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Abstract

L l AND L°°-ESTIMATES WITH A
LOCAL WEIGHT FOR THE a-EQUATION

ON CONVEX DOMAINS IN Cn

FRANCESC TUCORES

We construct a defining function for a convex domain in C" that
we use to prove that the solution-operator of Henkin-Romanov
for the D-equation is bounded in L' and L°°-norms with a weight
which refiects not only how much near is the point to the boundary
of the dornain but also how much convex is the domain near the
point . We refine and localize the weights that Polking uses in [Po]
for the same type of domains because they depend only on the
euclidean distance to the boundary and don't take into account of
the geometry of tlie domain .

1. Introduction and statement of results

This paper deals with the Lr-estimates for the solutions of the equa-
tion bu = f, where f is a á-closed (0, 1)-form, for a certain class of
pseudoconvex domains .

Let D be a bounded convex dornain in C' of class C3 defined by a
function p and denote by áD its boundary.

For x E c7D, the Hessian of p in x, Hp(x), restricted to the tangent
space to the boundary in x, T,, (áD), is the second fundamental quadratic
form of the boundary. We write m for its convexity lower bound (c .l .b .),
that is,

inf

	

Hp(x) (A, A)
T12(x) _

,\ETx(D)

	

IAI 2

	

.

We know that m is an intrinsic quantity, that is, it does'nt depend on
the defining function, but only depends on the boundary of the domain .
This c .1 .b . "ineasures" for every point of the boundary how much

convex is the domain in a neighborhood of the point ; for example, where
the dornain is flat, m is zero and, on the ottier hand, m is strictly positive
in a neighborhood of a strictly convexity point .
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We obtain Lr and uniform estimates with a weight that is expressed
in two different ways: near the flat pieces it depends on the distance
of the point to. the boundary and far of them, it is given in terms of
this c .l .b . evaluáted in the projection of the point to the boundary . In
this way the local behavior óf the boundary . of the domain appears in
weighted-estimates .
We denote by rr( .) and d(.) the projection and the distance, respec-

tively, of the point to the boundary . From now on, all not distinguished
positive constants will be denoted by c . We shall put dia,m(D) for the
diameter of the dornain .

In this paper we prove the following three theorems :

Theorem 1 . Let f be a cD-closed (0,1)-form in L'(D) . Then, there
exists a solution of the equation bu = f 'such that

if n = 2,

	

II uI log[m(rr( .))d( .)]I-1 IIL-(D)<_ e II f IIL-(D)

and for n > 2,

	

II u[m(rr( .))3 + d( .)]n -2 II L-(D) <_ e II f IIL-(D)

Theorem 2. For rz = 2, let f be a 0-closed (0, 1)-forrn such that
fIlog[m(ir(.))d( .)]I belongs to L l (D) . Then, there exists a solution of
the equation bu = f such that

¡¡U IIL1(D)<_ e II fllog[7n(7r( .))d( .)]I IILI(D)

If n > 2 and f[m(rr( .)) 3 + d(.)]-''L+2 belongs to Lr (D), then

II u IIrl(D)<_ e II'f[M(7r(.))3+d(.)]-n+2 IILI(D)

Observe that in the strictly convex case, m(rr(.)) is bounded below in
D and our theorems give the well-known L' and L°°-estimates without
weights .
The following result is proved by Polking in [Po] :

Theorem .3 . For n .= 2, let f be a ó-closed (0, 1)-forrn in LP(D),
1 < p < oo . Then, there exists a solution of the equation bu = f such
that

II u IILP(D)<_ C II f IILP(D)

If 9 C Cn is a weakly pseudoconvex domain with smooth boundary,
Bonneau and Diederich ([Bo Di]) have proved, recently, the existence of
solutions operators HI for á en 9, such that

II H2f IILI(~)<_ e II f1logd(.)I IILl(Q)

and for n > 2,

	

11 Hnf IILI(n)< c 11 fd( .)
Q
hl(Q) with 0 < -n/2.



H~\ E R2n,
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The paper is organized as follows . Section two is devoted to construct
from p a defining function q E C(D), strictly convex in the interior of D
and such that, for every point of D and any vector in C', the c .l .b . of its
Hessian depends on m and d . We remark that for a weakly pseudoconvex
domain our method does not apply to obtain similar results because it is
not true that there exists a defining function strictly plurisubharmonic in
the interior of the domain . In section three we decompose the solution-
operator of Henkin-Rornanov as a finite sum of volume integral operators,
written in tercos of q, and we do the necessary computations of every
addend-operator in order to obtain al] the types of estimates .

