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ONE-SIDED DIVISION
ABSOLUTE VALUED ALGEBRAS

ANGEL RODRIGURZ PALACIOS

Abstract

We develop a structure theory for leflt division absolute valued
algebras which shows, among other things, that the norm of such
an algebra comes from an inner product. Moreover, we prove the
existence of left division cownplete absolute valued algebras with
left, unit of arbitrary infinite hilbertian dimension and with the
additional property that Lthey have no nonzero proper closed left
ideals. Our construction involves results from the representation
theory of the so called *Canonical Anticommutation Relations”
in Quantum Mechanics. We also show that homomorphisms from
complete normed algebras inlo arbitrary absolute valued algebras
are contractive, hence aulomatically continuous.

Ine memoriam
Este articulo ha sido escrito en homenaje a Pere Menal i Brufal., Acaso
las matematicas no sean el medio mas apropiade para expresar ¢l dolor
por la muerte de este gran amigo asi como la admiracion que su trabajo
me merecia. [.as matematicas no obstante propiciaron una beila amistad
y fueron credo v lenguaje comnin eantre nosotros.

0. Introduction

A still unsolved old question is that of the nonassociative extension of
the Gelfand-Mazur theorem, namely if any division normed {nonassocia-
tive) algebra must be finite-dimensional (which would imply dimension 1
in the complex case, and 1, 2, 4, 8 in the veal one, by a theorem of R. Bott
and ). Milnor [6]}. This problem was explicitly posed by F. B. Wright
[27] in 1953, who in the same paper gave a partial affirmative answer
proving that division absolute valued algebras are [inite-dimensional.
Another folklore partial positive result about this question is that oune-
sided division complete normed complex algebras are isomorphic to the
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complex field (see [14]), the case of (two-sided) division noncomplete
normed complex algebras as well as that of division (even complete)
normed rcal algebras remaining open. In the converse direction, J. A,
Cuenca [10] has recently given exarnples of infinite-dimensional one-sided
division absolute valued algebras:over the field of real mumbers.

Since the [act that one-sided division absolute valued complex algebras
are isomorphic to the complex field can also be constdered as folklore
(see Proposition 2 in this paper), it séems to be reasonable to look for
a structure theory of arbitrary one-sided division absolute valued real
algebras, and in lact to provide such a structure theory is the main
purpose of this paper. )

To understand the philosophy of our work, it is suitable to take into
account that, easily, lell division ahsolute valued algebras are “isotopic”
to left division absolute valued algebras with a left unit (sce Proposition
4). So the attention must be centered on these last algebras, and then
the set (say P) of all lefs multiplication operators on such an algebra is
a subspace of bounded linear operators on the normed space (say X) of
the algebra containing the identity operator and satisfying

(+) @) =T )

for all T in 7 and = in X. We isclate this information in the [irst section
of the paper, and we prove in Theorem 1 that, if P is a subspace of
bounded linear operators on any real normed space X containing the
identity operator (say [) and satisfying (#), then the operator norm on
P derives from an inner product and, for 7 in P orthogonal to 7, the
equality : '

T =—||T|*!

holds. It follows that every clement in P is an invertible operator on
X so, as a first consequence, absolute valued algebras with left unit are
automatically left division algebras.

The content of the above referred Theorem 1 is stated in the pa-
per in an equivalently reformulated form involving certain prehilbertian
quadratic division-Jardan algebras with involution which, curiously, have
been shown in [20] to be the only “smooth normed” nomnassociative com-
mutative algebras. From this version of Theorem 1 we derive in Section 2
the main result in the paper (see Theorem 2) asserting that “unital »-
representations” of these Jordan algebras on their own pre-Hilbert spaces
naturally give rise to (automatically left division) absolute valued alge-
bras with left unit, and that by this constructive method all absolute
vahied algebras with left unit arise. This last assertion in Theorem 2
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means that the norm of an absolute valued algebra A with left unit e
comes [rom an inner product (. | .) satisfying

(ab|c)=—(blac) and alab)=—|al®b

for all ¢,b,¢ in A with ¢ orthogonal to e.

In the third section we use Theoremn 2, together with the basic facts
about the so-called “canonical anticommutation relations” for quantum
mechanics (which the reader may find in the first pages of [8]), Lo prove
in Theorem 3 the existence of complete absolute valued algebras with
left unit of arbitrary infinite hilbertinn dimension, and that such al-
gebras can he chosen with the additional property that they have no
nonzero proper closed left ideals (note that every left division algebra
has no non zero proper right ideals). Since small perturbations of the
product of a left division complete absolute valued algebra give rise to
new left division algebras (Proposition 7), the existence of a wide col-
lection of infinite-dimensional left division non-abscolute-valued complete
normed algebras is asured. Let us cmphasize also the existence of infinite-
dimensional complete normed algebras on which the operators of left and
right multiplication by any nonzero element are surjective {a consequence
of Praposition 8).

