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FROM GRAPHS TO TENSEGRITY STRUCTURES:

GEOMETRIC AND SYMBOLIC APPROACHES

Miguel de Guzmán† and David Orden∗

Abstract

A form-finding problem for tensegrity structures is studied; given
an abstract graph, we show an algorithm to provide a necessary
condition for it to be the underlying graph of a tensegrity in R

d

(typically d = 2, 3) with vertices in general position. Further-
more, for a certain class of graphs our algorithm allows to obtain
necessary and sufficient conditions on the relative position of the
vertices in order to underlie a tensegrity, for what we propose both
a geometric and a symbolic approach.

1. Introduction

In this paper we study an instance of the so-called form-finding prob-
lems for tensegrity structures. These have brought special attention both
among mathematicians and engineers since the seminal works of Ken-
neth Snelson around 1948 (see [13]). Roughly speaking, a form-finding
problem for a tensegrity structure asks to determine a geometric con-
figuration of points and straight edges in R

d (typically d = 2, 3) such
that the whole structure is in a self-tensional equilibrium. The word
tensegrity was coined from tension and integrity by Buckminster Fuller,
deeply impressed by Snelson’s work.

Apart from a purely mathematical interest [3], [11], understanding
these structures has applications to architecture and structural engi-
neering [14] and has led to interesting models for viruses and cellular
structures [1], [7]. It is also considered a useful tool for the study of
deployable structures [9], [12], [15]. Previous works have proposed a
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number of different approaches to solve form-finding problems, which
can be found in the recent review [16].

In particular, the present paper deals with the form-finding problem
of building tensegrity structures with a given underlying graph G, in a
given R

d. The graph has to be understood as an abstract graph, i.e., a set
of vertices and pairs of vertices (edges). We aim to solve the following
two problems:

• First, to decide whether G can be the underlying graph of a tenseg-
rity structure in R

d.
• In case such a tensegrity with underlying graph G is possible, to

characterize the relative position of its vertices.

In order to solve these problems, we first look for decompositions of
tensegrities into basic instances, called atoms. This motivates a combi-
natorial method that allows to decompose a graph G into the smallest
graphs that can underlie a tensegrity. In order to build up a tenseg-
rity with graph G, we propose to reverse its decomposition: We show
that this solves the above problems for a certain class of graphs and we
present two different approaches. The first one looks at the geometric
structure of the tensegrity; it is quite visual and provides intuition of the
intrinsic properties of tensegrity structures. However, it becomes diffi-
cult to use for complicated structures. The second approach condenses
in a matrix the information about the tensegrity; this allows to use tools
from Symbolic Computation, despite being less intuitive.

The paper is organized as follows: The basic notions and results are
introduced in Section 2. Then, Section 3 introduces a method to de-
compose a tensegrity into atoms, which motivates a decomposition of
the abstract graph G, reversed then by geometric means. Finally, in
Section 4 a rigidity matrix is used for a symbolic resolution.

2. Preliminaries

In this section we introduce the basic notions and results used in the
paper. Despite it aims to be self-contained, an interested reader can
look at [18] for further examples and a more detailed overview of the
mathematical concepts. Let us introduce first the rigorous definition of
“self-tensional equilibrium”:

Definition 2.1. Let G = (V, E) be an abstract graph:

• A framework G(P ) in R
d is an embedding of G on a finite point

configuration P := {p1, . . . , pn} in R
d, with straight edges. In the



From Graphs to Tensegrities 281

sequel we will focus on general position point configurations (no
d + 1 points lie on the same hyperplane).

• A stress w on a framework is an assignment of scalars wij (called
tensions) to its edges. Observe that wij = wji, since they refer to
the same edge.

• Such a w is called a self-stress if, in addition, the following equi-
librium condition is fulfilled at every vertex:

(1) ∀ i,
∑

ij edge

wij(pi − pj) = 0.

That is, for each vertex pi the scaled sum of incident vectors −−→pipj

is zero.

Observe that the null stress is always a self-stress, of no interest for
us. Note also that all scalar multiples of a self-stress (in particular its
opposite) are self-stresses as well. We will see later that, indeed, the
space of self-stresses on a given graph is a vector space.