2 . Construction of the defining function q

In this section we situate ourselves in the real space R2n .

First of all, for y E D fixed, let py be defined by

py (x) := inf {k > 0/x - y E k,D},

where kD is calculated respect to y ; py is the norm that has D as the
unit ball when y is the origin .

For x different frorn y, we put ww := y + (x - y)/k . Now p(vwk) = 0
defines implicitly py(x) .
We put z := y + (x - y)lpy(x) . Observe that z is the point of the

boundary obta,ined by continuing from x the straight line that joins x
and y .

If we differentiate implicitly in p(wk) = 0, it is a computation to obtain
the gradient and the Hessian of py in tercos of the gradient and Hessian
of p, respectively :

( 1 )

	

Vpy(x)

	

op(py(x) y) OP(z)
.

(2)

	

Hpy(x)(A, A) _
(pp(z)(x - y))3

Hp(z)(v,'U),

where v = (AVp(z))(x - y) - ((x - y)Vp(z))A E Tz (,9D).

We have py E C3(R2n \ {y}), py 1 av = 1 and D = {x/py (x) < l} .

Since 17p(z)(x - y) _> 0, it follows from (1) that Vpy(x) :~ 0, for
x E 8D, and from (2) that Hpy (x)(A, A) > 0, for x E DD and A E R2, .
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But py is not a candidato for q because it is not strictly convex in the
interior ; note that given a direction A, Hpy(x)(A , A) is zero on the line
x = .y + tA, t E R, because py is linear on the straight linos through y .

Fixed a point x and a direction A, there are points y such that
Hpy(x)(A, A) is equal to zero (when z belongs to a flat piece) and others
that aren't . So we think in obtaining q as a convex combination of all
py (as an average in y) .
We define q in the following way

q(x) :=
ID

w(y)py(x)dm(y),

where w is a positivo weight that we will determinate below .
Observe that Vq(x) :y~ 0, for x E aD, because Vpy(x) =,4 0 .
We need to choice w such. that fD w(y)dm(y) = 1 for q IaD = 1 and

D = {x/q(x) < 1} ; on the other hand, w must be zero in the boundary
in a way that compensates the explosion of the second gradient of py
when we approximate to the boundary, because we want q E C2 (D) .

Proposition 1 .

o,py(x= 0 ( II x - y
1

II d(y)3 ) -

Proof. It is á computation to obtain :

a~ax)

	

aa(z) (VP(z)(x
1

	

02

- y))z

	

1 (xi - yt) áxkaxl
+

z

+

	

a(z ) (oP(z)(x - y))3 aa(k ) ¿, . (xI -
y,)(XT - yr)axP~~ +

+

	

1

	

azP(z) _

	

z

	

x -

	

¿9P(Z) r(xi - y1) ~x
P(Z)

~P(z)(x - y) axkaxi

	

(OP()(

	

y))z

The worst estimate corresponds to the second terco, its numerator
is, clearly, O(II x - y IIz) and Vp(z)(x - y) _ MZ)py(x)(z - y) =
py (x)dist(y,Tz (OD)) >_ py(x)d(y) . Now py(x) >_ c 11 x - y II because
II z - y II< diam(D) .

Lemma 1. For e > 0, if we put w(y) := Cd(y)z+E where C :=
1/ fD d(y) z±Edm(y), then q is a defining function of D and q E C2(D) .
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More generally, it is possible to choose w(y) := C'd(y)2h(d(y)), where
the function h is such that the integral fó (h(t)/t)dt is fenite .

Proof: We situate ourselves in R2 because it is the most unfavourable
case .

For E C D, let I(E) be defined by

I(E) :=

	

dm(y)
IE II x - y II d(y) 1 -5

By proposition 1, IV'q(x)I = O(I(D)) .
For all x E aD, 1/ II x -y II d(y)

1-E are uniformly integrative functions
on D because if we take local coordinates (u, v) with center x, where u
represents the distante d and'v is taken on OD, we reduce I(D) to the
area's integral

dudv

- (u+IVI)u1-E,

which is finite .
For all x 1 c9D, we prove now that dy > 0, 36 > 0 such that if the

measure of E; ¡El, is smaller than S, then I(E) < rl .
Given a region E, we put El := {y E E/d(y) -II x - y II} . Now,

I(E1) :5 f
l

II x - y II'-2 dm(y) C ¡El 11 .

So, if ¡El 1 < 61 = (71/2 ) `,

	

then I(E1) < r!/2 .

