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ADIC-COMPLETION AND SOME DUAL
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To the memory of Pere Menal

Abstract

Let @ be an ideal of a commutative ring A. There is a kind of du-
ality belween the left derived functors U8 of the a-adic completion
functor, called local homeology funciors, and the local cohomology
functors Hi.

Some dual results are obtained for these U?, and also inequali-
ties involving boih locad homology and local cohomology when the
ring A is noetherian or more generally when the U/ and f{,-global
dimensions of A are finite.

In this paper 4 is a commutative ring, a an ideal of A and the A-
modules are given the a-adic topology.

There 15 a certain duality between the left derived functors U of the
a-adic completion functor and the local cohomology functors HZ, first
observed by Matlis when the ideal a is generated by a {finite) regular
sequence, true also for any noctherian ring. More recently, that duality
lias also been observed by Greenlees and May in a more general context.

The purpoese of this note is to pursue the analogy between the local co-
homology functors and these functors U7, called local homology functors
by Greenlees and May.

First we have dual results about codepth, a notion dual to the notion
of homological depth or grade.

To go further, we need some noetherian hypothesis in order to have
a change of rings theorem for the U2, analogous to the corresponding
one in local cohomoelogy. This brings us back to the first case studied
by Matlis, namely the case of an ideal generated by a regular sequence,
and allows generalizations of some Matlis results. As a consequence,
we obtain vanishing resulis lor the Uf, and also inequalities involving
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966 A-M. SIMON

both local cohomology and local homology. So local cohomology and
local homology are not only duals of cach other, but also intimately
connected.

As general references for commutative algebra and homological ques-
tions, we guote [1], [18].

The work helow has been communicated at the International workshop
on local cohomology, geometric applications and related topics. We take
this opportunity to thank the organizers and the participanis for useful
discussions.

1. Preliminaries and notations

In this first section we fix notations and collect the material we need.
Though part of it appeared in different places, we think it is more con-
venient to have it at hand.

1.1. Completion.

Let @ be an ideal of the commutative ring A. The A-module are given
the a-adic topology. The completion of an A-module M is denoted by
M: thus M = 1121 Mia™M. Let 1pg : M — M be the natural morphism,

Here and in the next section, the ideal ¢ is not necessarily finitely
generated, and it might happen that the A-module M, complete in its
natural topology, is not complele in its e-adic topology. An example of
this can be found in {[5, III, Section 2, exercise 12]) or in ([3, I, Section
3.

Recall however the following result ([3, theorem 1.3.1], or [13, theorem
15], or [18, 2.2.5]). '

Theorem. Suppose the ideal a findiely generated. Lel M be an A-
module and b an open ideal in the a-adic topology of A. Then the mor-
phism Ty @A/ : M/bM — M /bM is an isomorphism. So M s complete
in its a-adic topology.

1.2. When f is onto.

The a-adic completion functor, though not right exact, preserves sur-
jection. However, we want to know- precisely when the completion of a
morphism is onto. The following lemma was proved in {[16, 1.2)) for a
neetherian ring A, using 1.1. It is true in general.

Lemma. fet f: M — N be a morphism of A-modules. Then f is
surjective if and only ¢f N = fM + alN.
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Prooff W N = fM +aN,then N = fM + "N {or alln > 1, and the
projective system of sequences

0 — f~Na"N)/a"M — M/a"M —— Nja*N — 0

is exact. It is easily seen to be surjective (sce [16, 1.2]). So, after taking
limits, we get an exact sequence and _f is surjective.
Conversely, if f is surjective, we tensor the commutative natural dia-
gram
M — N

! I

M —— N

l l

MjaM —— N/aN,
where the vertical composite maps are the natural projections, with A/a.
The composite vertical maps become the identity, so M/aM — NjaN
is surjectivcand N = fAM +aN. R

1.3. The left derived functors of the completion functor.

The left derived functors of the e-adic completion functor are denoted
by U2, These were first studied by Matlis when the ideal is generated by
a finite regular sequence {12], (13]. We used them in [16], where the ring
is noetherian. More recently, they have been computed by Greenlees and
May in a more general situation [7].

