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A bstract

BILINEAR FORMS FOR SL(2, q),
AND SIMILAR GROUPS

ALEXANDR,F TURULL*

Article dedicat a la memória del bon amic Pere Menal

The set of invariant symmetric bilinear forros on irreducible mod-
ules over fields of characteristic cero for certain groups is studied .
Results are obtained under the presente in a finite group of ele-
rnents of order four whose square is central . In particular, we find
that the relevant modules for the groups mentioned in the title
always accept an invariant symmetric bilinear form under which
the module admits an orthonormal basis .

Introduction

Let G be a finite group and X some complex irreducible character of
G with real values . lf F is any real number field containing Q(X), (here
Q(X) is Q extended by all the values of X), then there is a unique (up
to isornorphism) FG-module M which affords the character 7nF(X)X,
where nzF(X) is the Schur inclex of X with respect to F. A basic problem
in representation theory of finita groups is to describe these modules .
Since F is a real field, the standard avera.ging argument shows that AI
will afford some (positive definite) symmetric G-invariant bilinear form
f . What can be said about f?

Synimetric bilinear forros f of M are classified up to isornorphism in
GL(AI) by the signatura of f under each embedding of F into R, the
determinant of f (defined up to squares in F*) and the 1-lasse invariant
of f, sea for example Corollary 3.3 in p . 168 of [1] . For every A E .F*,
Af will also be a non-degenera.te G-invariant symmetric bilinear form on
M and its determinant will be det(A f) = ~\din'F (11!) det(f) up to squares
in F* . It follows that the problem will be more tractable if dimp(M) is

*Partially supported by a grant from the NSA .
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even, for then, at least f and Af will then have the same determinant .
There are various conditions that force diMF(M) to be even . lf the Schur
index of X with respect to F is not one, for example, then dimF(M) is
even . This case is analyzed in [3J . Another example is that if Ad' is
faithful and G' fl Z(G) is of even order then X(1) must be even . The
present paper analyses situations that occur frequently in this case, and
in particular our results yield the answer for G = SL(2, q), A,, or S� and
X a faithful character of G.

Before stating our results ; we describe our notation . NVe denote by
Br(F) the Brauer group of F. If a; b E F* we denote by (a, b) the
element of Br(F) which has as a representative the quaternion algebra

-, ~ -2 -2

of dimension 4 over F generated by i and j satisfying i

	

= a;

	

j = b

and i j = - j i . If f is a symmetric non-singular form on M we
denote by Hasse(f) its Hasse invariant . Hasse(f) is an elernent of Br(F)
and is calculated as follows . Let el, . . . ; e,, be an orthogonal basis for M
and set al = f (e¡, ej . Then

Hasse(f) = .H . (a2, aj) .
%<j

Here the product is in the Brauer group of F and Hasse(f) does not
depend on the orthogonal basis chosen .

Theorem A. Let G be a finite group and x E G be an element of
order 4 such that x2 E Z(G) . Let F be a real field and X an irreducible
character of G with values in F. Let Al be an FG-7nodule affording

mp(X)X and assume that x2 acts non-trivially on Al . Let f be a G-
invariant non-zero symmetric bilinear form on M . Then the following
hold .

1) det(f) = 1 up to squares in F* .
2) Hasse(f) = (Ao , -1) for some A,, E F*, with Ao > 0 if f is positivo

definite .

Furthermore, if dimF(M) - 2 (mod 4), then for every A E F* there is
some p, E F* with Hasse(p,f) _ (A, -1) .

Our theorem has a consequence about local Schur indices which we
now proceed to describe . Recall that, if X is an irreducible character ;
the local Schur indices of X are the positivo integers m,,(X) and mr(X)
(for p a rational prime), where m,>,> (X) = mR(X) and mp (X) = mQ,(X)
(Qn being the field of p-adic numbers) . The Frobenius-Schur indicator
gives a straightforward (and well known) formula for nt,,,(X) . Namely,

if X has real values, m,,,,(X) = 1 if 1

	

E X(g2) = 1, and m.(X) = 2
DGI -qEG
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and ~1

	

X(g2) = -1, otherwise .