If y E E \ E1 , we put x E áD for the point where d(x) is attained .
Now,IIx-y1I<IIx-y1I+IIx-x1I=IIx-y11+d(x)<IIx-y1I
+d(y)+ II x - y 11 < 3 II x - y II .

	

Then we may replace x by :~ and, so,
362 > 0 such that if IE \ El ¡ < 62, then I(E \ E1) < rl/2 .
Put ó = min(S1 , ó2 ) .

Proposition 2. For x E D fixed, we choose for every point y E D
the coordinates r :=II x - y II and z. Then, if wD(z) denotes the area's
measure on C9D, . we have

dm(y) ? cr2n-1 Iop(z)(x - z)I
11 x

	

z II2n

	

drdQDD(z) .-

Proof.. We denote by S the unit sphere of -R2 r° . If w E S, let A(w) be
such that p(x - A(w)w) = 0 . Now, for j = 1,

	

, 2n, one has
2n

	

2n

A(w)akj+c3w, wk)

	

J
=0, that is, ap.A(w)+

8A

	

~p

k-I

	

J . 8w

	

5Zk
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From zi = xi - A(w)wi ; it follows that

a~ z s
C7ñ _ -~(w) 8z~ -	-~ (w) az~

rkáwk

	

Eká(xk - zk)
and e~ __

	

II x-z 112
aw~ (IVP(z)(x-z)1

We put doaD(z) in terms of dzl A . . . n dzi A . . . A dz2,,, and we use
that -dzi = A(w)dwi + dA(w)wi to write these products in tercos of
dwl n . . . A dw~ n . . . A dw2, . Hence, we obtain two types of coefficients,
A(w)za-1 and ~(w)z,-z~Áw j . Then, if das(w) represents the area's
measure on S, one has

zn-i

	

11 x - z I
daaD(z) < C 11 x - z II .

	

(1 + ~pP(z)(x - z)1

	

de s (w) .

Now the second term absorbs the first and we must take now finto account
that dm(y) = r2n-ldrdos(w) .

Lemma 2 . q is strictly convex in the interior ofD. Moreover,

Hq(x)(A, A) > c[d(x)"+i+E + m(7r(x))1la1 2 , `da E R2- .

Proof. Put T(A, x, z) := sin2 ( .\, x-z) cos2 (Op(z), < A; x-z >), where
< A, x - z > denotes the plane generated by the vectors A and x - z .
We have, by the relation (2),

Using the explicit formula for v,

Hq(x)(A, A) >
C1\1 2

	

m(z)I VP(z)1211 x - y 11 2 T(A, x3z)d(y)"
dm(y)

(VP(z)(x - y))

= clal
z f m(z)IVP(z)12 11 x - z 11 3 T(A, x, z)d(y)2+Edm(y)

D

	

(oP(z) (z - x))3 11 x - y 11

Now we use the proposition 2 and we integrate on the ball of center .x
and radius d(x)/2 (then d(y) - d(x)),

Hq(x)(A,A) ? C~D
m(()I

PI()~)2

+Edm(y)
0

	

x - y))3

_d(x)

>_ cd(x)z+EI~Iz

	

2

	

m(z)IVP(z)12T(A,x,z)r2n-2drdaaD(z) >

(oP(z)(z - x))211 x - 2 112

	

3

d~

	

2re-z

> cd(x)z+E ¡Al2

	

.~ 2

	

m(z)T(A, x, z)r

	

drduaD(z)

112 i
.aD o

	

IIx - z ~-

	

.
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Now 11 x - z 11 is bóunded above by diam(D) and we integrate with
respect to r,

Hq(x)(A, A) ? cd(x)2n+i+EI\I 2	m(z)T(A,x, z)dUaD(z)
.faD

This last integral is a positivo function of x because m(z) is equal to
zero on the flat pieces only (it is positive on a set of positivo measure) and
T(A, x, z) is equal to zero for z belonging to a set of zero measure only ;
on the other hand, such function is continuous on D (_< fa, m(z) = c)
and so it is bounded below . This proves Hq(x)(A, A) > cd(x)2n+I+EIAI2 .

If x E OD, then m(z) = m(7r(x)) and

2+Edm(y)
Hq(x)(A, A) >_ c~n(7r(x))1~12

	

T(A, x, z)d(y)f

	

7P(z)(x - y)D

This integral is a positive function of x and continuous on D ( <
f

	

d(y)'+`d-(y) = .c) ; so it is bounded below . This proves Hq(x)(A, A) >
cm(7r(x))IaI 2 when x E OD.