Let Ly 4, Lo — M — 0 be an exact sequence, with Lo, Ly frec.
By definition I/§(M) = coker f. so we have natural morphisms M —
US{M) — M whose composite is 7. The following lemma ([16, 5.1]),
consequence of 1.2, is still available.

Lemma.

(i) The natural morphism UG{M) — M is onlo.

(i) M =0 if and only if M = aM if and only if U§(M) = 0.
(i) If the ideal @ is finitely genevated, then (Ug(M))" = M.

1.4. The class C,.

Let Cq be the class of modules M such that U$(M) = A and US(M) =
0 for ¢ > 0. A standard homological argument shows that Uf(A) can
be computed using a left resolution of Af with modules in C,, and it is
worthwile to note that flat modules belong to C,.
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More generally, let e, n > 0, be a decreasing sequence of ideals
which form a basis of the ¢-adic topology. A module M such thal
Torf(Afan, M) = 0 for all ¢ > 0 and all » > O belongs to C, ({12,
corollary 4.5]).

When the ring is noetherian, the completion of a free module is fat
{[14, p. 77], or [3, 4, 7], or (18, 2.2.4]}. This can be used to show that
complete modules belong to €, when A is noetherian {[16, 5.2}).

1.5, Local cohomology and Matlis duality.

Recall the functor HS : HY(M) = {z € Mlao"z = 0 for some natural
number n}, whose right derived functors HZ are the local cohomology
functors.

Recall also the Matlis duality. Let £ be the injective hull of the direct
sum of all the A/m with m a maximal ideal of A. The Matlis duality
functor, defined by MY = Hom{M, E), is faithfully exact [12], [13],
and we have the Ext-Tor duality:

Torf (N, M) ~ Exty (N, MY);
i A

when N has a projective resclution composed of finitely generated mod-
ules ([6, VI, 5.1, 5.3]):

Torf (N, MY) = Bxté (N, M)V,

When the ring is noetherian, HO(M)Y =~ (MV)" and HI{(M)Y =~
Ug(MY) for all 7 ([16, 4.2, 5.6]). This is based on the fact that, over
a noctherian ting, fat modules and injective modules are interchanged
by Matlis duality. This was first proved by Matlis when the ideal @ i3
generated by a regular sequence.

But modules are not necessarily duals, so informations about the local
cohomology functors H: do not always provide informations about the
local homology functors U7,

1.6. Formal depth, codepth and dimension.

A sequence of covariant additive functors G, 1 A — B, n € Z, between
abelian categories is a descending connected exact sequence of functors
if G, = 0 for n < 0 and if each exact sequence 0 — M’ — M — M — 0
in A gives rise te a long exact sequence

s G (M) — G{M'Y — G M) — Gy (M) — ..

in a functorial way.
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When we have such a sequence, as in ([18, 1.1] or [17]), we put
g- (M) = inf{iiG;(M) # o} for each object M in 4 (so that o £
g- (M) < 00).

Dually, we define f~ (M) for an ascending connected exact sequence
of functors F™ in the same way.

These numbers can be viewed as a kind of codepth or depth respec-
tively.

When ¢ is an ideal of thc ring A, we are merely concerned with the
sequence ixth (A/a,-), Torf (A/a, ) Hi(-), US() and with the corre-
sponding numbers. Here are some first rcmarks about them, which will
be completed later {1.7, 2.4).

Proposition. fel o Ch be ideals in the ring A, let M an A-module
(i) ext;(A/a, M) = h (M)
(ii) tor?(A/a, M) = ext7(A/a, M")
(i) ext (A, M) < oxt;(,fl/b, MY
(iv) tor(Afa, M) < tord(A/b, M}
(v) the numbers ext (Afa, M), tor?(A/a, M) only depend on the
topology defined by the ideal .