Lemma 2.2. Let p ∈ P be a vertex of a d-dimensional framework G(P )
such that P is in general position. Given a non-null self-stress on G(P ),
either at least d + 1 of the edges incident to p receive non-null tension,
or all of them have null tension.

Proof: The result is true for any d, but the reader may consider d = 2, 3
here. Let k be the number of edges incident to p that have non-null
tension. The equilibrium condition on p implies having k vectors in R

d,
with common tail, which add up to the zero vector. For k < d + 1,
this is only possible if their k + 1 endpoints do not span a k-space. But
either k = 0 or this contradicts the general position assumption.

As a consequence, the next property makes particularly interesting
the study of a certain family of general position frameworks, the so-
called (d + 1)-regular ones, for which a null tension on a single edge
propagates to the rest of them:

Corollary 2.3. Given a d-dimensional framework all of whose points
are in general position and have exactly d+1 incident edges, a self-stress
is non-null if, and only if, it is non-null on every edge.

The following definition introduces our final object of study, which is
a physical model of the mathematical objects defined above:



282 M. de Guzmán, D. Orden

Definition 2.4. We define a tensegrity structure T (P ) to be a self-
stressed framework in which:

• Edges ij such that wij > 0 have been replaced by inextensible
cables (its endpoints constrained not to get further apart),

• Edges with wij < 0 have been replaced by unshrinkable struts
(endpoints constrained not to get closer together), and

• Edges with wij = 0 have been removed.

If no confusion is possible, a tensegrity structure T (P ) will be denoted
by just T . For another physical interpretation, one can think of cables
and struts as springs endowed with a certain tension, respectively in-
wards and outwards. That is; cables and struts incident to point pi have
respectively tensions in the direction of +

−−→pipj (inwards) and −
−−→pipj (out-

wards), see Figure 1.

pi

+

−
pi

+

Figure 1. Left: two cables (+) and a strut (−) inci-
dent to pi. Right: Their representation as springs with
inwards and outwards tensions.

Observe that, given a tensegrity structure, it might be possible to
replace the struts by bars which react to the surrounding tensions. For
example, if we replace the strut in Figure 1 by a bar, this will receive an
outwards tension at pi, as a reaction to the sum of cable tensions. Such a
replacement is usual when constructing tensegrity sculptures, like those
in [13].

The most emblematic tensegrity structure is shown in Figure 2.
Named oblique triangular prism with rotational symmetry, it is com-
posed of nine cables, six of which form two copies of an equilateral trian-
gle, the top one rotated 30 degrees, joined by three struts alternating the
rest of cables. Thick edges denote the struts, which could be replaced
by bars as before.
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Figure 2. The oblique triangular prism.

The last definition in this section introduces the smallest tensegrities
possible, which we will show in Section 3 to be the fundamental bricks
for building up any tensegrity:

Definition 2.5. We define a self-stressed atom in R
d (d = 2, 3) to

be a general position realization of the complete graph Kd+2, together
with its unique (up to constant multiplication) non-null self-stress. The
tensegrity atoms are then obtained replacing edges by cables and struts.
When no confusion is possible, we will just refer to atoms.

Figure 3 shows half of the possible tensegrity atoms in R
d for d = 2, 3,

where thick edges denote struts. The other half is obtained by inter-
changing cables and struts or, equivalently, by considering the opposite
tensions. It is not difficult to check, using Lemma 2.2, that configura-
tions with fewer points or edges do not admit self-stresses apart from
the null one. The non-trivial fact that the above frameworks do admit
a unique (up to constants) non-null self-stress appears in [10], where
existence is proved by the following result.
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Figure 3. Types of tensegrity atoms in R
2 (left)

and R
3 (right).

Proposition 2.6. Let
∑n

i=1 λipi = 0,
∑n

i=1 λi = 0 be an affine depen-
dence on a point set P = {p1, . . . , pn}. Then, wij := λiλj defines a
self-stress on the complete graph K(P ).

Proof: For any pi ∈ P , we have:

∑

ij∈K

wij(pi − pj) =

n
∑

j=1

λiλj(pi − pj) = λipi

n
∑

j=1

λj − λi

n
∑

j=1

λjpj ,

which equals zero.