	

There is no known similar for-
gEG

mula for mp(x) . Furthermore, knowing m,,(X) provides in general very
little information about m,(x) . For example, for every finite subset S
of {oo, 2, 3, 5, 7, 11, . . .} of even cardinality there is a rational valued ir-
reducible character X of a double cover of some alternating group such
that mp(X) = 2 for p E S and mp(X) = 1 for p « S, see [2] . However,
some further conditions ore X and G do imply some further relationship
between m,,(X) and the mp(X) for p a rational prime . If F is a field
containing the values of X we denote by [X] the element of Br(F) repre-
sented by EndFG(M) where M is are irreducible FG-module affording
the character MF(X)X .

Coro111ry 1. Let G be a finite group and x E G be are element of
order 4 such that x2 E Z(G) . Let x be are irreducible chaTrceter of G
which does not contain x2 in its kernel and such that X(1 ) - 2 (mod 4)
and m,,(X) = 2 . Let F be a real field that contains Q(X) . Then

[X] = (A,, -1)

	

in

	

Br(F)

	

for some negativo

	

Ao E F* .

In particular, if X is rational valued then

m,p(X) = 1

	

for every prime

	

p - 1(mod 4) .

Although Theorem A fully describes Hasse(f) where dimr(M) - 2
(mod 4), if diMF (M) - 0 (mod 4) then, as we shall see, Hasse(Mf) =
Hasse(f) for all p E F* . Hence, Hasse(f) will be determinad by G and
X at least if X(1 ) - 0 (mod 4) and M is absolutely irreducible . However,
the conclusion of Theorem A can not be made more precise even in this
case, as our next result shows .

Theorem B .

	

Given A, E Q*, Ao > 0, then there exist G, x, F =
Q ; X, M and f satisfyi7-¿g the hypotheses of Theorem A with the following
properties :

a) 777,Q (X) = 1 and X(1) - 0 (mod 4) .
b) Hasse(f) = (A,, -1) in Br(Q) .
c) Every G-invariant synámetric non-singular bilinear form g ore M

satisfies Hasse(g) = (A, -1) in Br(Q).

lf in addition to assuming that G has a certain element of order 4 we
asstune further that G contains a certain copy of the quaternion group
of order 8, then all Hasse invariants are trivial .
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Theorem C . Let G be a finite group and let Q be a subgroup of G
isomorphic to the quaternion g7-oup of order 8 and such that Z(Q) C
Z(G) . Let F be a real field and X be an irreducible character of G with
values in F. Let M be an FG-module affording MF(X)X and assume
that Z(Q) acts non-trivially on M . Let f be a G-invariant non-zero
symmetric bilinear form on UVI . Then the following hold .

1) det(f) = 1 up lo squares in F* .
2) Hasse(f) = 1 in Br(F) .

This theorem has a consequence that is analogous to Corollary 1,
namely that with the hypothesis of Theorem C if m,>,(X) = 2 and
X(1) - 2 (mod 4) then 7np(X) = 1 for all odd priores p . However,
this can also be proved easily by noting that mp(X)j2 and the irreducible
faithful character of Q has odd multiplicity in X1Q .

More importantly, it should be noted that Theorem C applies for faith-
ful X, whenever G - SL(2, q), the special linear group of dimension 2
over the field of q elements, G - An (n >_ 4), the double cover of an
alternating group, or G - 5,, (n >_ 4) some double cover of a symmetric
group. In particular, we have the following .

Corollary 2 . Let G be isomorphic to SL(2, q) for q odd, or some
double cover of Sn or An for n >_ 4. Let M be an FG-irreducible faithful
G-module, where F is a real field and the character of M is a multiple
of some irreducible character of G.

Then there is a symmetric G-invariant bilinear form on 1V1 under
which M has an orthonormal basis .

1. Preliminary Lemmas

In this section we review some results that we need for our proofs .
Unless otherwise stated our vector spaces and forms are over a fixed but
arbitrary real number field F . Recall that a hyperbolic plane is a two
dimensional vector space with a non-singular symmetric bilinear form
that has a non-zero vector whose product with itself is zero .

Lemma 1 .1 . Let, V arad, W be vector spaces and let f and g be non-
singular symmetric bilinear forms on V and W respectively . Then the
following hold.

a) Hasse(f L g) = Hasse(f) Hasse(g)(det(f), det(g) ), where f 1 g
is the orthogonal suin of f and g .

b) For every A

	

e

	

F,

	

Hasse(Af)

	

=

	

Hasse(f)(A, (-1)
n 2 1 d"-1)

where n = dirnF(M) and d = det(f) .