For (i) and (i), see [18 5.3.15, 5.3.11]); (ii) is a direct consequence
of the Ext-Tor duality 1.5; {iv) followb from {ii). and (iii). Since local
cohomology only depends on the topology defined by the ideal a, so does
ext?(A/a, ) in view of (i), and so docs also tor?(A/a,-) in view of (ii).

We also define g (M) = sup{i|G:(d) # 0} (so that g, (M) = —o0 or
0 < g (M} < oo) and fH{M) in the same way. These last numbers are
relative homological dimensions.

1.7. The depth-codepth sensitivity of the Koszul complex.

The depth sensitivity of the Koszul complex was proved by Barger
and Hochsler for a coherent ring (2], [8], by Kirby and Mehran {or any
commutative ring [10].

An approach involving both depth and codepth can be found in ({18,
6.1] or [17]}. .

Let * = x),..., %, be a scquence of elements of the ring A generat-
ing an ideal a, and let K.{x} be the associated Koszul complex. For an
A-modute M, we consider the descending and ascending Koszul com-
pexes K. (e, M) = K {2} ®a M, K {&, M) = Hom (K (z). M); we note
their homologies by H{z, M) and H*(z, M) respectively. These func-
tors f{x, ) and Hi(x, ) are descending, ascending connected exact se-
guences of functors. In the 110L¢1L1m15 of 1.6, we have the following result
([18. 6.1.6, 6.1.7]).



970 A-M. SIMON

Theorem. Let z = x1,..., %, generate an ideal o in the ring A and
let M be an A-module. Then h_(z, M) = tor?(Afa, M), h™ (2, M) =
ext, (Afa, M).

Corollary. Let a = {z1,...,%,) be ¢ finitely generated ideal of the
ring A, and let M be an A-module.
() tor?(Afa, MV) = ext;{Afa, M)

(i) The numbers hy (M), ext;{A/a, M}, tor? (Afa, M) are finite si-
multaneously.

In that case, ext7(A/a, M) + tor?(A/a, M) < n.

(iil) If the numbers hT (M), ext{A/a, M), tor?(A/a, M) are infinite,
then, for any ideal o', open in the a-adic topolugy of A, the num-
bers ext; (Afa', M), tord (A/d, M), u® (M) are also infinite.

(iv) If f : A — B is a morphism of rings, if b= f(a)B, then, for ecach
B-module N, we have hy (N) = extz(B/b, N} =ext(A/a,N) =
ho (N), torB(B /b, N) = tor?(A/a, N).

Proof:

(i) We have an isomorphism K (z,M)V= K (x,M"), so tor*(A/a,MY)
=h_(z,MVY=h"(z, M) = ext(Ala, M)

(i) This is a consequence of the self-duality of the Koszul complex:
Hi(z, M) ~ Hy_;(z, M) {see [18, 6.1.8]).

(iii) When an ideal @’ is open in the a-adic wopology, we have a D
a" for a certain natural number r. Using 1.6, we obtain co =
tord (A/a, M) = tor?(Afa", M) < tor?(A/a’, M) = co. The
open ideal o' being fixed now, we have also tor? (A/a", M) = oo
for all ideals o”, open in the a’-adic topology. So the module M
belongs to the class C, {1.4) and, as M = oM, we have also
Ug (M) =0 (1.3) and v (M) = oo.

{iv) Take the image y in B of the sequence = generating a 1 y; = f(z:).
There are obvious isomorphisms K (y) ~ K.(z) ®4 B, K.(y) ®n
N ~ K () ®4 N, Homp(K (), N} ~ Homa(K (z), N). So this
is another consequence of the thearem above.

Note that we have obtained here a change of rings result for the
depth A7 (-} (a finitely generated) in a situation where we don’t
have a change of rings theorem for the local cohomology functors
H(). m

2. U-codepth

In local cohomology, we have the equality Ay (M) = ext,{A/a, M) al-
recady mentionned {1.6}. Wec want an analogous result for the U-codepth
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u% using Tor instead of Ext. To achieve this, we need some preparation.