The concluding section of the paper (Section 4) is devoted to prove the
automatic continuity of homomorphisms from complete normed algebras
into absolute valued algebras. More perecisely, we show that such ho-
momorphisms are contractive. This is perhaps the first nontrivial result
involving arbitrary absolute valued algebras.

Though the axiom || ¢b ||=| & || | & || scems to be very natural,
the study of absolute valued algebras has received the attention of a
relatively small mamber of authors. Thus we are only aware of the papers
(cited cronologically) by A. A. Albert [1] (1947) and [2], F. B. Wright
[27], K. Urbanik and F. B. Wright [26], K. Urbanik [24] and [25], M.
L. El-Mallah and A. Micali [19], and M. L. Ei-Mallah [15], [16], [17]
and [18] (1990). We emphasize the result in [26] (1960) asserting that
R, C.H, and © are the only absolute valued algebras with unit (a fact
that, as it will be explained in Remark 4(i}, can be easily derived from
Theorem 2). Also let us mention its easy consequence, previously proved
in [27] and already mentioned at the beginning of this introduction, that
division absolute valued algebras are finite-dimensional, as well as the
relevant result in [19] showing that absohite valued algebras satisfying
the identity ¢(ba) = (ab)e also must be fAinite-dimensional. Examples of
infinite-dimensional absolute valued algebras were known in the classical
literature {(see [28], [24), [8], and Remark 3(1}}, but none of the algebras
in these examples are one-sided division algebras. | hope our paper,
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as well as the almost simultancous éne by J. A. Cuenca {10], could
contribute as a revulsive to a subsequent flourishing development of the
theory of absclute valued algebras.

1. Subspaces of linear operators whose nonzero elements
are multiples of isometries

In this section we will deal with subspaces P of bounded linear oper-
ators on a real normed space X containing the identity operator on X
and with the property that

I T (@) [1=I17 {1 =

for all # in X and all T in P. The results obtained here will become the
main tools for the proef in the next section of the structure theory for
one-sided division absolute valued algebras. In fact, we will prove that
the operator norm on subspaces of operators as considered above derives
from an inner product. [t will also turn out that these subspaces are
actually quadratic Jordan algebras of operators whose nonzero elements
are invertible, so that they correspond with somie abstract mathemati-
cal models previously-considered in the answer to other problems and
that are closely related with the “canonical anticommutation relations”
of quantum mechanics. In fact, the possibility of representing the canon-
ical anticommutation relations by means of bounded linear operators on
Hilbert spaces will allow us to prove in Section 3 the existence of infinite-
dimensional one-sided division absclute valued algebras with additional
properties.

We begin our argument with the following (perhaps well-known)
lemma. For a normed space X, BL{X} will denote the associative
normed algebra of all bounded linear operators on X.

Lemma 1. Let X be ¢ Banoach space, and T : X — X be a linear
isometry which is not onto. Then the open unit ball in BL{X) with center
T and radius 1 conleins only operators with closed range and which are
one-to-one but not onto.

Proof: Recall that a linear operator 7" on X is said to be bounded
below {by m > 0) if || T(x) ||> m ]| « || for all  in X. Since, for 7" in
BL(X), T is one-to-one with closed range if and only if T is bounded
below, the lemma will follow from the more general result, we will prove
here, that, if 7" is bounded below by e and is not onto, then the open
bail in BL(X) with center T and radius m contains only bounded below
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operators which arc not onto. Easily, for such a T and any 5§ in BL{X)
with || 7-- § ll< m, S is hounded helow by m—~.|| T — & ||. If actually
| T =8 ||< % and § is surjective, we have that § is invertible in BL(X)
with

LR E—n— s0 |

2 m
sy (<) s
—lr=5] " w’ I 2 .ll "

and so T is invertible in BL{X) [4, Theorem 2.11,, which is a contra-
diction. In this way we have proved that the open ball in BL{X) with
center T and radius 7 contains only bounded below operators wich are
not onto. It follows that the set

QN :={R e BL{X): R bounded helow and not cuto}

is open. Now the open ball in BL{X) with center T and radius m is a
connected topological space which is the disjoint union of its intersections
with £ and with the set of invertible clements of BL(X). Since these
intersections are open and the first one is ndnempty, it follows that the
refered ball is contained in €, as required. B

At this time we recall some concepts suitable for a reasonably clear
statement of our main result in this section. A Jordan algebra is a com-
mutative algebra (say J) satisfying the “Jordan identity”, namely

22 (y.x) = (s%y).

for all &, in J. The most easy examples of Jordan algebras are the so-
called “Jordan subalgebras of associative algebras”, namely subspaces of
an associative algebra which are closed under the “Jordan product™

