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Abstract

ON THE DENSITY OF SOME WIENER
FUNCTIONALS: AN APPLICATION OF

MALLIAVIN CALCULUS

ANTON1 SINTEs BLANC

Dedicated to Professor Pere Menal i Brufal, in memoriam

Using a representation as an infinite linear combination of chi-
square independent random variables, it is shown that some
Wiener functionals, appearing in empirical characteristic process
asymptotic theory, have densities which are tempered in the prop-
erly infinite case and exponentially decaying in the finite case.

Introduction

Let F be a probability distribution function on R, with characteris-
tic function c(t) := E(exp{itX}), X being a real random variable with
distribution function F .

Let X 1 , X2, . . . be a sequence of independent copies of X defined on
some probability space (S2, .P, P), and Fn the empirical distribution func-
tion of the first n variables .
The empirical characteristic function c�,(t) is the (random) character-

istic function of F, and has been used in several statistical applications
since at least Cramer's famous book .

In the late 70's a systematic study of its properties and statistical ap-
plications was initiated by Feuerverger and Mureika . In particular they
proved the first limit theorems for the empirical characteristic process
Y,~(t) := ~,l,-n,(c� (t)-c(t)), under strong morrient conditions on F, see [2] .

In 1981 M. Marcus, [3], found necessary and sufficient conditions for
the processes {X,,(t)},°,°__i, t E to weakly converge to a limit
process of the following form

+Y(t) :=

	

+00

exp{itx}d
00

I:
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where B is Brownian bridge on [0,1], as C[T1,T2] valued random ele-
ments .
The serme year S . Csórgó, [1, Theorem 3], .obtained strong approxima-

tions for Yn,(t), under the assumption

h(x)[1 - F(x) + F(-.x)] = O(1) ,

	

as x goes to +oo

where h is a continuous function on (0, +oo) and h(x)x-" increases to
+oo as x increases to +oo, for some positivo u .
From this strong approximations S . Csórgó derived rates . ,of conver-

gence for several functiónals of the paths of the empirical characteristic
procese, under the further assumption of existente and boundedness of
a density for the limit functional .

Here we want to study the following one which is useful in testing for
symmetry of F., namely

:=

	

¡'Tz.
[I~rn(X(t))] 2dH(t)

where 0-V is a given distribution function with support in [T1 ,T2], and
-oo < TI < T2 < +oo.
The main result in the present work is that with great generality, T has

a density which in fact satisfies much stronger boundedness conditions
than those needed for Csórgó's rates of convergente to hold true . It is
the following

Theorem . Assume that the random variable T, as defined abone, is
non degenerate (this is a condition on both, F and Hl) . Then T has a
smooth density, which is either a tempered function or an exponentially
decaying one (at infinity) .

The main ingrediente of the proof are Malliavin calculus, Cauchy's
formula and Fourier transform . In the next paragraph we recall, very
briefly, the principal definitions and results we are going to use, and give
some referentes where complete and detailed expositions can be found .
Finally, in paragraph, 3 we give the proof of the theorem .

The tools

Let L2 [0, 1] be the Hilbert space of square integrable functions with
respect to the Lebesgue measure on the Borel u-field, C3, ir1 the unit
interval [0,1] .



For h E L2 [0,1] ; denote VY(h) the Wiener integral of h with respect to
the Wiener process, W, on [0,1] . We think of W as a Gaussian orthogonal
mensure on the space ([0, 1], L3, A), it is, a zero mean Gaussian process
{W (B) : B E 13} defined on some probability space (S2, F ; P), with co-
variance function given by E(W(BI^B2)) = A(B1 n B2), where A is
Lebesgue measure on [0,1] .
Around 1950 K. Ito showed that each square integrable functional

F E

	

P) can be developed in the form

where I,,(f�j are multiple Ito-Wiener integrals of the (deterministic)
functions f�, E L2([0,

1]m, 13'n , A'n ) . In particular II (fI) = W(f1) . This
expansion is sometimes known as the Wiener chaos decomposition of F.

Stroock's formula identifies the kernels, f, in terms of iterated Malli-
avin derivatives of F:

For F E L2 (52, .F, P) and h E L2 [0,1], the Malliavin derivative of F in
the h direction, DjLF, can be defined as

if the series converges in L2 (S2, .F, P), where (, ) is inner product .

	

All
this (and much more) can be found in [4] and [5] .
To apply this theory to our functional T, we write it down in terms of
as follows :
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DhF :=
7n=1

00

F = E(F) + Y~ I�t (fm )
=1

f,,,, = (m!)-1E(D-F) .

(h

	

Ira-1(fra(tl . . . ,tra-1,*))i

T = f
TZ

[W(ht)] 2dH(t)
Tl

where ht (y) := sin(tF-1 (y)) - Im(c(t)), for y E [0,1], c(t) being the
characteristic function of F, Le . c(t) := E(exp{iA}), where k is a F-
distributed random variable .

Let us calculate the Malliavin derivatives

D[W(ht)]
2
= 2W(ht)ht

D2
[W(ht)]2 = 2ht ® ht

and the derivatives of order greater or equal than 3 are all zero .
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Hence ; by linearity

and from Stroock's formula we get .

