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Abstract

Using a representation as an infinite lingar combination of chi-
square independent random variables, it is shown that some
Wicner functionals, appearing in empirical characteristic process
asymptolic theory, have densities which are tempored in the prop-
erly infinite case and exponentially decaying in the finite case.

Introduction

Let F be a probability distribution function on R, with characteris-
tic function cft) := FE(exp{itX}), X being a real random variable with
distribution function F.

Let X1,X5,... be a sequence of independent copies of X defined on
some prohability space (€2, F, P}, and F,, the empirical distribution func-
tion of the first n variables.

The empirical characteristic function ¢, (¢) is the (randor) character-
istic function of F,,, and has been used in several statistical applications
gince at least Cramer'’s famous book.

In the late 70's a sysiemalic study of its properties and statistical ap-
plications was initiated by Feuerverger and Mureika. In particular they
proved the first limit theorerms for the empirical characteristic process
Y. (1) = /rle. () —eft)), under strong moment conditions on F, see [2].

In 1981 M. Marcus, (3], found necessary and sufficient conditions for
the processes {Y, (£} |, ¢t € [T1,T\], to weakly converge to a limit
process of the following form

4o
Y(t}:= /_ exp{ita}dB(F(2))

o0
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where B is Brownian bridge on {0,1], as C[T}, 73| valued random cle-
ments.

The same year S. Csorgé, [1, Theorem 3], obtained strong approxima-
tions for Y, {t), under the assumption

h(:‘.-:)[l —F{a)+F(—z)] = O{1), asx goes to +00

where b is a continuous function on (0, +o00) and A(z)z™* increases to
400 as x increases to +oc¢, for some positive c.

From this strong approximations S, Csorgd derived rates .of conver-
gence for several functionals of the paths of the empirical characteristic
process, under the further assumption of existence and boundedness of
a density for the limit functional.

Here we want to study the following one whlch is useful in testing for
symmeltry of F, namely

T ;=  /f T [Im'(v(t))} " ()

where H is a given distribution function with support in [T),T%], and
—co < T} < Ty < +o0.

The main result in the present work is that with great generality, T has
a density which in fact satisfies much stronger boundedness conditions
than those needed for Csorgd’s rates of convergence 1o hold true. It is
the following

Theorem. Assume that the rendomn variable T, as defined aliove, s
non degeneraie (this is a condition on both, F and H). Then T has a
smooth density, which is either a tempered function or an etponentiolly
decaying one (at infinity).

The main ingredients of the proof are Malliavin calculus, Cauchy’s
formula and Fourier transform. In the next paragraph we recall, very
briefly, the principal definitions and results we are going to use, and give
some references where complete and detailed expositions can be found.
Finally, in paragraph 3 we give the proof of the theorem.

The tools

Let L2[0,1] be the Hilbert space of square integrable funclions with
respect to the Lebesgue measure on the Borel o-ficld, B, id the unit
interval [0,1].
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For h € L.2[0, 1], denote W(R) the Wiener integral of A with respect to
the Wiener process, W, on {0,1]. We think of W as a Gaussian orthogonal
measure on the space ([0,1], 8, A}, it is, a zero mean Gaussian process
{W(B): B € B} defined on some probability space (£, F, P), with co-
variance function given by E(W{B)W(B2)) = A(B; N s}, where A is
Lebesgue measure on [0,1].

Around 1950 K. Ito showed that each square integrable functional
F e L2(Q,F,P) can be developed in the form

F = E(F) + Z I‘m.(fm)

rri=1

where I,,(f,,) are multiple Tto-Wiener integrals of the (deterministic)
functions fr, € L2([0,1)™, 8™, A™). In particular [1(fi}) = W(f1). This
expansion is sometimes known as the Wiener chaos decomposition of £

Stroock’s formula identifies the kernels, f,., in terms of iterated Malli-
avin derivatives of F:

fn = ()" 1E(D™F).

For F € IL2(Q2, 7, P) and h € L2|0,1], the Malliavin derivative of F' in
the h direction, 24, F, can be defined as

fe)

DhF = Z m<h: f,n_l(f1n(t1,.-< :tm—ls*)))

m=1

if the series converges in L2(£2, F, P), where {, ) is inner product. All
this {and much more) can be found in [4] and [5].

To apply this theory to our functional T, we write it down in terms of
W as follows:

T= / W)

h

where hy(y) = sin(tF{y)) -~ Im(c(t)), for y € [0,1], ¢(t) being the
characteristic function of F, i.e. ¢{(t) := E(exp{itX}), where X is a F-
distributed random variable.

Let us calculate the Malliavin derivatives

DW{h,))* = 2W (hy) e
DAWh )P =2, ®h,

and the derivatives of order greater or equal than 3 are all zero.
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Hence, by linearity

P )
D*T :] 2h; ® hydH(t)

T
and [rom Stroock’s formula we get.

T2

T = B(T)+ Ig(f he @ hudH (1)) .

n

Now we recall some more definitions and results that will also be
necded in the next paragraph.

A function f on R is called a tempered function if it is a smooth
function and for each N € N {the set of natural numbers)

sup sup(1 + 22 [ FP(z)] < +o0
paN oER

where f(?) is the p-th derivative of f.
Let S denote the space of tempercd functions on B. The Fourier
transform of a function f € S is defined as

+oa -

f) = (er)_%/ exp{—itz) f(z)dz

-0

It turns out that this transformation defiues a continuous one-to-one
mapping of § onto S, whose inversc is also continuous. Mareover, it has
period 4, due to the inversion formula which is fundamental

oo -

flz)= (271'}“% / exp(if&:)f(t)dt.