For all x 1 &D, we define U := {.z E aD/ II z-7r(x) I1< m(7r(x))} and
also the cono L(x) := {y E Dlz E U} (observe that L(x) increases when
x approaches to 8D). If z E U, then m(z) - m(7r(x)) . If we integrate
on L(x) only, we have :

Hq(x)(A,

	

Cm,(7r(x))IAI2f

	

T(A, x, z)d(y)2+Edm(y) >
LM

	

7P(z)(x - y)

	

-

where the last inequality is proved as before .

(7r(x))Ia12 ,

3 . Estimates for the Henkin-Romanov solution-operator

We suppose D defined by the function q. Put w'(~) :_ E

	

I(-1)i-I¡i

n~oíd~j, w«)

	

:= d(1 A . . . A d(� , Pi(~)

	

:= aq«)1a(ti, P(S)

	

:_
(Pl (~), . . ., P.«)) and F«, z) :=< P«), ( - z > . Put

- (1- t) I(
-zI2 + t

_

	

F
«
S)

)' o < t < 1, and

B(~, z) := w' ( I( -zI2)
A w(0.
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The Henkin-Romanov solution-operator ([He Ro]), call it T, is given by
Tf(z) = Tl f(z) + T2f (z), where :

Here cn is a constant that depends only on the dimension .
In [Ca] and [Br Ca] the following lemma is proved :

Lemma 3.

Tif(z) = c�. ~

	

f(C) n w(i7) n w(~) and
aDX[o,ll

T2f(z) = -c-., f f (C) n B«, z) .
D

,y_2

Ti f(z) = y: cn,k f f«) A Gk«, z), z E D,
k-0 D

where cn,k are constante and for a«, z) =.-q(S) + F(~, z),

Gk S,) _

	

(k + 1- n)a(I~ - Z12 -

	

(k + 1)9(a(S, z)
(

	

z

	

I~ - z12n-2ka«, z)k+ 1

	

I( - z12,~-2-2ka(C , z)k+2 )
n

n a(l~ - z1 2 Aaq(S) A (aa«) ) k A (áal~ - z12)n-2-k+
1

+ I~ - z12(n-1-k)a(C, z)k+i [aq(S) A (aaq(S)) k A (bajC - z12)n-k-1+

+ acls - Z1 2 A (ba«))k+1
A
(vals

- z12)n-2-k] .

It is well-known that the kernel of Bochner-Martinelli, B(~, z), satisfies
IB«, z)I = O(I( _ Z1-2n+1) and so it is sufficient to prove both theorems
only for Ti .

There exists ro and So such that if Iq(z)I < ro and aq(z)/azj :7~ 0, say
j = 1, then ti = q(S) - q(z), t2 = ImF«, z) ; t2j_1 = Re«j - zj ) and
t2j = IM«j - zj) .for j = 2, - - - , n is a real coordinate system in the ball
B(z, 6o) such that t(z) = 0, Iti2 - IS - z12 and dm«) - dti . . . dt2n .
Put ai(~) = a2q«)/á~tia~; . The . coefficients of the kernels Gk«,z) are

functions of the type

h(S)ai, «) . . . a¡, (~)
l~ - zjQa«, z)7

	

,

where h is a bounded function on B(z, 6o), ?i ; - . . , ik are different indexes
between 2 and n, and the pair (0, -y) is (2n - 2k - 2, k + 1), (2n - 2k -
3,k+1) or (2n-2k-3,k+2) .
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We look for a lower bound for la«, z) I .

	

Put c(x) := d(x)2"+I+E +
m(7r(x)) .

	

We have 2 Re F(~, z) >_ q(~) - q(z) + n (S, z) I

	

- z I2, where
n«, z) = fó c« + t(z - ())(1 - t)dt . So, 2 Re a(~, z) > jq(« + Iq(z)I +

n«, z)IS -
zI2_

If I~ - zI < em(7r(z)), then 17r«) - 7r(z)l < em(7r(z)) and Im(7r«)) -
m(7r(z))I <_ cem(7r(z)) . So, m(7r(~)) >_ cm(7r(z)) and c«) > cm(7r(z)) .
On the other hand, I~ + t(z - () - zI = I(1 - t)« - z)I < em(7r(z)), if
(1 - t)diam(D) < em(7r(z)), that is, 1 - t < Em(7r(z))/diam(D) . So,

d?

n«, z

	

~ crn 7r z)

	

xdx > cm(7r(z))3 .
0

When 1( - zI <_ ed(z), we have, similarly, d(~) >_ cd(z) and c(~) >_
cd(z)2"+i+` . By the same anterior argument, we obtain n«, z) >_
cd(z)2"+3+E .

lf we put
s(z) := c[m(7r(z)) 3 + d(z)2n+3+E]

we obtain 2 Rea(, z) > Iq(S)I + Iq(z)I + S(z)I( - zI 2 and, finally,

Lemma 4.

la«, z) I ~ Iq(S)I + Iq(z)I + S(z)I~ - zI 2 + I Im a(S, z) I .