In order to prove the uniqueness up to constants, consider two differ-
ent self-stresses, one not a scalar multiple of the other. Then some linear
combination of them would cancel the tension at a particular edge but
not at all of them, in contradiction with Corollary 2.3. Note that we are
using the claimed fact that self-stresses form a vector space, as will be
shown at the beginning of the next subsection.
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3. Geometric approach

In this section we present a geometric algorithm to decompose a
tensegrity into atoms. This decomposition motivates a combinatorial
one, which opens the way towards the resolution of the two problems
posed in Section 1.

3.1. Decomposing into atoms.

Let G(P ) and G′(P ′) be two self-stressed frameworks such that P ∪P ′

is a point configuration in general position. Let w and w′ be their self-
stresses. For the framework G(P )∪G′(P ′) obtained by union of vertices
and edges, one can define the sum of self-stresses w + w′ in the natural
way: Assign tension wij + w′

ij to common edges ij and maintain the
initial tension at the others.

It is easy to observe that equations (1) are fulfilled and hence w+w′ is
indeed a self-stress. Furthermore, the space of self-stresses on a given
graph G = (V, E) together with this sum and the product by a scalar
form a vector subspace of R

E , when the latter is identified with the space
of all self-stresses.

Abusing notation, we denote by G + G′ the self-stressed framework
obtained. Observe that, after this addition is performed, one can appro-
priately replace edges by cables and struts in order to obtain a tensegrity
structure T +T ′. Hence, the sum of tensegrities yields another tensegrity.

Observation 3.1. We will only consider this kind of addition when P

and P ′ have at least d points in common; otherwise we obtain either two
separate tensegrity structures or one of them hanging from the other.

The main result in this section states that, reciprocally, under our
conditions every tensegrity can be decomposed into a sum of tensegrity
atoms:

Theorem 3.2 (Atomic decomposition of tensegrities). Every non-null
tensegrity structure T (P ), P in general position, is a finite sum of tenseg-
rity atoms. This decomposition is not unique in general.

Proof: Let G(P ) and w be the framework and non-null self-stress asso-
ciated to T (P ). We show how to obtain, by addition of atoms, a chain
of non-null self-stresses w′ on G(P ) in which the number of vertices with
only null incident tensions (null vertices) is increased at each step. At
the end we come up with a self-stressed framework with only null ver-
tices, so that the original tensegrity T will be the sum of the opposites
of those atoms that have appeared in the process.
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Let us focus on the two-dimensional case, since the d-dimensional
one is carried out analogously: At each step, an arbitrary non-null ver-
tex a ∈ P is chosen to be converted in a null one. By Lemma 2.2, only
the following two cases are possible (see Figures 4 and 5):

• Type 1: If exactly three incident edges ab, ac, ad have non-null
tension, we consider the atom K of vertices a, b, c, d. Since this
atom has a non-null self-stress wK which is unique up to con-
stants, we can choose wK

ab to be the opposite of the tension as-
signed to edge ab at the current stress w′, i.e. wK

ab := −w′
ab. Be-

cause of the equilibrium at a, it turns out that also wK
ac = −w′

ac

and wK
ad = −w′

ad. Therefore, adding wK to the current self-stress
makes vertex a have only null tensions at incident edges (i.e. makes
it disappear from the induced tensegrity). See Figure 4, where
dashed interior edges in the second picture are opposite to those
in the first one. Note that at b, c, d the edges bc, bd and cd may
have appeared with non-null tension, but these extra edges do not
affect a. However, we will be concerned about them later.

a

b

c d

+

b b

a a

c d c d

Figure 4. Type 1 step, exactly three incident edges
with non-null tension.

• Type 2: If a ∈ P has incidence degree greater than 3, let b, c, d be
neighbors of a. Consider the atom K̄ of vertices a, b, c, d (and
all the possible edges between them) and choose it to have ten-

sion wK̄
ab := −w′

ab at edge ab. Hence, obviously w′ + wK̄ has null
tension at edge ab. Again, other edges bc, bd, cd may appear
with non-null tension, but not incident to a. Hence, repeating this
process if needed, we obtain a self-stress on G(P ) in which a has
only three incident edges with non-null tension (i.e. in the induced
tensegrity, a has only three incident edges). Now we are in the
previous case. See Figure 5, where now only dashed edge ab is
guaranteed to be opposite to its filled counterpart.
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a

b

c d

+

b b

a a

c d c d

e e e

Figure 5. Type 2 step, more than three incident edges
with non-null tension.

