u is an upper semicontinuous function on Ω such that for ev-
ery z0 ∈ Ω, we can find a neighbourhood U of z0 such that u|U is
q-psh., then u is q-psh. on Ω.

(vi) If u is q-psh. on Ω and f : Ω′ → Ω is a holomorphic mapping, where
Ω, Ω′ are open subsets of Cn and Ck, respectively, then u ◦ f is
q-psh. on Ω′.

(vii) If u is q-psh. function on Ω, then the function

ũ =

k
∑

j=1

χj(u+ vj)

is q-psh. on Ω, where χj : R → R are convex increasing functions,
vj are 0-psh. functions on Ω. In particular, χ◦u is q-psh. for every
increasing convex function χ : R → R.

(viii) If u and v are q- (resp. r-) psh. functions on Ω then max(u, v) is
max(q, r)-psh. on Ω, u + v is (q + r)-psh. on Ω and min(u, v) is
(q + r + 1)-psh. on Ω.

(ix) (Gluing Lemma) If Ω′ ⊂ Ω, u is q-psh. on Ω and u′ is q-psh. on Ω′.
Assume that lim sup

z′→z

u′(z′) ≤ u(z) for all z ∈ Ω ∩ ∂Ω′, then the

function

v(z) =

{

u(z) z ∈ Ω\Ω′

max(u(z), u′(z)) z ∈ Ω′

is q-psh. on Ω.

Here by u∗ we mean the upper regularization of a function u : X →
[−∞,∞), where X is a subset of Cn i.e.,

u∗(x) = lim sup
z→x

u(z), ∀ x ∈ X.
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For the proof, we require the following generalization of Richberg’s ap-
proximation theorem for 0-psh. functions.

Bungart’s Approximation Theorem (Theorem 5.3 in [Bu]). As-
sume u is a continuous stricitly q-psh. function on an open set W of Cn

and g a continuous function such that u < g on W . Then there exists a
piecewise smooth strictly q-psh. function ũ on W satisfying u < ũ < g. In
particular, there is a monotone decreasing sequence of piecewise smooth
strictly q-psh. function that converges to u uniformly on W .

Proof of Proposition 2.2: The properties (i)–(iii) follow quickly from the
definition of q-plurisubharmonicity. For the more subtle ones, (iv) is
proved in Lemma 2.7 in [HM] (see also [Sl1, p. 307]), the last two
assertions of (viii) are deep theorems of Slodkowski (see Theorems 5.1
and 6.1 in [Sl1]). Note that (v) is contained in the remark following
Lemma 2.7 in [HM]. Here is a brief proof of this fact. With no loss of
generality we may assume that q = n− 1. Assume that u is not q-psh.,
then we can find a ball B compactly belonging to Ω and a continuous
function v onB which is 0-psh. onB such that maxB(u+v) > max∂B(u+
v). Then there is ε > 0 so small that

M := max
B

ũ > max
∂B

ũ,

where ũ(z) = u(z) + v(z) + 2ε|z|2. Choose z∗ ∈ B such that ũ(z∗) = M
and set

f(z) = 2ε|z|2 −M − ε|z − z∗|2.

Then we have

(u+ v + f)(z∗) = 0, (u+ v + f)(z) ≤ −ε|z − z∗|2, ∀ z ∈ B.

Choose a small ball B′ about z∗ such that B′ ⊂ B and u|B′ is q-psh.
Since v + f is plurisubharmonic on Cn, we have 0 = (u + v + f)(z∗) ≤
sup∂B′(u + v + f) < 0, which is absurd. Now (vi) is undoubtedly well-
known, but due to the lack of an explicit reference we give a proof. First
we check that u ◦ f is q-psh. Assume that u is of class C2 on Ω. Then
using the chain rule and the holomorphicity of f we get

n
∑

j.k=1

∂2v

∂zj∂zk

(z)λjλk =

n
∑

l,m=1

∂2u

∂wl∂wm

(f(z))λ′lλ
′
m, ∀ z ∈ Ω,

where λ′l =
∑n

j=1 λj
∂fl

∂zj
(z), f = (f1, . . . , fk). Since the Levi form of u is

positive definite on a complex linear subspace E of codimension q, we
infer, from the last expression, that the Levi form of v is positive definite
on some complex linear subspace E′ of codimension no larger than q.
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Thus v is q-psh. This implies that v is also q-psh. if u is piecewise
smooth q-psh. Now suppose that u is continuous on Ω. Using Bungart’s
Approximation Theorem, we deduce that u can be locally uniformly
approximated by piecewise smooth q-psh. functions. Thus v is again q-
psh. The general case now follows from the preceding facts and the fact
that u can be approximated locally from above by a decreasing sequence
of continuous q-psh. functions (Theorem 2.9 in [Sl1]). Finally we deal
with (vii). Using the same reasonings as above, we may reduce to the
case u, χj , vj are C2 smooth functions. Now a direct computation using
convexity of χ and plurisubharmonicity of vj gives

〈L(ũ, z)λ, λ〉 ≥





k
∑

j=1

χ′
j(u(z) + vj(z))



 〈L(u, z)λ, λ〉.

