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Abstract

The set of invariant symmetric bilinear forms on irreducible mod-
ules over fields of characteristic zero for certain groups is studied.
Results are obtained under the presence in a finite group of ele-
mnents of order four whose square is central. In particular, we find
that the relevant modutes lor the groups mentioned im the title
always acceplt an invariant symmetric bilinear form under which
the module admits an orthonormal basis,

Introduction

Let & be a [inite group and y some complex irreducible character of
G with real values. If £ is any real number field containing Q@{x}, (herce
Q{y) is Q@ extended by all the values of x), then there is & unique (up
to isomorphism) FG-module M which affords the character mp{x)x,
where mp(x} is the Schar index of y with respect to /. A basic problem
in representation theory of finite groups is Lo describe these mocules.
Since F is a real feld, the standard averaging arpument shows that A
will afford some (positive definite) symmetric G-invariant bilinear form
f. What can be said about fY

Syimmetric bilinear forms f of M are classified up to isomorphism in
GL(M) by the signature of f under each embedding of I into &, the
determinant of f (defined up to squares in F*) and the Hasse invariaut
of f, see for example Corollary 3.3 in p. 168 of [1]. For every A € F™,
Af will also be a non-degenerate G-invariant symmetric bilinear form on
M and its determinant will be det(Af) = X1+ () det( £} up to squares
in F*. Ty follows that the problem will be more tractable if dimp(A4) is
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even, for then, at least f and Af will then have the same determinant.
There are various conditions that force dimg{(M) to be even. 1f the Schur
index of ¥ with respect to F is not one, for example, then dimg(M) is
even. This case is analyzed in [3]. Another example is that if M is
faithful and G 1 Z(Q) is of even order then x({1) must be even. The
present paper analyses situations that occur frequently in this case, and
in particular our results yield the answer for G = SL{2, ¢}, A, or 8, and
x a faithful character of G.

Before stating our results, we describe our notation. We denate by
Br{F) the Brauer group of F. If a,b € F* we denote by (a,b) the
element of Br{F} which has as a representative the quaternion algebra
of dimension 4 over F generated by 4 and ? satisfying a’z =a, jz =b

—— —— )
and 7 § = — 3 1. If fis a symmetric non-singular form on M we
denote by Hasse( f) its Hasse invariant. Hasse{f) is an element of Br{F’)
and is calculated as follows. Let e, ..., ¢, be an corthogonal basis for M
and set a; = f{e;,e;). Then

Hasse(f) = II {u:,a;).
T

Here the product is in the Brauer group of £ and Hasse(f) does not
depend on the orthogonal basis chosen.

Theorem A. Let & be a finite group end © € G be an element of
order 4 such that x2 € Z(G). Let F be a real field and x an wreducible
character of G with values in F. Let M be an F'G-module affording
mp(x)x and assume that ©° acts non-trivially on M. Let f be a G-
invariant non-zere symnelric bilineer form on M. Then the following
hold.

1) det(f} =1 up to squares in F*.
2) Hasse(f) = (Ao, —1) Jor some A, € F*, with A, > 0 if f 15 pesitive
definite.

Furthermore, if dimp(M) = 2 (mod 4), then for every A € F" there is
some p € F* with Hasse(pf) = (A, —1).

Qur theorem has a conscquence about local Schur indices which we
now proceed to describe. Recall thaf, if ¥ is an irreducible character,
the local Schur indices of y are the positive integers meo(x) and m,{x)
(for p a rational prime), where me(x) = mr{x) and my(x) = mq,(x)
(Q, being the field of p-adic numbers). The Frobenius-Schur indicator
gives a straightforward (and well known) formula for me.(x}). Namely,

if ¥ has real values, me(x) = 1 if l_é'_] QEEG x{g?) = 1, and me{x) = 2
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and |G| x(gQ) —1, otherwise. There is no known similar for-

mula for mp(x)‘ Furthermore, knowing mes(x) provides in general very
little information about m,(x). For example, for every finite subset
of {00,2,3,5,7,11,...} of even cardinality there is a rational valued ir-
reducible character y of a double cover of some alternating group such
that m,{x) =2 for p € § and my{x} =1 for p ¢ 8, sce [2]. However,
some further conditions on ¥ and G do imply some further relationship
between Mmoo (x) and the m,{y) for p a rational prime. If F is a field
containing the values of x we deuote by [x] the element of Br(F) repre-
sented by Endpc(M) where M is an irreducible FG-module affording
the character mpe{x)xy.