, :
ab = E(ﬂb + by, -

wlere the associative product has been denocted as usually by juxtaposi-
tion. Tn case the associative algebra is the one of all linear operators on a
vector space X, such Jordan subalgebras are called “Jordan algebras of
operators on X7, An algebra is said to be guedratic if it has o unit 1 and,
for every 2 in the algebra, there exist A and g in the base field such that
2%+ Ax + pl =0, A normed algebro is a real or complex algebra whose
vectar space is a mormed space with respect t6 a norm || . || satisfying
Py 1<l z || || # || for all &,y in the algebra. A wnital noried olgebra
is a normed algebra with-unit 1 satislying || 1 |= 1. Finally a smooth
‘normed: afgebra is a unital normed algebra whose unit is a smooth point
of its closed unit ball. All assertions in the following proposition, that
are not, of straighforward verificalion, are consequences of |20, Theorem
27] (see also [22, Section 2J}.
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Proposition 1. If H is a real pre-Hilbert space and we consider on
R1® H the product given by

(AL +)(pr+ &) == A — (n 1 EN1+ (A + pm)

for all A, pp in R and n, € in H, then R1 ® H becomes o quadratic Jordan
algebra over B which, endowed with the pre-Hilbert norm

| AL 47 ll:= (32 i n [D)Y2,

is a smooth normed algebra. Moreover, every real smooth normed com-
mutative algelra artses in this way.

We will refer t.o the normed algebras described in the above proposition
as the “smooth normed Jordan algebras”.

Remarks 1. i) An element z in a Jordan algebra J with unit is said
to be invertible if there exists y in J with z.y = 1 and z.y% = y (see
[13, Definition 1.11.5]). A division-Jordan algebra is a Jordan algebra
with unit whose nonzero clements are invertible. It is easy to see that
all smooth normed Jordan algebras are division-Jordan algebras, so they
are real normed division-Jordan algebras under any algebra norm (which
must be greater than the canonical pre-Hilbert norm because this last
norm equals the spectral radius). It was proved in [14] that no more real
normed division-Jordan algebras exist.

ii) It is well-known that if A is an associative algebra with unit 1 and
J is a Jordan subalgebra of A with 1 € J, then an element © in J is
invertible in J in the above sense if and enly if z is invertible in A in
the usual sense and its associative inverse lies in J [13, p. 51]. In the
particular case of J being (isomorphic to} one of the smooth normed
Jordan algebras, this fact is almost obvious. For, if for z = A1 + 7 in
J = R1 & H we donote by z* the element in J given by z* := A1 — 7,
denoting by yuxtaposition the associative product of 4 we have

'z =zz* = A1-g' = N1-nn= N+ In[H)i=] i1,

0 every nonzero = in J is invertible in A in the associative sense, with
associative inverse equal to || z |}~ z* {which of course lies in J).

iii) The normed space of a smooth normed Jordan algebra is certainly
a nonzero real pre-Hilbert space, and, given any nonzero real pre-Hilbert
space K, up to isometric isomorphisms there is a unique smooth normed
Jordan algebra whose pre-Hilbert space is K. This is so because, chosing
any norm-one element u in K and denoting by H the orthogonal comple-
ment of Ru in K, H is the only pre-Hilbert space satisfying K = Ru®' f,
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so there is a unique commutative product en the normed space of K con-
verting it in a smooth normed Jordan algebra whose unit is w. Moreover,
the choice of the norm-one element u in X i irrelovant thanks to the
“rotation property” of pre-Hilbert spaces, namely any norm-one element
can be carried into another by means of a suitable surjective linear isom-
etry. Indeed, this is clear for dimension 1 or 2, and, i the remaining
case, if v and ¥ are norm-one elements in K and if we denote by L the
linear hull of {«, v} as well as by 2 a linear 1SOr11(,t1v from L onto L with
w{u} = v, then the mapping

@:z+z}—up(e)_+s~'

from K=1L® Lt into K is a surjective lincar 1sometry satisfying ¢(n) =
v. As a consequence, given a cardinal number R, there exists a unique
smooth complete nounod ]ordrm algebra w1th h]ibCl tian dimension equal
to

Now we state and prove the main IL‘bll]f EFel Ihzs scotion.

Theorem 1. Let X be ¢ nonzero veal normed space, and PP be a sub-
spuce of bounded finear operators on X conieining the idenbity operator
and satisfying

T I=T e

forallT in P and allz in X. Then P is a Jordan tuf_qebm of operalors on
X ‘which, endowed with the operator norm, is wometrically isomorphic
to some of the sinooth novmed Jordan algebras.