It follows that ũ is q-psh. Finally, for (ix) we define for each k ≥ 1 the
function

vk(z) =

{

u(z) + 1/k z ∈ Ω\Ω′

max(u(z) + 1/k, u′(z)) z ∈ Ω′.

Since lim sup
z′→z

u′(z′) ≤ u(z) for all z ∈ Ω ∩ ∂Ω′, we deduce that vk ≡

u+ 1/k on a neighbourhood of Ω∩ ∂Ω′. Thus, by (v) we infer that vk is
q-psh. on Ω. Observe that vk ↓ v on Ω. Therefore v is q-psh. on Ω. The
proof is thereby completed.

As q-psh. functions do not have the additive property, the following
operator introduced by Slodkowski, seems to be a good substitute for
the usual convolution.

Definition 2.3 (see [Sl1, p. 309]). Let u and g be two functions defined
on Cn with values in [−∞,∞). The supremum-convolution of u and g,
denoted by u ∗s g is defined by

(u ∗s g)(z) := sup{u(x)g(z − x) : x ∈ Cn}, ∀ z ∈ Cn.

If u is defined only on a subset U of Cn, u ∗s g is understood as ũ ∗s g,
where ũ = u on U and 0 on Cn\U .

Here by B(z, r) we mean the open ball with center z and radius r.
The most useful properties of the supremum-convolution are summa-

rized in the following
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Proposition 2.4. Let u be a q-psh. function on an open set Ω of Cn and
g be a continuous function on Cn, 0 ≤ g ≤ 1, g(0) = 1, supp g ⊂ B(0, r),
r > 0. Assume that the set {z ∈ Ω, u(z) = −∞} has empty interior.
Then we have

(i) u ∗s g is continuous q-psh. on Ωr := {z ∈ Ω : B(z, r) ⊂ Ω}.

(ii) u ∗s gr converges pointwise to u on Ω as r tends to 0.

Proof: (i) This part is essentially contained in [Sl1]. However, for the
reader’s convenience we sketch some details.

First we check the continuity of u ∗s g on Ωr. As g is continuous and
{z : u(z) = −∞} has empty interior we infer u ∗s g is real valued and
lower semicontinuous. Now supp g is contained in B(0, r) so

(u ∗s g)(z) = sup{u(z + x) + g(x) : x ∈ B(0, r)}, ∀ z ∈ Ωr.

Now assume that u ∗s g is not upper semicontinuous on Ωr. Then there
are z∗ ∈ Ωr, ε > 0 and a sequence {zj} tending to z∗ such that

(u ∗s g)(z
∗) + ε < (u ∗s g)(zj), ∀ j ≥ 1.

Choose a sequence {xjε} ⊂ Ωr so that

(u ∗s g)(zj) ≤ u(zj + xjε)g(xjε) + ε/3, ∀ j ≥ 1.

Passing to a subsequence we may assume that {xjε} converges to xε ∈
B(0, r). Observe that u is upper semicontinuous so there is j0 ≥ 1
satisfying u(zj + xjε) ≤ u(z∗ + xε) + ε/3 for j ≥ j0. It implies that

u(z∗ + xε)g(xε) + ε ≤ (u ∗s g)(z
∗) + ε ≤ (u ∗s g)(zj)

≤ u(zj + xjε)g(xjε) + ε/3

≤ u(z∗ + xε)g(xjε) + 2ε/3, ∀ j ≥ j0.

Letting j tend to ∞, we obtain a contradiction to the continuity of g.
Thus u ∗s g is continuous on Ur. So it follows from Proposition 2.2 (ii)
that u ∗s g is q-psh. on Ωr.

(ii) We have

(u ∗s gr)(z) = sup{u(z + x)gr(x) : x ∈ B(0, r)}

= sup{u(z + x)g(x/r) : x ∈ B(0, r)} ≥ u(z)g(0) = u(z).

Since 0 ≤ g ≤ 1 we also have (u ∗s gr)(z) ≤ sup{u(z + x) : x ∈ B(0, r)}.
Now the upper semicontinuity of u implies that limr→0(u∗sgr)(z) = u(z).

For the ease of exposition, we will say that a subset E of a domain Ω
is q-pluripolar (in Ω) if there is a q-psh. function u on Ω such that
u 6≡ −∞ and u ≡ −∞ on E. It should be pointed out that the structure
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of q-pluripolar set may be very “wild” when q > 0. This can be seen by
considering the singular locus of upper semicontinuous functions depend-
ing only on q variables. More interesting examples are provided by the
next result which is a consequence of Theorem 2.5 and Proposition 5.2
in [Sl2].

Proposition 2.5. Let Ω be an open set in Cn and X be a complex ana-
lytic subset of codimension q in Ω. Then the function identically 0 on X
and −∞ elsewhere is q-psh. on Ω. In particular, Ω\X is q-pluripolar.

It follows from the above result that for q > 0 the union of two
q-pluripolar set is in general not q-pluripolar. The next result is an
analogue of the removable singularities for bounded plurisubharmonic
function

Proposition 2.6. Let Ω, Ω′ be open subsets of Cn, Ω′
⋐ Ω. Let v be a

q-psh. function on Ω such that v 6≡ −∞ and E = {z ∈ Ω′ : v(z) = −∞}
is closed in Ω′. Then every q-psh. function u on Ω′\E, which is locally
bounded from above near every point of E can be extended through E to
a (q + r)-psh. function on Ω.