2.1.
The following lifting proposition was proved iu {[4, 3.5]) in the local
Case.

Proposition. Let a be an ideal contained in the Jacobson redicel of
the ring A, and lel F' be o flat A-module such thal F/af is free as an
Afa-module. If {e;]s € I} is a set of elements of F' such that its tmaoge
{&:)i € I} tn F/af is a basis of Ffal", then the set {e;j1 € 1} generates
a pure free submodule L of Fand I'= L+ aF.

Proof:
We RArst prove the lreeness of the e; in F. I Z:’;, bie; =0,0; € A,
we put b = (by,..., by}, e = (e1,...,8y); In matricial language, we

have b.e* = 0. By a flatness criterium ([5, 1, Section 2, proposition 13,
corollary 1]}, there is a matrix X € A™*™ and a vector f € F'*" such
that et = X.f5 b.X = (. Denoting the images modulo the ideal a by
(7). we have &' = X f*. But the & form a basis of F/eF, the matrix
X is thus right-invertible, and so is the matrix X since « i contained
im the Jacobson radical of A. From 6.X = 0 we deduce b = 0 and the
freeness of the e; in F.

We now prove the purity of L in F. As F is flat, it is enough to
check the injectivity of the maps Ljef — F/eL for each ideal ¢ of A. As
the image & of the elements e; of L form a basis of F/al", the natural
morphism f/al — F/aF is an isomorphism, and so is L/{e + ¢}L —
F/la+c)F. But the ideal (e + ¢)/c of A/cis contained in the Jacobson
radical of A/c. We apply the first part of the proof to the flat A/c-module
F/cF and to the images of the e; in F//eF: these images generate a free
submodule of F/cF, so the morphism L/cL — F/el is injective and L
is pure in /. Now FF= L+ aF is clear. B

2.2,

Proposition. Let a be an ideal contained n the Jacobson radical of
the ring A, and let M be an A-module with M = aM. Then there exists
an epitnorphism P — M where P is o flat A-module with P = oP.

FProof:

Let 0 - K — FF — M — 0 be an exact sequence, where F is free.
As M = aM, the sequence K/aK — F/aF — 0 is exact. Choose in
K elements y; whose images in the free A/a-module £/ef form a basis
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of FfaF. By 2.1, these y; gencrate a free pure submodule L of F, and
LCK SoP=F/Lisflat, and P = aP since F = L +aF Now the
epimorphism F — A induces an epimorphism P = F/L — M. B

2.3.

In the preceding propoéition, the condition M = aM means that the
Tor-codepth and the U%-codepth of M are positive: tor?(A4/a, M) >
0, ©2 (M) > 0 {1.3). On the other hand, for the flat module P, we have
tor?{A/a, P) = co = u% () (P belongs to €, sec 1.4). So this shows
that the functions tor2{4/a,.) and v () satisfy the duals of the axioms
of Itch characterizing a homological grade [9]. Tt will be used to prove
the equality between the U%-codepth and the Tor-codepth.

When the ring is noetherian, we get rid of the assumption on the ideal
o by tensorizing with A. Indeed, in that case, A is A-flat, 4, = ¢"A, &
is contained in the Jacobson radical of A [1], and we have the following
easy observation, extending ({18, 2.2.2]).

Lemma. Let a be on ideal of the noetherian ring A. Then, for each
A-module M, the module M is isomorphic to the a-adic comp!etion of
the ,;1 module A ®4 M, and US(M) = UM A ®4 M), Tor} (A/a", M)
Tor (A/an A@a M) for elln > 0.

(If L. - M — 0 is a free resolution of A, then A®4 L is a free
resclution of the A-module A®4 M, and A/3"® 3 (A®A L) ~ A/a"®4
L =~ A/a™®a L.. This gives the result, after taking limits for the U-part
of it).

2.4.

Theorem. Let a be an ideal of the ring A. If a is contoined in the
Jecobson radical of A or if A 1s noetherian, then, for each A-module
M, u® (M) = tor?{A/a, M).