Corollary 1. Lel G be a finite group and v € G be an element of
order § such that &2 € Z(G). Let x be an irreducible character of G
which does not contain z% in its kernel and such that x(1) = 2 {mod §)
and Meo{x) = 2. Let F be a real field that contains Q(x). Then

[xX] = (Ao, -1} in Br(F) for some negative M, € F*.
In particular, if x is rational valued then
my(x) =1 for every prime p= 1(mod 4}.

Altheugh Theorem A fully describes Hasse! f) when dimp{M) = 2
(mod 4}, if dimp(M) = 0 {mod 4) then, as we shall see, Hasse{uf) =
Hasse{f} for all ;s € F*. Hence, Hasse(f) will be determined by & and
x at least if ¥{1) = 0 (mod 4} and M is absolutely irreducible, However,
the conclusion of Theorem A can not be made more precise even n this
case, as our next result shows.

Theorem B. Given A, € Q*, A, > 0, then there exist Gz, F =
Q. x, M ond [ satisfying the hypotheses of Theorem A with the following
properiies:

a) mg(x)=1cend x{1} =0 (mod 4).
by Hasse(f) = (As, —1} in Br(Q).
¢) Every G-invariant symmetric non-singuler bilinear form g on M
satisfies Hasse(g) = (A,, —1) in Br(Q).

If in addition to assuming that G has a certain elenment of order 4 we
assume further that & contains a certain copy of the quaternion group
of order 8, then all Hasse invariants are trivial.
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Theorem C. Let G be o finite group and let Q@ be a subgroup of G
isomorphic to the quaternion group of order 8 and such that Z(Q} C
Z{G). Let F be o real field and x be an irreducible character of G with
values in F. Let M be an FG-module offording mp{x)x ond assume
that 2(Q) acts non-trivially on M. Let f be a G-invariant non-zero
symmetric bilinear form on M. Then the following hold.

1) det(f} =1 up to squares in F*.
2) Hasse{f) =1 in Br(F).

This theorem has a consequence that is analogous to Corollary 1,
namely thal with the hypothesis of Theorem C if me(x) = 2 and
x(1} = 2 {mod 4) then my(x) = 1 for all odd primes p. However,
this can also be proved easily by noling that my(x)|2 and the irreducible
faithful character of @ has odd multiplicity in xio-

More importantly, it should be noted that Theorem C applies for faith-
ful v, whencver G ~ SL(2,q), the special linear group of dimension 2
over the field of q elements, & =~ A, (n > 4), the double cover of an
alternating group, or & ~ S, (n > 4) some double cover of a symmetric
group. In particular, we have the following.

Corollary 2. Let G be isomorphic to SL(2,q) for ¢ odd, or seme
double cover of S, or A, forn > 4. Lei M be an FG-irreductble faithful
G-module, where F is a real field and the character of M is @ multiple
of some trreducible character of G.

Then there is ¢ symmelric G-invariont bilinear form on M under
which M has an orthonormal basis.

1. Preliminary Lemmas

In this section we review some results that we need for our proofs.
- Unless otherwise stated our vector spaces and forms are over a fixed but
arbitrary real number field F. Recall that a hyperbolic plane is a two
dimensional vector space with a non-singular symmetric bilinear form
that has a non-zero vector whose product with itself is zero.

T.emma 1.1, Let V and W be vector spaces and lel f and g be non-
singular symmetric bilinear forms on V and W respectively. Then the
following hold.

a) Hasse(f L g) = Hasse([) Hasse(g)(det(f), det(g)), where f L g
is the orthogonal sum of f and g.

b) For every A € F, Hasse{Af) = Hasse(f)(A (-1)
where n = dimp{M) and d = det(f).

mino 1) "2_” drl—-])
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Yy W ois o hyperbolic plane then det(g) = —1 and Hasse(y) = 1.