Proof: Since Ω′ is bounded, by subtracting a positive constant, we may
assume v < 0 on Ω′. For ε > 0 we set

uε =

{

u+ εv on Ω\E

−∞ on E.

By Proposition 2.2 (ix) we have uε is (q+r)-psh. on Ω. Set ũ = (sup{uε :
ε > 0})∗. Then ũ is (q + r)-psh. on Ω, in view of Proposition 2.2 (viii).
Since uε ≤ u on Ω\E, we deduce that ũ ≤ u on Ω\E. Observe that
limε→0 uε = u on Ω\E. Therefore ũ = u on Ω\E.

Proposition 2.7. Let Ω be a bounded domain in Cn. Assume that
u and v are two continuous functions on Ω which are q-Bremermann
function on Ω. Then

sup
Ω

|u− v| ≤ sup
∂Ω

|u− v|.

Proof: Let α = sup∂Ω |u−v|, we only need to show that u−v ≤ α on Ω.
As u and −v are q- and (n − q − 1)-psh. respectively, we have u − v is
(n− 1)-psh. by Proposition 2.2 (ix). Now the desired conclusion follows
from the maximum principle (Proposition 2.2 (v)).

We also need Choquet’s Topological Lemma (see Lemma 2.3.4 in [Kl]).
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Choquet’s Lemma. Let {uα}α∈A be a family of functions on an open
set Ω ⊂ Cn, which are locally bounded from above. Then there exists a
countable subfamily {αj} ⊂ A such that

(sup{uα : α ∈ A})∗ = (sup{uαj
: j ≥ 1})∗.

Moreover, if uα is lower continuous for every α ∈ A, then we can
choose {αj} such that

sup{uα : α ∈ A} = sup{uαj
: j ≥ 1}.

3. q-pseudoconvex domains and Dirichlet problem

We first recall, according to Slodkowski (see [Sl2, p. 121]), that a
domain Ω is said to be q-pseudoconvex if there is a neighbourhood U
of ∂Ω so that the function − log d(z) is q-psh. on U ∩ Ω, where d(z) =
dist(z, ∂Ω). It follows from Theorem 4.3 in [Sl2] that Ω is q-psh. if and
only if there exists a neighbourhood U of ∂Ω and a q-psh. function u
on U∩Ω such that limz→∂Ω u(z) = ∞. As in the proof of Theorem 2.6.10
in [Hö], if Ω is bounded, by gluing the function − log d(z) with a suitable
convex increasing function of |z|2 we get a continuous q-psh. exhaustion
function for Ω. Adding |z|2 to this function we obtain a continuous
strictly q-psh. exhaustion function ϕ for Ω. By Bungart’s Approximation
Theorem, we can even assume that this function is piecewise smooth
strictly q-psh.

Definition 3.1. A bounded domain Ω is said to be q-hyperconvex if it
admits a negative continuous q-psh. exhaustion function.

Remarks. (a) As in the 0-hyperconvex case, it is easy to check that
every q-hyperconvex domain is q-pseudoconvex. On the other hand,
not every bounded q-pseudoconvex domain is q-hyperconvex. Indeed,
consider Ω = D\E, where D is a q-pseudoconvex domain in Cn and E is
the zero set of a holomorphic function f on D, f 6≡ 0. Let u be a q-psh.
exhaustion function for Ω, it is clear that u−log |f | is a q-psh. exhaustion
function for D\E. Thus Ω is q-pseudoconvex. On the other hand, Ω is
not q-hyperconvex in view of Proposition 2.6 and the maximum principle
(Proposition 2.2 (iv)).

(b) We do not know if a bounded domain Ω is q-hyperconvex if it ad-
mits a negative q-psh. exhaustion (not necessarily continuous) function.
This is true when q = 0 (see Theorem 1.6 in [Bl]).

Concerning q-hyperconvexity we have the following results which are
analogous to the well known facts for hyperconvexity.
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Proposition 3.2. Let Ω be a bounded domain in Cn. Then Ω is q-hy-
perconvex if one of the following conditions holds.

(a) Ω is locally q-hyperconvex i.e., for every p ∈ ∂Ω there is a neigh-
bourhood U of p such that Ω ∩ U is q-hyperconvex.

(b) Ω is q-pseudoconvex and ∂Ω is C1 smooth.

Proof: The proof is almost the same as the ones given by Kerzman and
Rosay in [KR] (see also [De] and [CM]). For convenience of the reader,
we sketch a proof of q-hyperconvexity of Ω under the assumption (a).
From the compactness of ∂Ω and the local hyperconvexity of Ω, we infer
that there are open subsets U ′′

i ⋐ U ′
i ⋐ Ui of Cn, 1 ≤ i ≤ k such that:

(i) ∂Ω ⊂ ∪iU
′′
i .