Proof:

We already know that v (M) and tor*‘ (A/a, M) vanish simultane-
ously, exactly when M 3 o.M (1.3).

With 2.3, we are reduced to the first case, where a is contained in
the Jacobson radical of A. In thal case, if one of the numbers above is
positive finite, we have an exact sequence 0 — M; — P — M — 0, where
P is flat and P = aP (2.2}. The long exact sequences associated with
it shows tor (A/a, M) = tor (Afe, M) — 1, w2 (M) = u® (M) — 1. So
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by an induction argument we have u® (M) = tor?(A/q, M). This shows
also that these two numbers are infinite simultanecously. B

2.5.

Proposition. Imder the hypothesis of 2.4, if t = w“ (M) < oo and +f
the idenl o is finitely genercted, then

UMY = lim Tor, (A/a™, M).

Proof:
This is done by induction on ¢, using an exact sequence as in 2.4 (after
having Lensored by 4 in the noctherian case), the case t =01is 1.3. &

3. U-dimension and H-dimension over a noetherian ring

We now study the dimensions u® (M) and A7 (M) as defined in 1.6.
Our rings are now noetherian.

In local cohomology, it is known that AT (M} < dim M [for each A-
module M [15] (moreover, if A is finitely generated and if & = m is the
maximal ideal of a local ring, then &} (M) = dim M [11]).

We stablish an analogous inequality for the U-dimension. This in turn
allows us to refine the inequality above. To achieve this, we need a change
of rings theorem for the U, analogous to the corresponding one in local
cohomology.

3.1.

Let M;, 4 € I, be a family ol modules over the noetherian ring A.

Then {B;M;)" = {w € l'liﬂ;m for all n, all but finitely many compo-
nents w; of w belong to a™M;} ([16, 9.4)), so (@:M:)" = (D M)

When M; ~ M for all 4, we write as usual M) = @;M;, M! = TLM,.

The following lemma was observed in {[14, p. 77. 2.4.2]).

Lemma. Let I be a set. Each short exact sequence 0 > M — M —
MY — 0 of finitely genernted modules over the noetherian ring A gives

rise to on exact sequence

0 — (MUY 2 (0 2 ("
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Proof:

As A is A-flat and as X = A ®4 X when X is a finitely generated
module, by tensorizing with A we are reduced to the case where A and
our finitely generated modules are complete in the a-adic topology. In
that case, the sequence above is a restriction of the exact sequence 0 —
M7 — MY = M7 — 0, so 4 is injective. We already know that 9 is
surjective (1.2). Let w € ker? = (M)A 0 M. By the Artin-Rees
lemmna, there is a natural number ¢ such that, for all n > 0, a™ ™M N
M' = g™(@*M N M’). As w € (M)*, for each natural number =
there is a finite subset J, of F such that, ¥2 ¢ J,, w; € ¢™**M. So,
Vi ¢ J.,w € &M N M C ¢™M’, this means w € (MUY and
finishes the proof. B

Remark.

By excrcising a livtle more, one can prove that (MY))" is in fact a
pure A-submodule of M! when M is finitely generated (sec [18, 2.1.9],
for the case M = A). As a consequence, for all ideal b of A, we have
an isomorphism (M D) /b (MUNA = (MM Indeed, as b = bA
(|5, Scction 3, 4, corollary 1]), we are again reduced to the case where
A is complete. In that case, we apply the lemma to the sequence & —
bM — M — M/bM — 0, we obtain ((bM) ) = (MDY N (bM)! =
(MINANb.M! = b (M) and the desired isomorphism. In particular,
for a free A-module L, we have (L/bL)" =~ L/bL.

3.2.

Proposition. Let A be a finitely genereted module over the noethe-
rian ring A, and let I be a sel. Then the module N = M) belongs to
the classe Cq : US(N) = N, U(N) =0 for¢ > 0.

Proof:

Let ... L, Lo Ly E_e, M — 0 be a resolution of M, where the L; are
finitely generaied free. Put M; = imd;. The short exact sequences
0— M,y = L; — M; — 0 give rise to exact sequences

0 — (M) — (LI — () — 0

i+1

by 3.1. But L is a free resolution of MU, so we have the result. B
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3.3.