Proof: In a first step we redice the proof to the particular case of
X being a Banach space. To this end, consider tlic completion X of
X and, for T-in BL(X), let T denote the unique element in BL(X)
which extends T. Then the isometric homomorphism T — T from the
associative normed algebra BL(X) into the Banach algebra BEL(X) maps
P onto a subspace {say P} of BL{X) which clearly inherits the properties
of P: P is a subspace of bounded lincar operators on X containing the
identity operator on X and satisfies

ISt =S )yl

for all §in P and all y in X. In this way, if the theorem is true in the
complete case, the infermation it gives about P is easily transfered to PP,

It a second step we assume X to be a Banach space and we show that
then every nonzero element in P is invertible in BL{X). This fact being
clear if the dimension of P is one, assume dim{FP) > 2, so that P\{0}
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with the topology of the operator norm is a connected topological space
in which the subset

{T € P\{0} : T is invertible in BL(X)}

is certainly open (see [4, Theorem 2.11}} and nonempty. Now this second
step is concluded by verifying that the complementary subset

Q:= {T € P\{0} : T is not invertible in BL{X}}

is also open in P\{0}. But, if Tisin @, || 7 ||7? T is a linear isometry
from X into X which is not onto and so, by Lemma !, the open ball in
P\{0} with center T and radius || T || is contained in €2, hence 2 is open
in P\{0}, as required. Since in what follows complex methods will be
applied, it is suitable to summarize our situation in the following way.
P is a real subspace of a unital complex {associative) Banach algebra (in
our case, the normed complexification of BL(X) [4, Proposition 13.3])
that will be denoted by A, the unit of A4 lies in P, and every nonzero
element T in P is invertible in A with || 77! [|=|| T ||~} Note that this
last property implics

(=) bz =17

for all T in P and all z in the spectrum of 7 relative to A.

The third step in our proof consists in showing that, for T in P\RI,
the real linear hull of {1,T} with the restriction of the norm of A is a
copy of the euclidean space R?. Chose z in the spectrum of T’ relative to
A and write A := Re(z) and § :=|| T'= A1 [[7! (T — A1), so that S lies in
P, || 8 ||=1, and the spectrum of § contains a number of the form ¢ for
some € in B. Then, for arbitrary &, 8 in R, a + ¢ lies in the spectrum
of ol + 35 s0, by (%}, we have

lal+B8S | =l a+ih |’=o® + 5% =
—oP+ P =+ | S|P B ="+ 5,

so that (o, 8) — al + BS is a linear isometry from the euclidean space
R? onto Ling{1,7}.

Our concluding step of the proof of the theorem will show as desired
that P is a real Jordan subalgebra of A isometrically isomorphic to one
of the smooth normed Jordan algebras. The consequence that the op-
erator norm on P derives from an inner product can be easily obtained
from the above step applied to the subspaces of BL{X) of the form
{§~'T: T € P} with S any nonzero fixed element in P, but in fact the
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prehilbertian nature of P will be reencountered in what follows jointly
with the remaining part of the information. We will use some concepts
and results from the theory of numerical ranges. Thus, recall that an
element a in A is said to be hermitian if f(a) lies in R for all f in the dual
Banach space of A with || f ||= f(1) = 1. Clearly, the set of all hermitian
clements in A is a real subspace of 4 so, if we denote by H the set of
those § in P such that 18 is an hermitian element in A, H is a subspace
of P, and we claim P = B1 @2 H. Indeed, obviously R1 N H = 0 and,
by the third step of the proof, every T in P is of the form A1 + 5 for
suitable A in R and S in P with || al + 85 ||?= o2+ || S ||? 82 for all
a, § in R, an equality that implies

i1 -1
| AL+ S 2= 22+ || S |I* and lim 1+p50 -1 =0

BER\{D},8—0 8

50 S is hermitian in A [4, Theorem 10.10], and so0 $ lies in H, concluding
the proof of the claim. A Theorem by B. Bollobds {see [5, Theorem 26.7])
asserts that, if a is an invertible hermitian element of a unital complex
Banach algebra with || @ [|=|| a~! ||= 1, then @® = 1. This applies in
particular to clements of the form TT"ETIS with § in H\{0} to obtain

S2=-|S5|*1

for all S in H, hence the restriction of the norm of A to H comes from an
inner product (. | .). In passing {from quadratic mappings to associated
symmetric bilinear mappings, we find

ST =~(S|T)1

for all §,7T in H. Finally, for every A1+ S and 1 +7 in P =R1¢" H,
we have

A1+ 8){pl + T) = O — (S| THL + AT + S,

so certainly P is a real Jordan subalgebra of A which is a materialization
of a smooth normed Jordan algebra. W

Corollary 1. Lei X be a nonzero veel normed space, P be a subspace
of BL(X) satisfying
() =T =

for all T in P and all x in X, end assume that some element in P is
invertible (with inverse possibly outside of P). Then the operator norm
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on P derives from an inner pmduct and all nonzero elements in P are
mvertabie