(ii) For any 1 ≤ i ≤ k, there is a negative q-psh. exhaustion function vi

for Ui.
For every 1 ≤ i < j ≤ k such that U ′

i ∩ U
′
j ∩ Ω 6= ∅ we define

Eij(x) = inf{vj(z) : z ∈ U ′
i ∩ U

′
j ∩ Ω : vi(z) ≥ x}.

It follows from (ii) that Eij are increasing and limx→0Eij(x) = 0.
Now using Lemma 2 in [CM] we find a continuous increasing function
τ : (−∞, 0) → R such that:

(iii) limx→0 τ(x) = ∞.

(iv) |τ − τ ◦Eij | ≤ 1/2 for every 1 ≤ i < j ≤ k with U ′
i ∩U

′
j ∩Ω 6= ∅.

It follows from (iv) that if z ∈ U ′
i ∩U

′
j ∩ Ω then |τ ◦ vi−τ ◦ vj | ≤ 1.

Moreover, as τ is increasing and convex, we also get for all ε > 0 suffi-
ciently small

|τ(vi(z) − ε) − τ(vj(z) − ε)| ≤ 1, ∀ z ∈ U ′
i ∩ U

′
j ∩ Ω.

Choose C∞ smooth functions ϕj satisfying 0 ≤ ϕj ≤ 1, suppϕj ⊂ U ′
j and

ϕj = 1 on a neighbourhood of U ′′
j . Let λ > 0 so large that |z|2 − λ < 0

on Ω and that ϕj(z) + λ|z|2 is plurisubharmonic for every j. Next we
set

vε
j = τ(uj(z) − ε) + ϕj(z) − 1 + λ(|z|2 − λ),

and

vε(z) = max{vε
j (z) : z ∈ Uj}.
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As vε
j ≤ vε

k on ∂U ′
j ∩ U

′′
k ∩ Ω, we deduce that vε is q-psh. on Ω ∩ (∪U ′′

j ).
Define

v(z) = sup
ε>0

(

vε(z)

τ(−ε)
− 1

)∗

.

Then v is a negative q-psh. function on Ω ∩ (∪U ′′
j ). Let K be a com-

pact subset of Ω such that (Ω\(∪U ′′
j )) ⊂ K and ∂K ⊂ ∪U ′′

j . Let

θ = max∂K v < 0 and ϕ = max(v, θ) on Ω\K and ϕ = θ on K. It
is easy to check that θ is a negative q-psh. exhaustion function for Ω.
The desired conclusion now follows.

The next result should be compared to Corollary 4.9 in [Sl2].

Corollary 3.3. Let Ω1, Ω2 be bounded q1 (resp. q2-) hyperconvex do-
mains in Cn. Assume that Ω1 (resp. Ω2) has a local q1 (resp. q2-) psh.
defining function near every point of a ∈ ∂Ω1 ∩ ∂Ω. Then Ω1 ∪ Ω2 is
(q1 + q2 + 1)-hyperconvex.

Here we say that a domain Ω has a local q-psh. defining function
at a ∈ ∂Ω if there is a neighbourhood U of a and a q-psh. function ρ
on U such that U ∩ Ω = {z : ρ(z) < 0}.

Proof: Let q = q1 + q2 +1. In view of Proposition 3.2 (a), it is enough to
show that Ω1∪Ω2 is locally q-hyperconvex at every point p ∈ ∂(Ω1∪Ω2).
This is true for any point p ∈ (∂(Ω1)\Ω2)∪(∂(Ω2)\Ω1), as Ω1 (resp. Ω2) is
q1 (resp. q2-) hyperconvex respectively. Now let p ∈ ∂Ω1∩∂Ω2. Then we
can find a small open ball B around p with radius r and functions u1, u2

which are q1-psh. and q2-psh. on B such that

B ∩ Ωi = {z ∈ B : ui(z) < 0}, i = 1; 2.

Then

B ∩ (Ω1 ∪ Ω2) = {z ∈ B : min(max(u1(z), |z − p|2 − r2),

max(u2(z), |z − p|2 − r2)) < 0}.

By Proposition 2.2 (viii), the function min(u1, u2) is q-plurisubharmonic,
so Ω1 ∪Ω2 is locally q-hyperconvex at p. The desired conclusion follows.

The concepts described below are inspired from the seminal work of
Sibony [Si], where a complete characterization of the domains for which
the Dirichlet problem with respect to psh. function admits a solution is
given.
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Definition 3.4. (a) A bounded domain Ω in Cn is called Bq-regular
(0 ≤ q ≤ n−1) if for every real valued continuous function ϕ on ∂Ω
there is a continuous function u on Ω such that u ≡ ϕ on ∂Ω and
u is q-Bremermann on Ω.

(b) A compact set K of Cn is called Bq-regular if Pq(K) = C(K),
where C(K) is the algebra of real-valued continuous function on K
and Pq(K) is the closure in C(K) of continuous q-psh. functions
defined on neighbourhoods of K.

Regarding the Dirichlet problem for q-psh. functions, we have the fol-
lowing result due to Bungart (Theorem 3.7 in [Bu]). Before formulating
it, we recall that a bounded domain Ω is said to have an q-psh. barrier
at a point p ∈ ∂Ω if there is a continuous function u on Ω which is q-psh.
on Ω and satisfies u(p) = 1, u < 1 elsewhere.