Theorem. Let [ R — A be a morphism of noetherian rings such
that A is finitely generated as an R-module. Let v be an ideal of R
and a = f(r}A be ils extension in A. Then Ul and U} form noturally
tsornorphic descending connected exact sequences of funclors from A-
modules o R-modules.

Proof:

An A-module M can be viewed as a B-module; on M, the e-adic and
the r-adic topology are the same. Take a frec resolution ... 1, — Ly —
M — 0 of M as an A-module. By (3.2}, the modules L; belong to the
classes C, and C, introduced in (1.4). Completing, we get the natural
isomorphisms UZ(M) ~ Hy(L )~ Ur(M). &

3.4.

The preceding thecrem is uscful for the computation of the Uf{M),
it brings us back to the first case studied by Matlis, namely the case
where the ideal a is generated by a regular sequence. Indeed, if @ =

(Z1,....2n), we use a change of rings B = A[Xy,..., X, EN A, where
B is a polynomial ring in the indeterminates X;, where f is defined by
FIX:) = z;. The regular sequence Xy,..., X, on the ring B generates

an ideal b and, for each A-module M, for all i, US(M) = UP(M).
This allows generalizations of some Matlis results. Here is a first one
(see [13]).

Corollary. If the idecl a is generaied by a sequence oy, .. ., &, regular
on the module M, then M belongs to C,.

Proof:

Using a change of rings as above, we are reduced to the case where
the sequence z = 21,...,Z, is regular on both A and M. The sequence
et =zt,...,a!, generate an ideal aq, the Koszul complex K (z*) is a finite
free resolution of A/a;, and we have H;(x!, M) = Tor{{A/a,, M) = 0
for all i > O since the sequence z' is regular on M. As noted in (1.4)
this implies M € C,.

3.5.
We say that an ideal ¢ of the noetherian ring A can be generated by
7 elements up to radical equivalence if there exist clements z,,..., 2,

generating an ideal b with rada = rad b. Then the e-adic and the b-adic
topology are the same, and Ug(M) = UP(M).



976 A.-M. SiMon

Assume @ = (z1,...,%,). Matlis proved that US(M) =0for i > n
if the sequence z,,...,%, is regular on the ring A ([12, theorem 4.12]).
Greenless and May obtained the same result in a more general situation.
The change of rings theorem allows a slight refinement of this. However,
Matlis method dualized gives also a very elementary proof of the corre-
sponding result in local cohomology, in a somewhat unusual formulation
which will be useful later. That is why we insecrt it here.

Lemma. Let M be a module over the noetherian ming A. If the image
of the ideal ¢ tn A/ Anng M can be generated by n elements up to radical
equivalence, then ul (M) <n and hf (M) <n.

Proof:

We first use a change of rings A — A/ Anng M, then a change of
rings as described in 3.4, and we are reduced to the case where the
ideal a is generated by a regular sequeuce zy,...,%,. Write again 4, =
(2%,...,2%). As Afa, is of finite projective dimension n and as H:(M) =
lim Ext? (Afay, M) ((15], or [18, 4.1.3]), we have Hi{M) =0 for i > n.

Dually, following Matlis, we take a projective resolution of M ... F; 4

= Py — M — 0, and put M, = imd,. For & = 1, we have
Torf (Afar, M) =~ Torf, . (A/as, M) =0, s0 My € Co (1.4) and w4 (M) <
7. B

3.6.
Here is another generalization of a Matlis result.

Corollary. In the situation of (3.5),U2(M) ~ US(HIM).

Proof:

Followirig Matlis ([12, corollary 5.5]), write N = M/H2(A4) and take
an injective hull J of N viewed as an A/ Anna M-module. By (3.5), we
have cxact sequences

0 — US(HIMY — US(M) — US(N),
0 — Ug(N) — UR(J).