Since a sum of self-stresses is another self-stress, after a finite number
of these steps we get a self-stress with at least one more null vertex, for
which we can iterate the process until all vertices become null. Note
that different choices of vertices to make null may lead to different de-
compositions.

Remark 3.3. The reader should notice that the addition of an atom only
changes the value of the self-stress on edges of the atom. Hence, adding
an atom might cancel other tensions than the intended ones, but only
at edges contained in the atom.

Motivated by the geometric process in Theorem 3.2, we define now the
following combinatorial algorithm, that can be applied to any abstract
graph G:

Algorithm 3.4 (Combinatorial decomposition).

input: abstract graph G = (V, E) and dimension d.

output: list L of “atoms”, where each atom is a subset of (d + 2) el-
ements of V .

1. Initialize L = ∅.

2. While E is not empty, choose a vertex a ∈ V with minimum degree
and:
2.1 If a has degree ≤ d, remove its incident edges from E.

2.2 If a has degree d + 1, let a0, . . . , ad be its neighbors. Remove
the edges aai from E. Add to E all the edges aiaj that were
not in E. Insert the atom {a, a0, . . . , ad} to the list L.
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2.3 If a has degree at least d + 2 do the following until it has de-
gree d + 1, then go to 2.2: Choose d + 1 neighbors a0, . . . , ad

of a. Remove the edge aa0 from E and insert to E all the
edges aiaj that were not in E. Insert the atom {a, a0, . . . , ad}
to the list L.

3. Return L.

See Figures 6 and 7 for examples. This combinatorial algorithm is the
tool for the first result towards the resolution of the problems posed in
Section 1:

Theorem 3.5. Given an abstract graph G, in order for it to underlie a
tensegrity T (P ) in R

d it is a necessary condition that, chosen a combina-
torial decomposition, for every edge pq of G there is an atom containing
both endpoints p and q. (In other words, that step 2.1 of the algorithm
removes only edges that were contained in the complete graph defined by
some atom of the combinatorial decomposition.)

Proof: Choose a combinatorial decomposition as above. If such a tenseg-
rity T (P ) exists, then the combinatorial decomposition induces a geo-
metric one: On the one hand, the geometric counterpart of step 2.1 shows
up naturally because of Lemma 2.2. On the other hand, steps 2.2 and 2.3
correspond to the geometric steps of types 1 and 2, respectively, in the
proof of Theorem 3.2, with tensions determined by the edge(s) to be
deleted. The necessary condition in the statement is then a consequence
of Remark 3.3.

Figure 6 shows a combinatorial decomposition that fulfills the condi-
tion of Theorem 3.5, while Figure 7 shows one for which edge pq shows
that the condition is not fulfilled, hence the graph cannot underly a
tensegrity.

Therefore, when asked about the existence of a tensegrity in R
d with

underlying graph G, we first get a combinatorial decomposition and then
check the condition of Theorem 3.5. If this is not fulfilled, then the an-
swer is negative. However, in the next subsection we show that if the
graph G admits a combinatorial decomposition of a certain type, then
this decomposition can be geometrically reversed, leading in a straight
way to a complete characterization of the point sets P on which G(P ) ad-
mits a tensegrity.
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Figure 6. Combinatorial decomposition fulfilling the
condition of Theorem 3.5.

a

p

q

Figure 7. Combinatorial decomposition not fulfilling
the condition of Theorem 3.5.

3.2. Geometrically solving form-finding problems.

Let us start defining a class of combinatorial decompositions, for
which the reader can find an example in Figure 6.

Definition 3.6. We call edge-inserting combinatorial decompositions
those in which all extracted atoms but the last one introduce at least
one edge to the intermediate graph.