Theorem 3.5. Let Ω be a bounded domain in Cn. Then the following
assertions are equivalent

(i) Ω is Bq-regular.

(ii) Ω has a q-psh. barrier at every boundary point of Ω.

It should be said that the plurisubharmonic analogue of the above
theorem is contained in Theorem 2.1 of [Si]. Notice also that weaker
versions of Theorem 3.5 have appeared in [HM], [Sl1], etc. The next
theorem is motivated by Theorem 2.1 in [Si].

Theorem 3.6. Let Ω be a bounded domain in Cn. Then

(i) If Ω is q-hyperconvex (0 ≤ q ≤ n − 1) and ∂Ω is Br-regular (0 ≤
r ≤ n− q) then Ω is Bq+r-regular.

(ii) Assume Ω is Bq-regular, then Ω is q-hyperconvex. Moreover, ∂Ω is
Bq-regular if at every point z0 ∈ ∂Ω one of the following conditions
holds:
(a) There is a continuous q-psh. function u on a neighbourhood

of z0 such that u(z0) = 1 but u < 1 on ∂Ω\{z0}.

(b) There are a neighbourhood U of z0 such that U ∩ ∂Ω is C1

smooth, a continuous function u on U ∩ Ω such that u is C2

smooth, u(z0) = 1 while u < 1 elsewhere and at every point
of U ∩ Ω the Levi form of u is positive definite on a complex
linear subspace L of codimension q.
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Proof: (i) We first claim that there is a negative continuous strictly
q-psh. exhaustion function for Ω. To see this, we will borrow an argument
from [KR, p. 178]. More precisely, pick a negative continuous q-psh.
exhaustion function ϕ for Ω. Choose R > 0 so large that |z| < R on Ω.
Set

ψ(z) = sup
j≥1

(

jϕ(z) −
1

j
+

1

jR2
|z|2

)

.

Then ψ is continuous strictly q-psh. on Ω since locally it is defined by
maximum of a finite number of such functions. Since ϕ tends to 0 on ∂Ω,
we infer that so does ψ. Thus the claim is proved. Now let f be a real
valued, continuous function on ∂Ω we must show that there is a (q+ r)-
Bremermann function on Ω which is continuous on Ω and extends f .
As ∂Ω is Br-regular, according to Theorem 2.9 in [Sl1], we can find a
sequence uj of continuous r-psh. functions on neighbourhoods of ∂Ω that
converges uniformly to f on ∂Ω and that uj(z)+Lj|z|2 is locally convex
in neighbourhoods of ∂Ω, where Lj is a positive constant. Fix j ≥ 1,
by the claim above, we can choose a negative continuous strictly q-psh.
exhaustion function ψ for Ω. Pick a C∞ function θ with support in ω
and θ = 1 on a neighbourhood of ∂Ω. For Cj > 0 large enough, the
function Cjψ + θuj is (q + r)-psh. on Ω and extends uj. It follows that

there is a (q+r)-Bremermann function ũj which is continuous on Ω such
that ũj = uj on ∂Ω. Applying Proposition 2.7, we get {ũj} converges

uniformly on Ω to a (q + r)-Bremermann function ũ. Of course we have
ũ ≡ ϕ on ∂Ω. Thus Ω is Bq+r-regular.

(ii) Let f(z) = −|z − z0|2 where z0 is some point in ∂Ω. As Ω is
Bq-regular, there is u continuous on Ω which is Bq-regular on Ω such
that u ≡ f on ∂Ω. Set ϕ(z) = u(z) + |z − z0|2, applying the maximum
principle we see that either ϕ is a negative q-psh. exhaustion function
for Ω or ϕ ≡ 0. The latter one is ruled out as −|z − z0|

2 is not q-psh.
Thus Ω is hyperconvex. For the Bq-regularity of ∂Ω, we divide the proof
into two steps.

Step 1. We will show for every z0 ∈ ∂Ω there is h ∈ Pq(∂Ω) satisfy-
ing h(z0) = 0 but h < 0 on ∂Ω\{z0}. To see this, consider first the
case there is an u satisfying (a) of (ii). Then the claim follows by glu-
ing u with a suitable negative constant. Now assume that there are a
small neighbourhood U of z0 and u satisfying (b) of (ii). Since (∂Ω)∩U is
C1 smooth, we can find r0 > 0, ε0 > 0 such that the closed ball B(z0, r0)
is contained in U and for all ε ∈ (0, ε0) the set (B(z0, r0) ∩ ∂Ω) + εn is
relatively compact in U ∩ Ω, where n is the unit outward normal at p.
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Set uε(z) = u(z − εn). Then uε is q-psh. and continuous on a neigh-
bourhood of B(z0, r0) ∩ ∂Ω. Let {rj}j≥1 be a sequence, rj ↓ 0, rj < r0.
Choose aj > 0 such that

sup{u(z) : z ∈ ∂Ω, rj < |z − z0| < r0} < aj < 1, ∀ j ≥ 1.