Proof: These facts are casily verificd. They can also be found in [1],
for example b) appears as Exercise 8 on page 140, B

Lemma 1.2, Let C be a eyclic yroup of ovder £ and M be an irre-
ducible FC-module fuithful for C. Let [ be a non-singular C-invariant
symmetric bilinear form on M. Then det( ) = 1 and Hasse(f) = {A, —1)
for some A € F'*,

Proof: Since I is real, the character afforded by A7 will be the sum
of the two faithiul irreducible characters of C. Any C-invariant bilinear
form g on M @ C satisfies

gler,e1) = glier,ie1) = —g(er, 1) = 0 = gleg, e2),

where ey, ¢; € M ® C are eigenvectors for a generator of ¢ correspond-
ing to ¢+ and —i respectively. It follows that the C-space of C-invariant
symmetric bilinear forms on M ® C is one dimensional. This, in turn,
implies that the F-space of C-invariant symmetric bilinear forms on M
is one dimensional. Hence, by Lemma 1.1, b}, and the well known facts
that (¢, ) = 1 and (e, 8)(a’, &) = (ea’, F) in Be(F) for v, , 5 € F™,
it is enough to show that Lenna 1.2 Lolds for some f.

Let W be the one dimensional faithful module for the eyclic sub-
group of order 2 of ¢ over F. 'Then W affords a symmetric invari-
ant bilinear form & and a basis vector ¢ such that ble,e) = 1. M is
isomarphic to the C-module induced from W, and it follows that A
aflords a C-invariant symmetric bilinear form f and a basis ey, e such
that fle;,e1) = flee,e2) = 1 and fley,e2) = 0. Ohviously, for this
fodet(f) =1 and Hasse(f) = 1. Hence, the Lenuna holds. W

Theorem 1.3. [Let G be a finite group, F some real field and x some
irreducible charocter of G with values in F osuch thal mo(x) # 1. Let
M be an FG-module offording the character mp(x)y and [ be some
G -invariant non-singular symmelric bilinear form on M. Then the fol-
lowring hold.

1) det(f) =1 (up to squares in F* ).
2) Hasse(f) = (—1,-1)[x] if 4 + x{1}, and Hasse(J) = 1 if 4

x(1).

Proof: See Theovemn B of [3]. B
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Lemma 1.4. Let x be an frreducible churacter of some finile group
G end assume that the values of x are in F. Suppose [x] = (A, —1) in
Br(F) for some A € F*. Then my(x) = 2 if and only if ) is negative.
Furthermore, if F = Q, then mp(x) = 1 for every rational finite prime
p such that p=1 {mod 4).

Proof: The local Schur indices of ¥ are 1 or 2 depending on whether or
not the tensor of (A, —1) with the completion of F splits. For example,
Moo(x} = 1 if and only if (A, -1} = 1 in Br{R}. However, the latter
condition holds if and only if A is positive, so the first assertion of the
lernma holds. 1f p is any finite prime and F = @ then my(x) = 1 if and
only if (X, —1) = 1 in Br{Q,), where @, is the field ol p-adic nurabers.
Now (A, —1) = 1 in Br(Q,) if and only if Az* — y* = 2% has a solution
with z,y,2 € Q, and z # 0. Suppose p is a finite rational prime and
p =1 {mod 4). Then p is the sum of two rational squares. So, in this
case we may assume that p is not involved in the prime [actorization of
X. But then (A, —1) = 1 in Br(Q;) by, for example, Fxercise 10 in p.
186 of [1]. This completes the proof of the lemma. &

Lemma 1.5. Let n > 1 be an infeger, let G = 5, be lhe symmetric
group of degree n. Then there is an absolutely trreducible QG -module W
of dimension n — 1 and ¢ G-tnvariant symmelric bilinear form f on W
such that det{f) = n up to squares in Q~.