1
T'

D2T _

	

2ht ®h td~l(t)
T1

7T= E(T) + 12 (
.l

	

2T,
ht ® htdH(t)

Now we recall some more definitions and results that will also be
needed in the next paragraph .
A function f on R is called a tempered function if it is a smooth

function and for each N E Nl (the set of natural numbers)

sup sup(1+x2)N jf (p)(x)1 < +oo
p<N xER

where f(p) is the p-th derivative of f .
Let S denote the space of tempered functions on R . The Fourier

transform of a function f E S is defined as

f(t) :_ (27r)- z ~

	

exp(-itx)f(x)dx
00

It turns out that this transformation defines a continuous one-to-one
mapping of S onto S, whose inverse is also continuous . Moreover, it has
period 4, due to the inversion formula which is fundamental

+0
f(.x) = (27r) -z

	

exp(itx)f(t)dt._
00

A very good referente for this is [6] .

Proof of the theorem

The idea of the proof is quite simple : to show that the characteristic
function of T is a tempered function in the properly infinite case ; and
direct calculation in the finite case (distinetion of the two cases will be
clear in a moment) .

Let us go back to Stroock's representation of T; and recall the explicit
form of the kernel in the' double Ito-Wiener integral there .
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It is known that such a kernel can be developed in a L2-convergent
series .

K(r,s) = L Aiei(r)ei(s)

where A ;,, (respectively e?(-)), are the eigenvalues, (respectively eigenvec-
tors) of the following self-adjoint non-negative integral operator

Io(.)- f K(-, s)O(s)ds
0

en L2 [0 ; 1] ; the e&)'s can be assumed to be a complete orthonormal
system in L2 [0, 1], and j:°° I A ;, < +oo .

It is also well known that for h E L2 [0, 1], with 1111112 = 1

I2(h (D h) = W(h)2 - 1

and combination of this facts leads us to the representation we had in
mind, namely

_ E(T) +

	

~i(W(ei)2 - 1) _

	

AáW(ei)2

with F-00, '\i < +00 .

We remark here that from this representation it is clear that T is
non-degenerate iff Stroock's kernel, D2 T, is non-degenerate .
To proceed we distinguish two cases : the one where only a finite nurri-

ber of the Ai are non zero, and the one where there are infinitely many
non zero . We treat only the second case, as the first one is very elemen-
tary. So, to finish the proof of the theorem it is enough to prove next
lemma,

Lemma. Let {%i}.°°, be independent identically distributed random
variables with a common chi-square distribution, ¡.e . a distribution with
densityx-z -exp(-2)110,-1(r,) .
Let {Ai }°° I be a nonincreasing sequence of positive real numbers such

that

	

ñi < +oo .

Then the random variable ,1

	

AiXi has a tempered probability
density fanction .

Proof- It is well known that the characteristic function of the random
variable .D is

00

.f (t) _ fl (1 - 2A,,it)

	

2

k-I
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It is easily seen that this function possesses an analytic continuation
on the strip - (4,\1) -1 < Im(z) < (4,\1)-1 , which is of the same form,
Le .

f(z) = fl (1 - 2Akiz) -12

k=1

where i := V/---1 . Observe that for z in this strip

Z < Re(1 - 2¡,\z) <
2

,

so that we can use the branch of y/'z- which coincides with the usual
square root function on the positive real numbers ., and we can apply
Theorem (15.6) from [7] ; (here we use the hypothesis -°°1 ~i < +oo) .

For t > 0 apply Cauchy's formula to the rectangle F defined by the
points (t/2) T- i(4A1)-1 , 2t :F i(4A1) - ' ; to get

f(P)(t) _ (P!)1: 1

	

(z
f
-

(
t
z
)
)
P+1 dz

j=1 rj

where {Fj}~_1 are the four sides of the rectangle F .
To bound this integrals we use the fact that for each natural number
MEN

For instante the integral on the left side, let us say FI , of the rectangle
F, can be bounded as follows

(4A1) -1
f((t/2) + is)j j((t/2) - is)j-1-Pds <

(4ñ1) -1
M

	

1

< 2PAi1tP+1

	

((1/4) + A2t2)l -`

k=1

where we used (1) ; and the same type of bound is obtained for the
integral on the right side, 1'3, of F. In a similar way the bound in (2) is
used to treat the integrals on the horitzontal sides of the rectangle, F2
and I'4. And this proves the lemma in the case t > 0.

(1)
m _,a

SUP j«t/2) + is)~ < (( 1/4) +
isi<(4a1)-1

(~ ~kkt2))
k=1

(2)

n~ 1_

SUP lf(s + i(4a1) -1 )I
~ (~ (1 + >,2t2»

(t/2)<isi<2t k=1
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For t < 0, with small changos, all works the same way, and for t = 0
there is no problem at all . Thus the lemma is proved .
Remark. In the above proof we could have used the asymptotic rep-

resentation obtained in [8], instead of our lemma . It is clear from [8]
that the density f(x) is exporientially decaying at infinity, even in the
properly infinito case . However, it is not clear how can we get the tem-
perate character of f from Zolotarev's representation, without further
work . In that point our proof seems to be shorter and clearer .
Acknowledgments. 1 want to thank Professors Paul Malliavin and

David Nualart for their kind attention and help on some problems related
to the subject of this paper . Thanks also to Professor Evarist Giné, to
point me out referente [8] .
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