Since u is continuous on U ∩ Ω, we can find a sequence εj ↓ 0 satisfying

uεj
< aj on B(z0, r0)\B(z0, rj),

1 + aj

2
< uεj

(z0) := bj .

Set

vj = cj(uεj
− bj) − 1,

where cj satisfies 1
bj−aj

< cj < 1
1−bj

. Then vj is continuous q-psh.

on B(z0, r0) ∩ ∂Ω and satisfy vj < 0 on B(z0, r0) ∩ ∂Ω, vj(z0) = −1,
vj < −2 on (B(z0, r0) ∩ ∂Ω)\B(z0, rj). Since the Levi form of u at
every point of U ∩ Ω is definite positive on L we infer that for every
a1, . . . , ak > 0 and every n1, . . . , nk ≥ 1 the Levi form of the function
a1vn1

+ · · ·+ akvnk
on some neighbourhood of B(z0, r0) ∩ ∂Ω is definite

positive on L as well. Thus, this function is continuous and q-psh. on a
neighbourhood of B(z0, r0) ∩ ∂Ω. By applying the proof of Lemma 3.2
in [Po], we obtain a function v ∈ Pq(∂Ω ∩ B(z0, r0)) satisfying v(z0) =
0, v(z) < 0, ∀ z ∈ (∂Ω ∩B(z0, r0))\{z0}. Let

0 > −ε = sup
∂Ω∩∂B(z0,r0)

v.

Reasoning as in the proof of Lemma 1.5 in [Si], we conclude that

h =

{

max(u,−ε) on ∂Ω ∩B(z0, r0)

−ε on ∂Ω\B(z0, r0)

defines a function in Pq(∂Ω) satisfying h(z0) = 0, h < 0 on ∂Ω\{z0}.

Step 2. Fix a continuous real valued function f on ∂Ω. Set

F (z) = sup{u(z) : u ∈ Pq(∂Ω), u ≤ f on ∂Ω}, ∀ z ∈ ∂Ω.

Fix z0 ∈ ∂Ω and choose a function h as in Step 1. Then given ε > 0 there
is t > 0 so large that f(z0)+ t(h(z)−1)−ε ≤ f(z) on ∂Ω. It follows that
f(z0) + t(h(z) − 1) − ε ≤ F (z) on ∂Ω. In particular, f(z0) − ε ≤ F (z0).
Let ε → 0 we conclude that F ≡ f on ∂Ω. The Choquet Topological
Lemma implies that f is the increasing limit of a sequence in Pq(∂Ω).
By Dini’s Theorem, the convergence is uniform on ∂Ω. This proves the
theorem.
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Remark. Let Ω be the “annulus” Ω = {(z, w) ∈ C2 : 1 < |z|2+|w|2 < 2}.
Then ∂Ω={(z, w) ∈ C2 : |z|2+|w|2 = 1}∪{(z, w) ∈ C2 : |z|2+|w|2 = 2}.
Thus, being the union of two strictly pseudoconvex boundaries ∂Ω is
B0-regular. On the other hand ∂Ω is C1 smooth (even real analytic) and
Ω is 1-pseudoconvex (Proposition 4.6 in [Sl2]), thus applying Propo-
sition 3.2 (b) we deduce that Ω is 1-hyperconvex. However Ω is not
0-pseudoconvex in view of the Hartogs extension phenomenom. This
shows that the conclusion of Theorem 3.6 (i) is somehow sharp. On the
other hand, we do not know if (a) and (b) are really needed for (ii) of
the theorem.

The last result of the section generalizes the example in the above
remark.

Corollary 3.7. Let Ω and Ω′ be bounded Bq-regular domains in Cn

(0 ≤ q ≤ n−1) such that Ω′
⋐ Ω. Assume further that for every p ∈ ∂Ω′

there is a neighbourhood U of p such that U\Ω′ is r-hyperconvex, and that
∂Ω and ∂Ω′ are Bq-regular compact sets. Then Ω\Ω′ is Bq+s-regular,
where s = max(q, r).

Proof: Let Ω′′ = Ω\Ω′. Then ∂Ω′′ = ∂Ω ∪ ∂Ω′. Since ∂Ω and ∂Ω′ are
disjoint Bq-regular compact sets we have ∂Ω′′ is also Bq-regular. Now
we claim that Ω′′ is s-hyperconvex. By Proposition 3.2 (a), it suffices
to check Ω′′ is locally s-hyperconvex. Obviously this true at every point
p ∈ ∂Ω′, for p ∈ ∂Ω, it follows from the Bq-regularity of Ω.

4. Approximations of q-psh. functions

The next result is an analogue of the Fornæss-Narasimhan approxima-
tion theorem for 0-psh. functions on pseudoconvex domains (Theorem 5.5
in [FN]).

Theorem 4.1. Let Ω be a q-pseudoconvex domain in Cn. Then for
every r-psh. function u on Ω, there is a sequence of piecewise smooth
strictly s-psh. function on Ω that decreases to u, where s = max(q, r).