Proof: Let N be the natural permutation module for S, over €. Then
dimg(AN} = n and the permutation basis €1, ..., e, of N can be taken to
be an orthonormal basis of an 8,-invariant symmetric bilincar form ¢
on N. Then det(g} = 1. The vector v = ey + ... + e, i8 S, -invariant
and g(v,v) = n. The space v* of vectors in N which are orthogonal to
v is an Sy-submodule of N of dimension n — 1. We set W = vt. Then
N =W L< v > It follows that if we set f to be the restriction of g
to W then det(f) = n, since det{f)n = 1 up to squares in Q. Since
S, acts doubly transitively on ey, ..., &, W is absolutely irreducible, and
the lemma holds. B

Lemma 1.6, let G be a finite group ond M an FG-module. Suppose
M is endowed with o non-singular G-invariant symmeiric bilinear form
f. Then we can write

M=M, Mo M,

as F'CG-modules where the following hold:

1) M, is an orthogonal suwm of trreducible submodules on which f is
non-singular.
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2) f is totally isotropic on both My and M.

3) As quadratic spoces M = M, L (M, + M2) and A, + My is the
orthogonal sum of dimp (M) = dim(M2) copies of the hyperbolic
plane.

Proof: Buppose the lemma is false, and pick a counterexamnple with
dim g (M) as small as possible. Let. N be an irreducible submodule of
M. Suppose f is non-singular on N7, Then M = Ny L N and Nit is
a G-submodule on which f is non-singular. Hence, by the minimality of
our counterexample, the lemma holds for N, and it follows that it also
holds for M. a contradiction.

Therefore, we must assume that fis singular on Ny and on every other
irreducible G-submodule of M. Since f is G-invariang, it follows that f
is totally isotropic on Ny and on every other irreducible G-submodule
of M. Tn this case, N, € Nj-. By Maschke’s Theorem, there is an
irreducible subniodule N, of M such that NN Nt = 0. Now f is totally
isotropic on both N) and Ng, and

(N1 + NN (N + N = (N + M) NNE N NG = N NNy =0,

s0 f is non-singular on Ny 4 N,. The bilinear form provides an iso-
morphism between the dual of Ny and Ny ~ Ny 4+ NQ/NIL, Hence, if
we choose ey, ..., e, to be a basis of N7, we can then choose for N the
corresponding “dual” hasis e}, ... e}, i.e. dimp{V1) = dimp(Ne) and
e, e;) = &,; where é;; is Kronecker's delta. Hence, as quadratic spaces
the < e;,ef > are isomorphic to the hyperbelic plane and Ny + N; =<
e, ey >1< eg,ef >L ... 1< ey, e > Hence, induction applied to

< Ny + No >+ completes the procf of the lemma. 8

2. Proofs of the main results

Proof of Theorem A: Let ' =< « > be the subgroup of & gener-
ated by z. Then C is a cyclic group of order 4 and 22 fixes no non-
zero vector in M. Tt follows that, as an FC-module, M is the direct
sum of faithful irreducible £'C-modules. Apply Lemma 1.6 to M un-
der the action of C. Then, as a quadratic space, M is the orthogonal
sum of non-singular quadratic spaces on irreducible C-submodules of M
and dimg(A,) copies of the hyperbolic plane, where A is some FC-
submodule of M. Since F is real, dimg{M|) is even and it follows from
Lemma 1.1 that the sum of all these hyperbolic planes forms a subspace
with determinant 1 and Hasse invariant either 1 or (—1,—1) in Br{F).
The other orthogonal summands of A all have determinant 1 and Hasse
invariant (A, —1) for various A € F* by Lemma 1.2, Hence, by Lemma
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1.1, det{f) = 1 up to squares in F* and Hasse(f} is a product of elements
of the form (A, —1) for various A € F*. Since (A, ~1}(, —1) = (Ap, —1)
in Br(F), it follows that Hasse(f) = (Ao, —1) for some A, € F*. If f is
positive definite, then Hasse(f) is trivial over R, so A; > 0 in this case.
Henee 1) and 2) of the theorem hold.