The following result states that, for this class of combinatorial decom-
positions, their geometric reversal provides a solution to the problems
posed in Section 1. Note the request of a self-stress non-null on every
edge, in order for G to underlie the tensegrity:
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Theorem 3.7. If an abstract graph G admits an edge-inserting com-
binatorial decomposition, then the reconstruction of the graph from the
atomic decomposition produces a set of equations and negated equations
characterizing the point sets P in general position that make G(P ) ad-
mit a self-stress non-null on every edge (and hence the ones that admit
a tensegrity T (P )).

Proof: In order to determine which choices of coordinates underlie
tensegrities, we have to consider as variables the coordinates of the new
points pi added in the reconstruction (the first d + 2 points can be arbi-
trarily chosen, since tensegrities are projectively invariant [11]). Thus,
the tensions of the edges in each atom introduced are functions on these
variables.

Furthermore, recall from Definition 2.5 that the self-stress of each
atom has one degree of freedom. Hence, for the reconstruction of a
general combinatorial decomposition we have to consider one extra vari-
able αj for each atom (except for the first one, whose stress can be
considered a normalization constant).

However, these extra variables are not needed for edge-inserting com-
binatorial decompositions: For each step of the geometric reconstruction,
at least one edge was inserted by the combinatorial decomposition algo-
rithm and has to be removed in this precise reconstruction step. Then,
the relative self-stress given to this atom (considered as a function on
the positions) can be determined at the insertion step: It is exactly the
one that cancels the tension(s) at the edge(s) to be removed.

Therefore, the reconstruction in this case leads to a system of equa-
tions f(p1, . . . , pn) = 0 and negated equations f(p1, . . . , pn) 6= 0, one
equation for each edge not in G that appears in an intermediate step
of the process (expressing that this edge has tension zero and does not
appear in the tensegrity) and one negated equation for each edge in G

(expressing that it does appear in the tensegrity).

Let us point up that two decompositions of G lead to equivalent collec-
tions of conditions, since the tensegrities constructed using one decom-
position can always be decomposed and reconstructed using the other.
Hence, they have to fulfill both sets of necessary and sufficient condi-
tions, and therefore these have to be equivalent. In order to finish the
section, we illustrate the decomposition and reconstruction process with
the following example:

Example 3.8. The graph G=({1,. . . ,6},{12, 14, 16, 23, 26, 34, 35, 45, 56})
underlies a tensegrity T (P ) in general position in R

2 if, and only if,
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the triangles p1p2p6 and p3p4p5 are in perspective position, i.e., the
lines p2p3, p5p6 and p1p4 are concurrent.

We start with the edge-inserting combinatorial decomposition of G

depicted in Figure 6. In Figure 8 we show the reversal of this decompo-
sition, where dashed edges are the inserted ones that have to be removed.

p1

p2

p3

p4

p5

p6

p4 p4

p5 p5p3

p6 p6p2 p2

Figure 8. Reconstruction of an edge-inserting com-
binatorial decomposition.

As observed in the proof of Theorem 3.7, the initial points p2, p4, p5, p6

can be chosen arbitrarily. Then we add the atom p2, p3, p4, p5, whose
self-stress is determined by the condition of canceling the tension at
edge p2p5. The feasible positions of p3 are characterized by the equations
and negated equations corresponding respectively to the edges omitted
and depicted in the middle picture.

Finally, the addition of the atom p1, p2, p4, p6 has to remove edges p2p4

and p4p6. This fact allows us to rephrase geometrically the set of equa-
tions and negated equations obtained for the graph G: The point p1

has to be placed on the line spanned by the resultant of the “unde-
sired” tensions w24 and w46 so that the tension on edge p1p4 replaces
them. Moving p1 along the feasible line towards the intersection of p2p3

and p1p4 forces tension w26 at point p2 to be very small. But this equals
tension w62 at point p6; therefore, p1 has to be close to the intersection
of p1p4 and p5p6 as well.

Taking this argument to the limit, we conclude that p1 has to be
chosen in such a way that the lines p2p3, p5p6 and p1p4 are concurrent.
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4. Symbolic approach

This section is devoted to show that the form-finding problems con-
sidered can be reformulated in a matricial form, and how this can be
used to obtain the equations and negated equations in Theorem 3.7 by
means of symbolic computations. In particular, this provides an alter-
native to the geometric ad hoc reasonings like the one in Example 3.8,
and allows to deal with more complicated and less visual examples.