Proof: 'If the identity operator on X lies in P, the corollary is a direct
conseguence of the theorem, taking into account of course the infor-
mation about smooth normed Jordan algebras previously collected in
Proposition 1 and Remark 1{ii}. In the general case, since there exists
some S in P which is an invertible operator with || S [|=l] 7! [|= 1, the
mappingiT — 5~ ]bT g an mvertible-preserving linear isometry from P
onto a subspace {say Q) of BL{X) with the same properties that of P
but which contains the identity operator on X. Now it 1s clear how the
properties of 2, of being a pre-Hilbert space and having invertible all its
nonzero elements, can be transfered to F. &

Remarks 2. i) Let X and P be as in the corollary. If X is actu-
ally a Banach space, the assertion that all nonzero elements of P arc
invertible opcrators is an casy (,onscqncncc of Lemma 1 {recall the sec”
ond step in the proof of Theorem 1). However, the reader can verify
that the reduction method in'the first step of T-heorem 1 alone does not
allow to transfer this information to the general noncomplete case (the
point of difficulty is that the extension by continuity of an eclement T
in BL{X) to the completion of X may be invertible, while T" is not).
Therefore, it scems that the proof of the above commented assertion in
the noncomplete case needs the whole of Theorem 1.

it} Again, under the assumptions of Corollary 1 and with the notation
there, one can ask about the algebraic siructure of P. With the method
in the proof of the corollary and the information given by Theorem 1,
one obtains casily that TS !T lies in £ whenever S and T are in P with
S # 0. More precisely, for each norm-one element § in P, P with the
operator norm and product O given by

1
ReT = 5(RS“T+3'1<;—‘R}

is a smooth normed Jordan algebra. Although these facts invite to think
that P must be a “Jordan triple system of operators” on X (subspaces
of linear operators on X containing TST whenever 5 and T are in the
subspace), this is not the case in general, as shown by the following
example. Consider the division associative algebra H of real quaternions
with its usual absolute value as norm, take z in H with 22 € R1, and
for y in H let T}, denote the operator on H given by T, (z) := yzz for
all x in H. Then, if X denotes the normed space of H and we write
P = {T, :y € H}, P is a subspace of BL{X) satisfying the assumptions
in Corollary 1. If P was a Jordan triple system of operators on X, we
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would have T € P, giving the existence of some y in H with z2? = yz
for all 2 in H (implying, with £ = 1, 22 = y), so 2z would be in the
centre of H which equals B1, contrary to the choice of z. Subspaces P
of associative algebras with unit satisfying that all its nonzero elements
are invertible and that TS~17 lies in P whenever S and T are in P with
S # D seem to appear here for the first time in a natural way. It might
be interesting to explore abstractly the structure of such subspaces.

In concluding this section, let us consider spaces of linear operators
acting on complex normed spaces whose nonzero elements are multiples
of isometries and containing some invertible element. The result we
obtain in this case is very obstructive, it {ollows easily from Corollary 1
but, since contrarily to what has been asserted in Remark 1(i} in relation
with Corollary 1 the full strength of Theorem 1 now is not needed, we
give a more direct proof.

Corollary 2. Let X be a nonzero complex normed space, P be e {com-
plex) subspace of BL{X) satisfying

I T() 1=k T4 e

for all T in P and ail x in X, end assume that there exists some invertible
element tn P. Then P is one-dimensional.

Proof: Since the extension by continuity to the completion of X of an
invertible linear isometry on X is also an invertible linear isometry, the
set of all extensions by continuity to the completion of X of the elements
of P inherits all the properties of P, hence we may assume that X is
actually a Banach space. Then, as in the proof of the second step of
Theorem 1, Lemma 1 gives easily that every nonzero element in P is
invertible (even the separale consideration there of the case dim(P) = 1
is now unnccessary). Finally chose S in #\{0}, let T be any clement
in P, and z be in the spectrum of T'$~! relative to BL(X). Then
T — 28 = (TS~ — 21)9 is a noninvertible element in P, hence equal to
zero. It follows that P=C5. 1

2. Structure of one-sided division
absolute valued algebras

By a lefi division algebra we mean a nonzera algebra (say A) with
the property that, whenever a and & are in A with g # 0, there exists a
unique z in A satislying az = b. Of course we can consider the analogous
concept of right division algebra, and we say that A is a division algebra
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if it is at the same time a left division and. a right division algebra.
Considering, for an element o in an algebra A, the operators of left and
right multiplication by & on A denoted respectively by L, and R,, it is
clear that A is a left {resp.: right) division algebra if and only if, for
every nonzero ¢ in A, the operator L, (tesp.: R,) is bijective.