Proof. See Theorern B of [3] .
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c) IfW is a hyperbolic plan( then det(g) = -1 and Hasse(g) = :1 .

Proof:: These facts are easily verified . They can also be found in [1] ;
for example b) appears as Fxercise 8 on page 140 .

Lernma 1.2 . Let C be a cyclic group of order 4, and M be an irre-
ducible FC-module faithful fo7- C . Let f be a non-singular C-invaHant
sy7nnietric bilinear forro on Al . Then det(f) = 1 andHasse(f)
for sume A E F* .

Proof. Since F is real, the character afforded by Al will be the sum
of the two faithful irreducible characters of C . Any C-invariant bilinear
form g en Al ®O satisfies

g(eL, el) = g(iei, ¡el) = -g(ei ; el) = 0 = g(e2, e2),

where e l , e2 E M®O are eigenvectors for a generator of C correspond-
ing to i and -i respectively. It follows that the O-space of C-invariant
symmetric bilinear forros on AJO O is one dimensional . This, in turn,
implies that the F-space of C-invariant symmetric bilinear forros en 111
is one dimensional . Hence, by Lernrna 1 .1, b), and the well known facts
that (u, 1) = 1 arld (a, 0) (cv', f3= (CYLY~,,~) in 13r(F) for cY, cv', E F* ,
it is enough to show that Lenuna 1 .2 holds for sorne f .

Let W be the one dimensional faithful module for the cyclic sub-
group of order 2 of C over F . Then W affords a symmetric invari-
ant bilinear form b arad a basis vector e such that b(e, e) = 1 . AY is
isornorpliic to the C-module induced from W; and it follows that M
affords a C-invariant synunetric bilinear forro f and a oasis el, e2 such
that f (el, eI) = f (e2, e2) = 1 and f (el, e2) = 0 .

	

Obviously; for this
f, det(f) = 1 and Hasse(f) = 1 . Hence, the Lemma holds .

Theorem 1 .3 . Let G be a finite group, F some real field and X some
i7-reducible character of G with valu,es in F such that m".(x) =?~ l . . Let
M be an FG-module offo-rding the character mF(X)h and f be sorne
G-invariant non-singular symmetric bilinear forna on Al . Then the fol-
loiaing hold .

1) det(f) = 1 (up to squares in F*).
2) Hasse(f) = (-1,-1)[Y] if 4 ~ ;Y(1), and Hasse(f) = 1 if 4X(1) .
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Lemma 1 .4 . Let X be an irreducible character of some finite group
G and assume that the values of X are in F. Suppose [XI = (A, -1) in
Br(F) for some A E F* . Then m,,,,(X) = 2 if and only if A is negative .
Furthermore, if F = Q, then mp(X) = 1 for every rational finite prime
p such that p - 1 (mod 4) .

Proof: The local Schur indices of X are 1 or 2 depending on whether or
not the tensor of (A, -1) with the completion of F splits . For example,
m<, (x) = 1 if and only if (A ;-1) = 1 in Br(IF8) . However, the latter
condition holds if and only if A is positive, so the first assertion of the
lemma holds . If p is any finite prime and F = Q then 7np(X) = 1 if and
only if (A, -1) = 1 in Br(Q,), where Q, is the field of p-adic numbers .
Now (A, -1) = 1 in Br(Qp) if and only if Ax2 - y2 = z2 has a solution
with x, y, z E Q7, and z 7~ 0 .

	

Suppose p is a finite rational prime and
p - 1 (mod 4) . Then p is the sum of two rational squares . So, in this
case we may assume that p is not involved in the prime factorization of
A . But then (A, -1) = 1 in Br(Qp) by, for example, Exercise 10 in p .
186 of [1] . This completes the proof of the lemma.

Lemma 1.5 . Let n > 1 be an integer, let G = Sn be the symmetric
group of degree n . Then there is an absolutely irreducible QG-module W
of dimension n - 1 and a G-invariant symmetric bilinear form f on W
such that det(f) = n up lo squares in Q* .