4.1. The rigidity matrix.

Before starting this subsection, let us point up that in this paper we
are not dealing with the rigidity of tensegrity structures; we are just
concerned by their self-equilibrium. An interested reader can see [18]
for more information on rigidity of frameworks. However, the following
notion from rigidity analysis turns out to be useful for our purposes:

Definition 4.1. Let G(P ) be a framework with n vertices and e edges
in R

d. Its rigidity matrix R(P ) has e rows and nd columns, defined as
follows:

• There is a row per edge ij of the framework, with i < j and in
lexicographic order.

• Each block of d columns is associated to a vertex pi and contains
either the d coordinates pi − pj , at those rows corresponding to
edges ij incident to pi, or zeros at the rest of rows.

For a complete framework on n vertices (with all the possible edges), the
rigidity matrix has the following condensed form:

vertex p1

↓










p1−p2 p2−p1 0 0 . . . 0 0
p1−p3 0 p3−p1 0 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . pn−1−pn pn−pn−1











← edge 12
← edge 13 .

The key observation is that the equilibrium equations (1) can be re-
stated in matricial form as

(2) w · R(P ) = 0

where w is a 1 × e vector of entries wij , i < j (recall that wij = wji)
and the right-hand side is the 1 × nd zero vector. That is to say, self-
stresses w are row dependencies for the rigidity matrix, what leads to
the following observation:
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Observation 4.2. For a framework G(P ), being the underlying graph
of a tensegrity T (P ) is equivalent to the existence of a w with no null
component in the left kernel of the rigidity matrix R(P ) of the framework.

This observation already suggests a method to characterize the point
sets P in general position that make G(P ) admit a tensegrity T (P ):
Computing the kernel of the rigidity matrix R(P ) for the frame-
work G(P ). For the sake of consistency, we refer the interested reader
to [6] for an example of the use of this method, and we show here instead
how to use the decomposition-reconstruction method together with the
matricial expression of equilibrium.

4.2. Symbolically solving form-finding problems.

According to Observation 3.1, the reconstruction of a combinatorial
decomposition inserts at most two new points at each step, with inde-
terminate coordinates x, y ∈ R

d. For the framework to maintain equilib-
rium after their addition, the points have to belong to the projection of
the solutions of (2) over the space of the variables xi, yj. Furthermore, in
order to look for non-null tensions on every edge, the inequations wij 6= 0
for every i, j have to be considered. Equivalently, extra variables tij and
equations wijtij = 1 can be introduced to the system.

It is well-known (see [4, Lemma 1, p. 120]) that the polynomial elim-
ination of variables wij , tij from the above system of equations contains
the above projection. Therefore, polynomial elimination provides nec-
essary conditions for the position of the vertices, which can be later
symbolically tested for sufficiency.

We illustrate this symbolic method with the following example, in
which in order to perform polynomial elimination we have chosen to
compute the intersection of R[x, y] with a Groebner basis of the equa-
tions, for an elimination order in which variables xi, yj are smaller than
the wij , tij ’s; see [4, Theorem 2, p. 113]. Although there are more effi-
cient elimination techniques, the reason for this choice is to present the
operations performed with the software Maple [17] which, apart from be-
ing broadly known, has a specific linalg package for linear algebra. For
more efficient elimination software, the reader can consider CoCoA [2].
Let us also point up that the graph considered has eight triangles and,
in fact, is the same as the graph of an octahedron.

Example 4.3. The graph G = ({1, . . . , 6}, {12, 13, 14, 15, 23, 25, 26, 34,
36, 45, 46, 56}) of an oblique triangular prism underlies a tensegrity if,
and only if, the six vertices lie on a ruled hyperboloid that contains the
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edges of one of the three cycles of length 4 in G. Equivalently, if and
only if the planes containing four alternating triangles intersect.