Since clearly one-sided division algebras have no nonzero zero-divisors,
it follows-that a finite-dimensional algebra is a left division algebra iff it
is a right division algebra, iff it has no nonzero zero-divisors.

Ancther relevant case in which one-sided division imptlies division is the
associative one. Even in this case we reencounter the concept of a division
associative algebra in s most familiar sense, namely the associative
algebra under consideration has a unit and all its ncnzero elements are
invertible. To see this, let A be a left division associative algebra, chose
bin A\{0}, and write e := L;'({b). By the associativity of 4, for every
z in A, I, commutes with Ly so also with Lb‘l, and thercfore we have

ex = Ly (b)z = Rp Ly (b) = L7 ' Ra(b) = Ly ' (bx) = Ly ' Lo(z) =z,

so that e is a left unit for A. Then, using again the associativity of A we
obtain (ze — £)A = 0, so e = z (since A is nonzero and has no nonzero
zero-divisors), hence e is actually a (two-sided) unit for A, Since A is a
left division algebra, for every a in A\{0} there is a inique ¢ in A with
ac = e, but, since then e(ca — e) = 0, it follows that also ca = e, and
therefore @ is invertible in A with'a™! = ¢. Now, for évery a in 4\{0},
the operator R, is bijective (with inverse niapping equal to R,-1).

Recall that an aebsoluic velued algebre is a nonzero real or complcx
algebra whose vector space is a normed space with respect to a norrm |-
satisfying | zy i=[ 2 || || ¥ || for all z,¥% in the algebra. The unsolved
general question if every division normed dlgcbra is finite-dimensional has
an affirmative answer in' the particular case of absoiute valued algebras.
This is a well-known fact first proved by B. Wright [27]. Today it follows
easily from the celebrated Albers-Urbanik-Wright theorem [286], asserting
that the only absolute valued algebras with unit are R, C, H and O
(the algebra of Cayley numbers), together with a standard argument of
“isotopy” due to A. Albert [1]. In the next two propositions we state
this result together with some improvements follmvnw from Corollaries
1 and 2 of the previeus.section.

Proposition 2. For a compler ebsobute valued elgebra A the following
assertions are equivalent: . . _
1) There exisis o in A such that L, is an tnvertible operator on A.
i} A is isomorphic to the complez field.
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i) A v finite-dirnensional,
iv] A is a division algebra.
v] A is a left division algebra.

Proof: Since the implications (1) = (i) = {w) = (v) = (i) are
clear (for (#32) = (2v) note that every absolute valued algebra has no
nonzero zero-divisors), it only remains to prove that (2) implies {(i2). But
it follows from the assumption {i) and the fact thal A is a complex
absolute valued algebra that the set P := {L,; : % € A} is & subspace
of bounded linear operators on the normed space of A satisfying the
requirements in Corollary 2. Hence P is one-dimensional and, since the
mapping & — L, i$ one-to-one, also A is one-dimensional. Finally note
that any ene-dimensional algebra with nonzero product is isonorpliic to
the base ficld. W

The result characterizing division absolute valued algebras over R in-
volves a peculiar concept of isotopy already used in the treatment of
other problems in relation with absolute valued algebras. Two absolute
valued algebras A and B are said to be iselopic if there exist lincar
isometries @y, w2, @y from A onto B satisfying

wi{ey) = pa(x)pa(y)

for all z, % in A. This notion is molivated by the obvious fact that, given
an ahsolute valued algebra A and arbivrary linear isometries 1, 2, s
from A onto A, the normed space of A with the new product © given by

z Oy = oy (palekes(y))

becomes also an absolute valued algebra. For our purposes, it should be
noted that isotopies preserve left, right, and two-sided division.

Proposition 3. For a veul absolute valued alyelva A the following
assertions are equivalend:
1) There exist a and b in A such thet L, and R, ave invertible op-
eralors on A.
i) A s sotopic o R, C, H, or O,
i) A 4s finile-dimensional.
iv) A 15 a division algebra.

Proof: As in the proof of Proposition 2, it is enough to show that (4)
implies (#1). So let us assume that (i) holds, and consider the subspaces
P and @ of bounded linear operators on the normed space of A given by

P={L, 2 € A} and @ := {f, 1z € A}.
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By Corollary 1, every nonzero element in any of these subspaces is in-
vertible, and then, chosing ¢ in A with || ¢ ||[= 1, the normed space of A
with new product @ defined by

Oy =R H2)L7 (y)

becomes an absolute valued algebra with unit {equal to ¢2). The above
referred Albert-Urbanik-Wriglht theorem gives that this last algebra must
he equal to B, €, H, or &. Hence the given absclute valued algebra A
is isotopic to one of these four algebras, as desired. W

Remarks 3. i) Propositions 2 and 3 are nontrivial, because of the
existence of real or complex infinite-dimensional absolute valued algebras
{see [26], [24], and [3]). The easiest examples of such algebras we know
can be constructed in the following wayv. Consider an infinite set U/,
so that there exists a one-to-one mapping ¢ from U x U into U, let A
denote the free real or complex vector space generated by U7 with bilincar
product determined on the generators by

wv 1= Hu,v)

for all &, v in U, and let || . || be the norm on A given by either
1/p
o] = (£ 1r)
uwel uels

(p any real number with p > 1), or

Z AL

uels

= supi{| Au [[u€ U}

!