Let @ be the image of ¢ in A/ Anng M. As HJ(N} = 0, we have also
HOY(J) =0 and h3 (J) = oo since J is an injective A/ Anng M-module.
Using (1.7 coroltary), we obtain A (J) = oo = u%(J}. So UZ(J) =
0. U(N) =0, and the result follows from the first exact sequence. #
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3.7.

Cornbining both local cohomology and local homology, we sharpen the
bounds obtained in 3.5 for the £/-dimension and the H-dimension.

Theorem. Let a be an ideal of the noetherian ring A and M an A-
module. If the smage of the ideal o in Af Anng M can be generated by n
elements up to radicel cquivalence, if b (M) 4s finile, then

(1) wp (M) + h (M) <n,

(i) AT (M) + w2 (M) < n if a s conlained in the Jucobson radical of

the ring A. '

Proof:

Rentark Brst that these incqualities are not equivalent, modules are
not necessarily duals. N

Let us first prove (i).

If by (M) = 0, this is (3.5).

If A7 (M) = ¢ > 0, we go by induction on ¢, using an exacl sequence
O0—- M — J— M — 0, where .J is an injective hull of M viewed as
an Af Anng M-module. As in 3.6, we have A7 (J) = oo = v2{J), so
hy (My) = b7 (M) — 1, v (M1) = v (M) + 1; we add these equalities
and obtain (1) by induction.

We now prove (ii) in a dual way.

TF u® (M) = 0, this is (3.5). In any case, u® {M) < oo {use 2.4 and 1.7
corollary ii}. Uf w®(Af) = ¢ > 0, we use an exact sequence 0 — M; —
P — M — 0, where P is a flat A/ Anny M-module with P = aP (2.2).
We write @ for the image of the ideal @ in the ving A = A/ Anny M. We
have oo = tor?(A/a, P) = tor? (A/a, P) = u®(P) (1.7 corollary (iv) and
2.4}, h7 (P) = oo (1.7 corollary ii). The long exact sequences of the Uf
and H} give thus v (M) = «® (M) — 1, AT (M) = A7 (M) + 1. The
conclusion follows now by induction. H

Remark.

Let @ be a hGnilely geuemteci ideal of an arbitrary conimutative ring
A, and n a natural number. If the U®-global dimension of A is less than
n, Le. if UFH(N) =0 for all i > n, for all modules ¥, then the conclusion
in (3.6, 3.7 (i)} is still ‘valid.

Dually, if the H,-global dimension of A is less than n, i.e. if HI{N) =0
for all i > n, for all modules N, then the conclusion in (3.7 ii) is valid.

Indeed, in the proofs of these facts the noetherian hypothesis on the
ring A has been used only to obtamn that the U®-global dimension and
the H,-global dimension of A are less than n (3.5).
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3.8.
The last results are more suggestive in the local case.

Theorem. Let A be ¢ noetherian local ving of marimal idead m, and
N an A-module. Then
(i) wr(M) < dim A/ Anng M — k(M)
(1) BH (M) <dimA/Anna M — u® (M)

Note that we cannot replace dim A/ Anng M by dim M.

Example.

Let M = E be the injective hull of the residue field of a complete local
ring A of dimension d > 0. We know dim £ =0, Anng £ =0, E ~ AY,
so UN(E) ~ Hi(A)Y (1.5). As HY(A) # 0, we have uJ{E) = d.
We have also w"(E) = h;,(A), the classical depth of the ring A, and
ho{E)=0=ht(F).

Note also that these inequalities might be strict.

Example.

In ([16, 9.4]), we showed a complete module M over a regular local
ring of dimension d > 1, such that Annga M = 0, SuppM = Spec A
(so that dimM = dim A), and such that k(M) < RE(M) < d As
that module is complete, we have also (M) = 0 = (M) (see 1.4,
M € ). TFor that module both inequalities are strict.

CQuestions.

1. How can we refine the above inequalities?
2. If M is artinian, then (M) = dim A/ Ann4 M. Is this still true
for a module M with M = H2 (M)?
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