We start with the combinatorial decomposition of G in which the ver-
tex 6 is chosen at step 2 of Algorithm 3.4. This gives the atoms 2, 3, 4, 5, 6
and 1, 2, 3, 4, 5 (see Figure 2). In the sequel we detail the steps of the
reconstruction process using Maple 7, and omitting some outputs of no
interest:

• According to the proof of Theorem 3.7, the first d+2 points p1, . . . , p5

can be arbitrarily chosen:

> p1:=[0,0,0]: p2:=[1,1,1]: p3:=[0,1,0]: p4:=[1,0,0]:

p5:=[0,0,1]:

• Solving the corresponding equation (2) we get the tensions of the
atom p1, p2, p3, p4, p5. In order to generate the equations, we use the
command geneqns of the linalg package, which needs the equivalent
transpose form Rt · wt = 0 of (2). Then we solve them and, since ac-
cording to the proof of Theorem 3.7 the stress of the first atom can be
considered a normalization constant, we take the value 1 for the param-
eter obtained.

> d:=3: zeros:=[0,0,0]: with(linalg):

> R:=matrix(10,5*d,[

op(p1-p2),op(p2-p1),op(zeros),op(zeros),op(zeros),

op(p1-p3),op(zeros),op(p3-p1),op(zeros),op(zeros),

op(p1-p4),op(zeros),op(zeros),op(p4-p1),op(zeros),

op(p1-p5),op(zeros),op(zeros),op(zeros),op(p5-p1),

op(zeros),op(p2-p3),op(p3-p2),op(zeros),op(zeros),

op(zeros),op(p2-p4),op(zeros),op(p4-p2),op(zeros),

op(zeros),op(p2-p5),op(zeros),op(zeros),op(p5-p2),

op(zeros),op(zeros),op(p3-p4),op(p4-p3),op(zeros),

op(zeros),op(zeros),op(p3-p5),op(zeros),op(p5-p3),

op(zeros),op(zeros),op(zeros),op(p4-p5),op(p5-p4) ]):

> Rt:=transpose(R):

> eqs:=geneqns(Rt,

[w12,w13,w14,w15,w23,w25,w26,w34,w36,w45,w46,w56],

vector(n*d,0)):

> tensions:=solve(eqs,

w12,w13,w14,w15,w23,w24,w25,w34,w35,w45);
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tensions := {w15 = −2 w45, w35 = w45, w12 = 2 w45, w14 = −2 w45,

w23 = −w45, w34 = w45, w13 = −2 w45, w45 = w45, w25 = −w45,

w24 = −w45} .

> tensions:=subs(w45=1,tensions);

tensions := {1 = 1, w35 = 1, w12 = 2, w14 = −2, w23 = −1, w34 = 1,

w13 = −2, w25 = −1, w24 = −1, w15 = −2} .

• Then we have to add the atom p2, p3, p4, p5, p6, in which p6 has un-
known coordinates x, y, z and the stress of the atom is determined by the
cancelation of tensions at edges p2p4 and p3p5. The same operations as
above lead to a second system of equations eqs2, in which we substitute
w24 = 1, w35 = −1 to get

eqs2subs := {w23+w25−w26 x+w26 = 0,−w23−w34−xw36 = 0, w34+
w45−w46 x+w46 = 0,−w25−w45−xw56 = 0,−w26+w26 x+xw36−
w46+w46 x+xw56 = 0,−w26+w26 y−w36+w36 y +yw46+y w56 =
0,−w26+w26 z+z w36+z w46−w56+w56 z = 0, 1+w25−w26 y+w26 =
0, w23+1−w26 z+w26 = 0, w34−1−w36 y+w36 = 0,−w23+1−z w36 =
0,−1 − w34 − y w46 = 0,−1 − w45 − z w46 = 0,−w25 + 1 − y w56 =
0,−1 + w45− w56 z + w56 = 0} .

• In order to look for non-null tension on every edge, Corollary 2.3 turns
out to be crucial; if there is a non-null self-stress, then all its tensions are
null. Therefore, the self-stress obtained when adding the two atoms is
non-null since w12 = 2 6= 0 and this tension is not affected by the second
atom. In particular, it is not needed to consider extra variables tij : In
order to obtain the polynomial elimination, we compute a Groebner
basis of the polynomials in eqs2subs , which we call polys2subs , for an
elimination order in which variables x, y, z are smaller than the wij ’s.
The command gbasis of the Groebner package is used:

with(Groebner):

G:=gbasis(polys2subs,

lexdeg([w23,w25,w26,w34,w36,w45,w46,w56],[x,y,z]));

G := [x2−x−z2−y2+y+z, . . . and 40 polynomials more, involving wij ’s.