Put gk (z)

	

[m(7r(z))3 + d(z)] -k ,

	

if k = 1, . . . , n - 2 .
_

	

( log[m(7r(z))d(z)]I, if k = 0.

Then I IGk«, z)ldn«) = O(9k(z)), k = 0, 1, - . . , n - 2 .
D

Proof. We can suppose that Iq(z)I < ro and estimate the integral only
on D n B(z, 60 ) . It is sufficient to consider, in tercos of the coordinate
system,

/¡

	

dtl . . . dt2n

JB(O,b0) It1 0 (21q(z)I - ti + It2I + S(z)Iti2)7

for the worst case (0, y) = (2n-2k-3, k+2), k = 0, 1, - - - ,n-2. We take
polar coordinates tl = r cos 0, t2 = r sin 0cosand we distinguish
the cases k > 1 and k = 0 .

If k > 1, after integrating respect to the angles, we arrive to

60

	

11,
2kd7 .

fo

	

(2Iq(z)I + S(z)7-2)ti
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Now we put r := Iq(z) 12 x/s(z) 2 and b(z) := 6os(z) 2 /Iq(z) 12 , then the
integralis :

Ig(z)I2
lob(z) x2kdx

8(z)k+2

	

o

	

(1 +x2)k

If b(z) < 1, it is 0(I q(z)¡ -k ) and if b(z) > 1 ; it is 0(s(z) -k) .
If k = 0, after integrating respect to the angle 2p and putting v =

- cos 9, we arrive to

f6~

J

1

	

Ig(

	

rdvdr

	

<
fe°

I log[2Iq(z)I +s(z)r 211dr .f0

	

O 2

	

z

)I

+rv+8(Z)r2 -

With the same anterior chango, the integral is :

Ig(z)I2
fb(z)

s(z)2 0

If b(z) < 1, it is 0(I log Iq(z)II) and if b(z) > .1, it is

Ig(zj122

(10

l
I log Iq(z)IIdx +

<_ Ii(z)I22
(Il°g1q(z)II+b(z)11og[(60) 28(z)ll+2b(z))=0(Ilogs(z)I).

Observe that the case of a strictly convex domain is obtained when
the function inf~ED n«,z) is bounded below .

Proof of theorem 1 : Observe that the worst estimate in lemma 4 is for
k = n - 2 and that for n = 2 we have only k = 0 .

Proof of theorem 2 : Take also into account that lemma 4 gives

fD IGk«, z)Idm(z) = O(gk(~)), k = 0, , n - 2, by symmetry. Using
Fubini's Theorem, we have

n-2

f
¡Ti f(z) I dm(z) <_E Cn,k f If(«

f
IGk(S, z) Idna(z)dm(~) <-

D

	

k-0 D D
n-2

Cn,k
fD lf(0Igk(0dm(0-

k=0

b(z)

l°g(Iq(z)Ix 2)Idx ) <

Proof of theorem 3 : For 0 < e < 1, i) fD IGO(S, z)IIq(S)I `dm(S) =

0(Iq(z)I -E) and ii) fD IG0(S,z)Ilq(z)I`dm(z) = 0(Iq«)I`) will give, as
it is well known, the Lp-estimates, 1 < p < oo .
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By symmetry, it is sufficient to prove i) only.
Using IGo(S, z)I = O(1/I( - xlla(S, z) I2) and the coordinate system,

we must consider :

(Ig(z)I - ti) -E dtldt2 . . . dt2n
ju( 0,6 ,,) Iti(21q(z)I - tl + It2l +

8(Z)¡t12)2 '

Now, taking polar coordinates tl = rcos 0, t2 = r sin 0 cos 0, - - - , inte-
grating respect to the angle 0 and putting v = - cos 0, we obtain :

ó°

	

1 r(Ig(z)I +rv)-Edvdr <

	

60f1

	

rdvdr

	

< clq(z)I-El J 21q(z)I +rv+s(z)r2 - 0

	

0 (Iq(z)I
+rv)1 + E -
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