Suppose now that dimp(M) = 2(mod 4). Then by Lemma 1.1, b),
Hasse(uf) = (Ap, —=1)(g, —1) = (Aop, —1). It follows that Hassc(pf) =
(A, —1) for every A € F* if weset p= A\ A

Proof of Corollary 1: Since F' 2 Q(x), we can take M to be an ir-
reducible £G-module affording the character mp(x)y. Since F is real,
there is a positive definite G-invariant symmetric bilinear form f on M.
The Hasse invariant of f can be caleulated in two ways. On the one
hand, Theorem A tells us that

Hasse( f} = (A, —1) in Br{F)
for some X, € F*. On the other hand, Theorem 1.3 tells us that
Hasse(f) = (~1,~1)[x]

Solving for [x] we obtain [¥] = (—X,, —1). By Lemma 1.4, —A, is neg-
ative, since mo,(x) = 2. Furthermore, if F = @, then my(x) = 1 for
every rational finite prime p such that p = 1 (mod 4), by Lemma 1.4.
Hence Corollary 1 helds. B

Proof of Theorem B: Since for every o € €%, (Ao, —1) = {a?X,, —1),
we assume without loss that A, is a positive integer divisible by 9. Fur-
thermore, (2, -1} = 1 in Br{Q)}, s¢ we further assume without loss that
X is 0odd. Now A, > 1 and we set n = A, and & = Dg X 5, to be
the direct product of the dihedral group of order 8 and the symmaet-
ric group of degree n. We take a to be any element of order 4 in Ds.
Then 1 # 22 € Z(G). Let V be a quadratic F-space of dimension 2
with orthonormal basis ey, e;. We endow V' with the structure of a Dg-
module by letting two generators of order 2 of Dg act on V' as linear
transformations which have the following matrices,

-1 0 01

0 1/*\1 0}’
with respect to the basis ey, 2. It is clear that Dg stabilizes the quadratic
form on V. Let W be the 8, module given by Lemma 1.5. Set

M=VgW
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Then M is an absclutely irreducible G-module and 22 does not act triv-
izlly on M. Let x be she character afforded by M and f be the sym-
metric bilinenr form obtained by tensoring those of ¥V and ¥W. Clearly
mg(x) =1 and x(1) = 2(A, — 1) = 0 (inod 4). As a quadratic space

M~ o W

so that Hasse(f) = (det{W},dect{¥W)) = (A, A,) by Lemma 1.1 and
Lemma 1.5. Since (A, A,) = (A, —1) in Br{Q}), this shows a) and b)
of Theorem B. Since A is absclutely irreducible all G-invariant bilinear
forms on M are multiples of f. Since det(f) = 1, ¢) follows from Lemma,
1.I,h). m

Proof of Theorem C: Notice that as F is real, Q has only one isomor-
phism class of faithful irreducible F@-modules and they have dimension
4. Since Z(Q) fixes no non-zero vector of M, M is a sum of irreducible
faithful F@Q-modules. Applying Lemma 1.6, it follows that as guadratic
G-modules M = M, L (M, + M) where M, is the orthogonal sum
of non-singular irrcducible F@-modules and M) + M3 is an F@Q-module
and as orthogonal space i is the orthogonal suin of a multiple of 4
copies of a hyperbolic plane. It follows that det(M, + Mz} = 1 and
Hasse(M, + M2) = 1, by Lemma 1.1.

Let 3 be the faithful reducible complex character of €. It is well
known that [¢] = (=1,-1) in Br(F). It then follows from Theorem 1.3
that if N is any of the orthogonal sminmands of M, then det{(V) = 1 and
Hasse{N) = (—1,-1}(—1,—-1) = 1. Hence, by Lemuma 1.1, det(f) = 1
and Hasse(f) = 1, as desired. &

Proof of Corolfary 2: Let f, be a symmetric bilinear form on M under
which A7 admits an orthonormal basis. Since F is a real field f, is
positive definite, and in fact, it is positive definite under each imbedding
of I into B, Define

fiMxM—=F

1 -l » )
flv,w) = Gl y%'c: folgy, gw)

for w,wr € M. Then § is a G-invariant syminetric bilincar form. Further-
more, f is positive definite under every imhedding of /" into R. Furthe:-
miore, by Theorem C, det{f) = 1 and Hasse(f) = 1. It follows that A/
admits an orthonormal basis under f. This completes the proof of the
carollary. B
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