Proof. Let N be the natural permutation module for Sn over Q. Then
dimQ(N) = n and the.permutation basis el, . . ., en of N can be taken to
be an orthonormal basis of an Sn-invariant symmetric bilinear forra g
on N. Then det(g) = 1 . The vector v = el + . . . + en is Sn-invariant
and g(v, v) = n . The space v1 of vectors in N which are orthogonal to
v is an Sn-submodule of N of dimension n - 1 . We set W = v1 . Tüen
N = W 1G v > . It follows that if we set f to be the restriction of g
to W then det(f) = n, since det(f)n = 1 up to squares in Q* . Since
Sn acts doubly transitively on el , . . ., en , W is absolutely irreducible, and
the lemma holds .

Lemma 1.6 . let G be a finite group and M an FG-module . Suppose
M is endowed with a non-singular G-invariant symmetric bilinear foTin
f . Then we can write

M=M.®MI ®M2

as FG-modules where the following hold :
1) Mo is an orthogonal sum of irreducible submodules on which f is

non-singular.
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2) f is totally isotropic on both Ml and M2 .
3) As quadratic spaces M = M,, 1 (A11 + M2) and A11 + M2 is the

ortlioyonal sum of dime,(Mr) = dimr(Nl2) copies of the hyperbolic
plane .

Proof:: Suppose the lernma is falso, and pick a counterexample with
dimr(M) as small as possible . Let Nr be an irreducible submodule of
M. Suppose f is non-singular on N1 . Then 111 = Nr 1 N¡ and Nl is
a G-submodule on which f is non-singular . Hence, by the minimality of
our counterexample, the lerrima holds for NIL, and it follows that it also
holds for A4l, a contradiction .

Therefore, we must assurne that f is singular on N1 and on every other
irreducible G-subrrrodule of M. Since f is G-invariant, it follows that f
is totally isotropic on Nr and on every other irreducible G-submodule
of A1 . In this case ; Nr C_ NiL . By Maschke's Theorem, these is al]
irreducible subrrrodule N2 of NI such that N2 n Ni = 0 . Now f is totally
isotropic on both N1 and N2, and

(Ni +N2)n(Ni+N2)1 =(Ni+N2)nNi n N2 =Ni nN2=0,

so f is non-singular on Nr + N2 . The bilinear forra provides an iso-
morphisrn between the dual of Nr and N2 - Nr + N2/Ni. Hence; if
we choose e l , . . ., e,, to be a basis of NI, we can then choose for N2 the
corresponding "dual" basis e*, . . ., e*, Le .

	

dim1: (N1) = dimp(N2) and
f(e ;, e~) = Sis where b2j is Kronecker's delta . Hence, as quadratic spaces,
the < e¡, e? > a,re isornorphic to the hyperbolic plano and Nr + N2 =<
e1, el >l< e2 : e2 >1. . . . 1< e, e* > . Hence, induction applied to
< Nr + N2 >1 completes the proof of the lemma .

2 . Proofs of the main results

Proof of Theorem A: Let C =< x > be the subgroup of G gener-
ated by x . Then C is a cyclic group of order 4 and x2 fixes no non-
zero vector in A1 . It follows that, as an FC-module, M is the direct
sum of faithful irreducible FC-modules . Apply Lemma 1 .6 to M un-
der the action of C . Then, as a quadratic space, A1 is the orthogonal
sum of non-singular quadratic spaces on irreducible C-submodules ofM
and diMF (AJII) copies of the hyperbolic plano, where M1 is some FC-
subrrrodule ofM. Since F is real, dimF(1M1 ) is oven and it follows from
Lernma 1 .1 that the sum of all these hyperbolic planes forms a subspace
with determinant 1 and Hasse invariant either 1 or (-1, -1) in Br(F) .
The other orthogonal summands ofM all nave determinant 1 and Hasse
invariant (A, -1) for various A E F* by Lernma 1.2 . Hence, by Lemma
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1 .1, det(f) = 1 up to squares in F* and Hasse(f) is a product of elements
of the form (A, -1) for various A E F* . Since (A, -1) (p, -1) = (AM, ; -1)
in Br(F), it follows that Hasse(f) = (A, -1) for some A o E F* . If f is
positivo definite, then Hasse(f) is trivial over R, so A o > 0 in this case .
Hence 1) and 2) of the theorem hold .
Suppose now that dimF(M) - 2(mod 4) . Then by Lemma l.l, b),

Hasse(pf) = (A., -1)(p, -1) = (Aop, -1) . It follows that Hasse(pf) _
(A, -1) for every A E F* if we set p, = AoA .