Proof: We follow the ideas given in the proof of Fornæss-Narasimhan’s
theorem. By the remarks made at the beginning of Section 3, there is a
piecewise smooth strictly q-psh. exhaustion function ϕ for Ω. For j ≥ 1,
set Ωj = {z ∈ Ω : ϕ(z) < j}. Then ∪Ωj = Ω and Ωj ⋐ Ωj+1. By
composing ϕ with suitable increasing convex functions, we get a sequence
of continuous strictly q-psh. function {ϕj} satisfying ϕj < −j on Ωj and
ϕj > aj = max∂Ωj+1

u on ∂Ωj+1. After replacing ϕj by maxm≥j ϕm +εj
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for some sufficiently fast decreasing sequence εj ↓ 0, we may achieve that
ϕj > ϕj+1 on Ω. Now we consider two cases.

Case 1. u is bounded from below. Fix j ≥ 1, then there is a se-
quence {δj,m} decreasing to 0 so fast that uj,m := u ∗s ρδj,m + δj,m(1 +
|z|2) > u on Ωj+2 and uj,m < ϕj on ∂Ωj+1. Applying Bungart’s Approx-
imation Theorem to the sequence uj,m we can find a sequence of piece-
wise smooth strictly r-psh. functions vj,m on Ωj+2 such that vj,m ↓ u
on Ωj+2 as m → ∞, vj,m > u on Ωj+2 and vj,m < ϕj on ∂Ωj+1. The
Gluing Lemma implies that

ũj,m =

{

max(vj,m, ϕj) on Ωj+1

ϕj on Ω\Ωj+1

defines a piecewise smooth, strictly s-psh. function on Ω. Moreover,
ũj,m ↓ max(u, ϕj) on Ωj+1 as m tends to ∞. It follows that given j
there is p(j) so large that ũj+1,p < ũj,m on Ωj for p ≥ p(j) and ũj+1,p <
ũr,m on Ωr for r ≤ j and p ≥ p(j). Thus we can choose a sequence
{m(j)} tending to ∞ fast enough so that ũj+1,m(j+1) < ũj,m(j) on Ωj

and ũj+1,m(j+1) < ũr,j on Ωr for r ≤ j. Finally we define

uj = max
p≥j

ũp,m(p).

Observe the maximum is locally taken by a finite number of piecewise
smooth strictly s-psh. functions. This implies that uj is piecewise smooth
strictly s-psh. and uj ↓ u.

Case 2. General u. From the first case, we deduce that for each N ≥ 1
there is a sequence uN,k of piecewise smooth strictly s-psh. functions that
decreases to max(u,−N) as k tends to ∞. For each m, choose p(m) > m
so large that

um,p(m) < uj,m +
1

m2
on Ωj , 1 ≤ j ≤ m.

This is possible because by Dini’s Theorem max(um,l, uj,m) converges

uniformly to uj,m on Ωj as l goes to ∞. Set

uj = max
m≥j

(

um,p(m) +
1

m

)

.

Observe that for z ∈ Ωl and m ≥ p(l) we have

um,p(m)(z) +
1

m
< ul,m(z) +

1

m2
+

1

m
< ul,p(l)(z) +

1

l
.
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It implies that locally uj is maximum of a finite number of piecewise
smooth strictly s-psh. functions. Thus uj is piecewise smooth strictly
s-psh. and uj ↓ u.

The theorem is completely proved.

Corollary 4.2. Let Ω be a q-pseudoconvex domain in Cn, let K be a
compact subset of Ω and ω an open neighbourhood of the q-plurisubhar-
monic hull K̂P

Ω of K i.e.,

K̂P
Ω = {z ∈ Ω : u(z) ≤ sup

K

u, u is q-psh. on Ω}.

Then there is a piecewise smooth strictly q-psh. function u on Ω such
that

(a) u < 0 on K and u > 0 on Ω\ω.

(b) {z : u(z) < c} is relatively compact in Ω for every c ∈ R.

Proof: Using a compactness argument and Proposition 2.4, as in the
proof of Theorem 2.6.11 in [Hö], we can find a continuous q-psh. func-
tion v on Ω satisfying (a) and (b). Applying Theorem 4.1 we get a
piecewise smooth strictly q-psh. function u satisfying (a) and (b). We
are done.

Theorem 4.3. Let Ω be a bounded q-hyperconvex domain in Cn. As-
sume that there is a compact set P in ∂Ω having the following properties.

(a) For every p ∈ (∂Ω)\P , there is a q-psh. barrier at p.

(b) There is a negative, locally bounded q′-psh. function g on Ω such
that P = {z ∈ Ω : g∗(z) = −∞}.

Then for every bounded from above r-psh. function u on Ω and every
compact set K of (∂Ω)\P there is a sequence of bounded from above
strictly s-psh. functions {uj} on Ω which are continuous on Ω∪K such
that uj ↓ u∗ on Ω ∪K where s = max{r + q′, 2q}.

Proof: We follow the lines of Theorem 3.2 in [NW]. Choose a nega-
tive continuous q-psh. exhaustion function v for Ω. Since u∗ is upper
semicontinuous on ∂Ω, there is a sequence {ϕj} of continuous functions
on ∂Ω that decreases to u∗ on ∂Ω. Now for each j we set

Φj = sup{ϕ : ϕ is q-psh. on Ω, continuous on Ω, ϕ ≤ ϕj on ∂Ω}.