—o

A very good reference for this is [6].

Proof of the theorem

The idea of the proof is quite simple: to show that the characteristic
function of T is a tempered function in the properly infinite case, and
direct. calenlation in the finite case (distinction of the two cases will be
clear in a moment). :

Let us go back to Stroock’s representation of T, and recall the explicit
form of the kernel in the double Hto-Wiener integral there.



AN APPLICATION OF MALLIAVIN CALCULUS 985

Tt is known that such a kernel can be developed in a L%-convergent
series.
oo
K(r,s) =Y Aef(r)eds)
i=1
where A;, (respectively e;(-}), are the eigenvalues, (respectively eigenvec-
tors) of the following self~adjoint non-negative integral operator

1
B()— fu K(,8)¢(s)ds

on L2[0,1], the e(-)'s can be assumed to be a complete orthonormal
system in L2[0,1], and 3"52, A; < +o0.
It is also well known that for h € L2[0, 1], with |allz =1

L{h® k) = W(h)? -

and combination of this facts leads us to the representation we had in
mind, namely
o [wa ]
T=ET+3 M (W(ei)2 - 1) =3 AW(e:)?
=1 i=1
with Zz_, A < Foo.

We remark here that from this representation it is clear that T is
non-degencrate iff Stroock’s kernel, D?T, is non-degenerate.

To proceed we distinguish two cases: the one where only a finite num-
ber of the A; are non zero, and the one where there arc infinitely many
non zero. We treat only the second case, as the first one 18 very clemen-
tary. So, to finish the proof of the theorcm it is enough to prove next
lemma,

Lemma. Let {X;}%2, be independent identically distributed random
variahbles with e cornmon chi-square distribulion, i.e. a distribution unth
density ™% - expl— 210,00y (2}

Let {3152, be a nonincreasing sequence of positive real numbers such
that 3 50, M < 400.

Then the random wvarinble J 1= 3 o0, AX; has o tempered probability
density function.

Proof: Tt is well known that the characteristic fimction of the random

variahle J is
[ ]
= J[ (0 —2xie) 2
k=1

-
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It i3 easily scen that this function possesses an analytic continnation
on the strip —{4))7! < Im{z) < (42,)~}, which is of the same form,
ie.

oo
]
flz) = H 1—2Xiz) *
where ¢ := /—1. Observe that for z in this strip

1 3
5 < Re(l — 2idz) < 5

so that we can use the branch of /z which coincides with the usual
square root function on the positive real numbers, and we can apply
Theorem (15.6) from [7], (here we use the hypothesis 3 ;2 A; < +00}.

For £ > 0 apply Cauchy’s formula to the rectangle I' defined by the
points (£/2) Fi{dx)7!, 28 Fi(40) 7', to get

i~ oSS [ &)
=603 /. ek

where {I';}]_, are the four sides of the rectangle I'.

To bound this integrals we use the fact that for each natural numbel
MeN

fit) Y

(1) sup 1f((t/2) + i) < ( TTC/4) + M%)
ls| (42}~ k=1

(2) sup  |f{s+i(4r)" (H(H,\%?)%

{t/2)<s|<2t

For instance the integral on the left side, let us say [y, of the rectangle
I', can be bounded as follows

aa)™h
/ (/2 + i) 1((2/2) — is)l™'~Pds <

—{4x;)?

EY
Y

< gPATIPH (ﬁ ((1/4) + A2t ))

where we used {1); and the same type of bound is obtained for the
integral on the right side, ['3, of I'. In a similar way the bound in (2) is
used to treat the integrals on the horitzontal sides of the rectangie, I'y
and I'y. And this proves the lemma in the case { > 0.
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For ¢ < {3, with small changes, all works the same way, and for ¢t = 0
there is no probicm at all. Thus the lemma is proved. B

Remark. In the above proof we could have used the asymptotic rep-
resentation obtained in [B], instead of our lemma. It is clear from (8]
that the density f(z) is exponentially decaying at infinity, even in the
properly infinite case. However, it is not clear how can we get the tem-
perate character of f from Zolotarev's representation, without further
work. In that point our proof seeins to be shorter and clearer.

Acknowledgments. T want to thank Professors Panl Malliavin and
David Nualarg for their kingd attention and help on some problems related
to the subject of this paper. Thanks also to Profcssor Evarist Ging, to
point me out reference (8],

References

1. S CsOrcé, Limit behavior of the empirical characteristic function,
The Annals of Probability 9, no. 1 (1981), 130-144.

2.  A. FEUerviERCGER AND R. A. MUREIKA, The empirical character-
istic funclion and its applications, Ann. Statist. 5 (1977), 88-G7.

3. M. B. Marcus, Weak convergence of the empirieal characteristic
function, Ann, Probability 9 (1681}, 194-201.

4. D. NuavLarT aND M. Zakal, Generalized stochastic integrals
and the Malliavin caleulus, Probab. Theory Rel Fields T3 (1988),
255-280.

5. D NuaLart anD M. Zaxai, Generalized multiple stochastic inte-
grals and the representation of Wiener functionals, Stochastics 23
{1988), 311-330.

6. W. RUDIN, “Functional Analysis,” McGraw-Hill, 1973.

W. Rupin, “Real and complex analysis” McGraw-Hill, 1970.

8. V.M. ZoroTarev, Concerning a certain probability problem, The-
ory of Probab. Appl. 6 (1960), 201-203.

a

Departament de Matematiques
Universitat Autdbnoma de Barcelona
08193 Bellaterra (Barcelona}
SPAIN

Rebut €l 18 de Desembre de 1991