Proof of Corollary 1 : Since F D_ Q(X), we can take M to be an ir-
reducible FG-module affording the character MF(X)X . Since F is real,
there is a positive definite G-invariant symmetric bilinear forro f on M.
The Hasse invariant of f can be calculated in two ways . On the one
hand, Theorem A tells us that

Hasse(f) = (A, -1)

	

in Br(F)

for some A o E F* . On the other hand, Theorem 1 .3 tells us that

Hasse(f) = (-1,-1)[X] .

lld=V®W.

Solving for [X] we obtain [X] = (- A, -1) . By Lemma 1.4, -A, is neg-
ative, Since moo(X) = 2 . Furthermore, if F = Q, then mr(X) = 1 for
every rational finite prime p such that p - 1 (mod 4), by Lemma 1 .4 .
Hence Corollary 1 holds .

Proof of Theorem B: Since for every a E Q*, (A, -1) = (a2 ~Xa, -1),
we assume without loss that ao is a positive integer divisible by 9 . Fur-
thermore, (2, -1) = 1 in Br(Q), so we further assume without loss that
A o is odd . Now Ao > 1 and we set n = ao and G = D8 x S, to be
the direct product of the dihedral group of order 8 and the symrnet-
ric group of degree n . We take x to be any element of order 4 in D8 .
Then 1 0 x2 E Z(G) . Let V be a quadratic F-space of dimension 2
with orthonormal basis el, e2 . We endow V with the structure of a D8-
module by letting two generators of order 2 of D8 act on V as linear
transformations which have the following matrices,

with respect to the basis el ; e2 . It is clear that D8 stabilizes the quadratic
form on V . Let W be the S,, module given by Lemma 1 .5 . Set
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Then AI is an absolutely irreducible G-module and x2 does not act triv-
ially on AI . Let x be the character a,fforded by M and f be the sym-
metric bilinear forrn obtained by tensoring those of V and 14 7 . Clearly
ITIQ(X) = 7. and X(1) = 2(A, - 1) - 0 (mod 4) . As a quadratic space

AI - W -L 1,17,

so that Hasse(f) = (det(W), det(W)) = (,\o ,,\o) by Lemma 1 .1 and
Lemma 1.5 . Since (,\o , Aj = -1) in Br(Q), this shows a) and b)
of Theorem B. Since M is absolutely irreducible all G-invariant bilinear
forms on AI are multiples of f . Since det(f) = 1 ; c) follows from Lernma
1 .1, b) .

Proof of Theorem C: Notice that as F is real, Q has only one isomor-
phisin class of faithful irreducible .FQ-modules and they have dimension
4 . Since Z(Q) fixes no non-zero vector of M, M is a surri of irreducible
faithful FQ-modules . Applying Lernrna 1 . .6, it follows that as quadratic
Q-modules M = M, 1 (111 + 112) where M,, is the orthogonal sum
of non-singular irreducible FQ-modules and All, + M2 is an FQ-module
and as orthogonal space it is the orthogonal surri of a multiple of 4
copies of a hyperbolic plane . It follows that det(Alr + AI2) = 1 and
Hasse(MI + M2 ) = 1, by .Lemma 1 .1 .

Let 0 be the faithful irreducible complex character of Q . It is well
known that [0] = (-1, -1) in Br(F) . It then follows from Theorem 1.3
that if N is any of the orthogonal summands of AI,,, then det(N) = 1 and
Hasse(N) = (-1, -1)(-1, -1) = 1 . Hence, by Lemma 1.1, det(f) = 1
and Hasse(f) = 1, as desired . a

Proof of Corollary 2 : Let fo be a symrnetric bilinear forrn on M under
which M admits an orthonormal basis . Since F is a real field fo is
positive definite, a.nd in fact, it is positive definite under each imbedding
of F into R . Define

f :AllxA/1-->F

f(v, w) =
1
~ sé fo(9v,9w)

for v, .w E M. Then f is a G-invariant symmetric bilinear form . Further-
more ; f is positive definite under every imbedding of F into R . Further-
more; by Theorein C, det(f) = 1 and Hasse(f) = 1 . It follows that AI
admits an orthonormal basis under f . This completes the proof of the
Corollary.
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