We conclude that the hyperboloid x2−y2−z2−x+y+z = 0 contains
the set of points p6 := (x, y, z) such that the framework admits a self
stress non-null on every edge. Therefore this is a necessary condition.
In order to test its sufficiency, we have considered an extra edge in the
framework and forced its tension to be null, obtaining the following stress
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from the left-kernel of the corresponding rigidity matrix:

w :=









































































y + z − 1− x

−y + x− z + 1

−y + x− z + 1

−y + x− z + 1

−y + x

x− z

1

−
y(−y + x− z + 1)

y + z + x− 1

−
−y + z + x− 1

y + z + x− 1

−
z(−y + x− z + 1)

y + z + x− 1

−y + x− z + 1

y + z + x− 1

−
y − z − 1 + x

y + z + x− 1









































































.

We omit the (easy) computations checking that:

• Under the condition x2−y2−z2−x+y+z = 0 of the hyperboloid,
this is indeed a self-stress.

• The denominator is not null: We observe that points p3, p4 and p5

already lie on the plane y+z+x−1 = 0. Therefore, if point p6 lied
on that plane, the configuration would not be in general position.

• Similar arguments prove that all the components of w are non-null.

In conclusion, points p6 = (x, y, z) for which a tensegrity exists are
precisely those lying on x2 − y2 − z2 − x + y + z = 0. We now observe
that this hyperboloid contains the edges of the quadrilateral p2p3p4p5.
Indeed, it is the only one passing through the initial five points and
containing those four edges, since the space of all hyperboloids has di-
mension 9. In order to conclude the first condition in the statement
we just have to observe that the combinatorial decompositions which at
step 2 of Algorithm 3.4 choose vertices 1 or 6, lead to the 4-cycle 2345,
those choosing 3 or 5 lead to 1264, and those choosing 2 or 4 to 1365
(see Figure 2).
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For the equivalent condition in the statement, which appears in [5],
easy computations check that the four planes defined by p1p2p3, p1p4p5,
p3p4p6 and p2p5p6 intersect precisely for x2 − y2 − z2 − x + y + z = 0,
and the same condition is obtained for the other four alternate planes.

Let us finally note that an interested reader can find in [8] a different
symbolic approach to the resolution of this problem, that uses compre-
hensive Groebner basis.

Remark 4.4. We have to call the attention of the reader to the fact
that, in spite of dealing with more complicated problems than the
geometric approach, the usefulness of the algebraic one is also limited
by the size and type of the problem. For instance, if Corollary 2.3
cannot be used and all the inequations wij 6= 0 have to be consid-
ered in order to look for non-null tension on every edge. This would
introduce more auxiliary variables t12, t13, . . . , t56 and a polynomial
(w12t12 − 1)(w13t13 − 1) · · · (w56t56 − 1), making the computations in-
feasible.

Finally, let us recall that the above symbolic computations follow the
decomposition-reconstruction method from Section 3. We already noted
that following Observation 4.2 it is also possible to compute symboli-
cally the kernel of the 12× 18 rigidity matrix R(P ) for the whole frame-
work G(P ). Instead, with the decomposition-reconstruction approach
we compute the kernel of the two 10× 15 submatrices corresponding to
the two atoms. The main advantage of the decomposition reconstruc-
tion method is related to this fact: Since w24 and w35 were no longer
variables and the system had fewer equations, the computation of the
Groebner basis was easier. In addition, we did not need to introduce an
extra variable tij .
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Final note

The present paper is dedicated to the memory of Miguel de Guzmán,
who left us before it was finished. This work started when he gave a
conference about tensegrities at the Departamento de Matemáticas of
the Universidad de Alcalá in November 2003. Five months later he died
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after a seminal version had been finished. Although part of the results
presented here still had to be formulated and proved in their final form,
their essence was already contained in that preliminary version.
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