Then it is straighforward to verify that A is an absolute valued algebra.
Since completions of absolute valued algebras are absolute valued alge-
bras, it follows that the classical Banach spaces L,(U) and co(U) can be
structured as absolute valued algebras. As a conseguence, the existence
of complete absolute valued algebras with nonrefiexive Banach space is
guaranteed.

ii} As it was announced in the introduction of [9], a relevant conse-
quence of the preceding remark is that the free real or complex nonasso-
ciative algebra generated by any set is an absolute valued algebra under
many pairwise nonequivalent norms. For, if A denotes the free nonas-
sociative algebra generated by an arbitrary set V, A is nothing but the
{ree vector space generated by the set { of all “nonassociative words”
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with entries in V with product the extension by bilinearity of the for-
mal juxtaposition of the elements in U, Since passing to juxtaposition of
nonassociative words is a one-to-one mapping (see [13, Lemma in p. 24]),
the preceding remark applies successfuly. The inclusion of this remark
here is & courtesy of M. Cabrera.

iin) Infinite-dimensional absolute valned algebras cannot satisfy any
familiar identity like associativity or commutativigy. While the re-
snlt coucerning associativity is a conscquence of the Gelfand-Mazyr-
Kaplansky iheorem on associative normed algebrag with no nonzero
zero-topological-divisors, the one concerning commutativity is due to
K. Urbanik and F. 3. Wright [26]. Both results are contained in the one
by M. L. El-Mallah and A. Micali [19] asserting that an absolute valued
algebra satisfying the identity 2(ye} = (ay)e is finite-ditmensional.

While by Proposition 2 the complex field is the only ong-sided division
absolute valued complex algebra, Proposition 3 does nol prevent the
existence of infinite-dimensional one-sided division absolute valued real
algebras. The next proposition (a part of which is of folkiore nature)
and theorem (whose proof has been prepared i Section 1} will provide
a structure theory for one-sided division absolute valued veal algebras,
which will later inspire the construction of influite-diinensional examples
of such algebras. From now on, we tecitly assume that all veclor spaces
and algebras are real.

Proposition 4. for an ebsobule valued algebra A the following usser-
tions are cquivalent:
i) There exisis a in A such that L, is an invertible operator on A.
i) A is isolopic lo an ebsolute valued ulgebra with left unit.
i) A is e left division algebra,

Proof: (1) = (i) We may assume that the element « in A such that
L, is invertible has norm one, and then the normed space of A with new
product @ defined by

5@y = L7 (z)L] (y)

is an absolute valued algebra, with lef unit (equal to a?) which is isotopic
Lo A.

(#4) = (4d4) Since isotopies prescrve left division, we may assume that
A has a left unit, aud then the subspace £ of bounded linear operators
an the normed space of A given by P := {L, : @ € A} satisfies the
assumptions of Corollary 1 (actually it satisfies even the requirements in
Theorerm 1), henee all its nonzero elements are invertible, that is A is a
left division algebra.
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(#21) = () This is trivial. W
An almost direct consequence of the implication (i} = (iif) in the
above proposition is the following

Corollary 3. The completion of a left division ebsolute valued algebra
is a left division absolute valued algebra.

In view of Proposition 4, to have a satisfactory theory for left division
absolute valued algebras it is enough to study (automatically left divi-
sion} absolute valued algebras with left unit. To this end it is useful to
introduce some additional terminclogy. Given a Jordan algebra JJ and a
vector space X, a representation of J on X will mean an homomorphism
(say ) from J onte a Jordan algebra of operators on X. If .J has a unit
1 and (1) equals the identity operator on X, the representation 1 will
be called wnital. If X is a pre-Hilbert space, # is an algebra involution
en J, and the representation 3 satisfies

(@) 1€} = (0] ¥(2")(E))

for all x in J and all %, £ in X, then we will say that ¢ is a *-
representotion. When J and X are normed, the representation 3 will be
called isometric (resp.: contractive} if, for all x in J, the linear operator
¥(z) on X is bounded with || ¥(z) l|=| = || (resp.: || ¥(zx) IS} = {])-
From now on every smooth normed Jordan algebra J = R1 @ H will be
considered as algebra with involution * defined by

(AL +m)" =21 -1n.