Then Φj is bounded and lower semicontinuous on Ω. It follows from (a)
that Φj = ϕj on (∂Ω)\P . It also follows from Choquet’s Topological
Lemma that there is a sequence {ϕk,j}k≥1 of q-psh. function on Ω, con-

tinuous on Ω that increases to Φj on Ω. It follows from the hypothesis (a)
that ϕk,j ↑ ϕj on (∂Ω)\P .
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Fix a function ρ ∈ C(Cn) such that ρ(0) = 1, 0 ≤ ρ ≤ 1 and supp ρ ⊂
B(0, 1). Fix j ≥ 1, we claim that there are δj ∈ (0, 1/j), aj ≥ 1 such
that

(u ∗s ρδj
) −

1

j
+

1

j
(g ∗s ρδj

) ≤ jv + ϕaj ,j

on Ωδj
. To see this, we argue by contradiction. Assume otherwise, then

there are sequences {δm} ↓ 0, {bm} ↑ ∞ and a sequence of points {xm},
xm ∈ Ωδm

such that

(u ∗s ρδm
)(xm) −

1

j
+

1

j
(g ∗s ρδm

)(xm) ≥ jv(xm) + ϕbm,j(xm).

Passing to a subsequence we may assume that {xm} converges to x∗ ∈
∂Ω. Using the upper semicontinuity of u∗ and g∗ on Ω and the definition
of supremum-convolution, we have

lim sup
m→∞

(

(u ∗s ρδm
)(xm) +

1

j
(g ∗s ρδm

)(xm)

)

≤ u∗(x∗) +
1

j
g∗(x∗).

Since limz→∂Ω v(z) = 0, we deduce that

lim sup
m→∞

(jv(xm) + ϕbm,j(xm)) ≥ lim sup
m→∞

ϕbm,j(xm).

Putting all this together, we obtain

u∗(x∗) ≥ u∗(x∗) +
1

j
g∗(x∗) ≥ lim sup

m→∞

ϕbm,j(xm).

Combining this inequality with (b) we infer x∗ 6∈ P. Thus x∗ ∈ (∂Ω)\P .
But then we have ϕbm,j(x

∗) ↑ ϕj(x
∗) > u∗(x∗). A contradiction! The

claim is therefore proved. This implies, in view of the Gluing Lemma
and Proposition 2.2 (viii), that the function

vj =











max

{

(u ∗s ρδj
) −

1

j
+

1

j
(g ∗s ρδj

), jv + ϕaj ,j

}

on Ωδj

jv + ϕaj ,j on Ω\Ωδj

is s-psh. on Ω and continuous on Ω. Moreover vj converges pointwise
to u∗ on Ω ∪K. Now set

uj(z) = sup
m≥j

{vm(z)} + |z|2/j.
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It is clear that uj ↓ u∗ on Ω ∪ K. Fix j ≥ 1, we will show that uj is

continuous on Ω ∪ K. Since each uj is continuous on Ω we have uj is
lower semicontinuous there. It remains to check that uj is upper semi-
continuous on Ω∪K. Assume otherwise, then there is a ∈ Ω∪K, ε > 0
and sequences jk ↑ ∞, zjk

→ a such that

vjk
(zjk

) > vjk
(a) + ε, zjk

∈ Ω ∪K, ∀ k ≥ 1.

Consider two cases.

Case 1. a ∈ Ω. Then we may assume that zjk
∈ Ωδjk

, ∀ k. Since g is
bounded near a and v < 0, from the definition of vj we infer that for
all k large enough the following inequalities hold

vjk
(a) ≥ (u ∗s ρδjk

)(a) − ε/2, vjk
(zjk

) ≤ (u ∗s ρδjk
)(zjk

).

This is absurd, in view of the upper semicontinuity of u at a.

Case 2. a ∈ K. Since vj ≡ ϕaj ,j on K for all j, we may assume that
zjk

∈ Ω, ∀ k. Since v < 0 on Ω we have vjk
< ϕajk

,jk
on Ω\Ωδjk

and

vjk
< max(ϕajk

,jk
, (u ∗s ρδjk

)) on Ωδjk
. Since the ϕajk

,jk
are continuous

on Ω and u∗ is upper semicontinuous at a, we get a contradiction.
Thus uj is continuous on Ω∪K. The desired conclusion now follows.

Remark. Let Ω be the Hartogs triangle {(z, w) ∈ C2 : 0 < |z| < |w| < 1}.
Then Ω is pseudoconvex and 1-strictly pseudoconvex, since it can be
defined as {(z, w) ∈ C2 : max(|z|2 − |w|2, |w|2 − 1) < 0}. In particular
Ω is B1-regular. Consider the bounded psh. function u(z, w) = |z/w|.
By the maximum principle we can check that u can not be approximated
from above by continuous functions on Ω which are 0-psh. on Ω. (For
details see Section 4 of [Wi]). On the other hand, by Theorem 4.3 we see
that u∗ is the limit on Ω of a decreasing continuous functions on Ω which
are 1-psh. functions on Ω. This shows that the conclusion of Theorem 4.3
is somehow optimal.
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