This involution can be intrinsically characterized as the only algebra
involution # in J such that, for every z in J, = + z* and z.2* lie in R1.

Lemma 2. Let J be a smooth normed Jordan algebra, K a nonzero
pre-Hilbert space, and 3 be a unital representation of J on K. Then the
following assertions are equivalent:

i) ¥ is o »-representation.
i) | w(@)k) =z | | & || for aliz in J and k in K.

iii} ¢ is isometric.

iv) ¢ is contractive.

Proof: (i) = (4i) Being J a simple Jordan algebra and 3 a unital
representation, the range of % is a Jordan subalgebra of the associative
algebra L{K), of all linear operators on the vector space of K, isomorphic
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to J and containing the unit of L{X) (namely, the identity operator on
J, which will be denoted by T), hence by Remark 1{ii} wc have

Wl () = || = 2 1
for all = in J. Therefore, from the agsumption (i}, we obtain for arbitrary
kin K
| (z)(k) 1° = (p(z)(&) | D(2)(k)) =
= (k| ple)ple) k) = (& | e |2 &) =l = 1§ & |*.

(i1) = (191} = {iv) These unplications are clear.

(iv} = (i) Writing J = R1 @ H, it is enough to show that, if the unital
representation i of J on K is contractive, then for any n in H and all
k1. ko in K, we have

(B(m)(kr) | k) = —(ko [ (m)(k2)),

or equivatently (®(n){k) | £} = 0 for all norm-one element £ in K. But,
denoting by & any positive number, we have

_ et =1 _[1+anl -1 _ {1+ [nl?)/* -1
- [ - fa's o 3

{where for the second inegualilty we have used the assumption that ¢ is
contractive). Thercfore

Sim(k (el |2
COIPESY 3

=10

and, changing n by —n, we obtain {¢()(k) | k) =0. &

Now we state and conclude the proof of the main result in this section.

Theorem 2. If.J is a smooth normed Jordan elgebra and 1y is o unital
x-represenlation of J on the pre-Hilhert space of J, then the normed space
of J with product © defined by

Oy = y(x){y)

is an (automatically left division) absolute valued algebra with left unit.
Moreover, up to isomelric isomorphism, by means of this constructive
method all absolute valued olgebras with left unit arise.

Proof: The verification of the first paragrapl in the statermnent is very

1,

casy. Since 0 is a uniltal representation, the unit 1 of .J as a Jordan
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algebra becomes a left unit for the product @, and, being also ¥ a *-
representation, the fact that J with product © is absclute valued is a
direct consequence of the implication () = (i) in Lemma 2. Concerning
the prool of the second paragraph in the theorem, let A be an arbitrary
absolute valued algebra with left unit, so that by Theorem 1 the set

J:={L; ra € A}

is a smooth normed Jordan algebra (of bounded linear operators on
the normed space of A). Since A is an absclute valued algebra, the
mapping % : @ — L, is a linear isometry from the normed space of
A onto the one of J and, as a consequence, the mapping ¥ : F —
ufu~! is a unital isometric (hence *-, by the implication (§4) = (1) in
Lemma 2) representation of J on the pre-Hilbert space of J. The proof
will be concluded by showing that A is isemetrically isomorphic to the
absolute valued algebra obtained from the pair (J, ) by the coustructive
method in the first paragraph. But the above considered surjective linear
isometry u : A — J is also an isomorphism from A onto (J, ®}, because
for ¢ and b in A we have

ui{a) @ u(b) = Pu(e))(w(b)) = ul u {u(d)) = u(Le(b)) = u(ad). W

Remarks 4. i) Most of the information given by the above theorem
can be stated without involving Jordan algebras and their representa-
tions on vector spaces, as follows. The norm of any ebsolutie valued
algebra A with left unit e derives from an inner product (. | ), end, for
a.b,cin A with a orthogonal to e, we have

(ablc)=—(b|ac) and alad)=—|a]*b.

ii) The Albert-Urbanik-Wright theorem on absolute valued algebras
with unit can be easily derived from the above remark. For, if A is
such an algebra and 1 denotes its unit element, taking & = 1 in the
last equality we obtain 2?2 = — || @ ||? 1 for all a in A othogonal to 1,
hence A is a quadratic algebra. Moreover the same equality now yields
to L2 = L,z for a in A orthogonal to 1, and by symmetry we have
also R? = R,2, hence A is alternative. Now A is a division quadratic
alternative algebra, so it is isomorphic to B, C, H, or © by the extended
Frobenius theorem (sce for example [12, Theorem 2.26]).

i1i} The examples in Remark 3(1} show obstensibly that isomorphisms
between absolute valued algebras can fail to be isometric or even contin-
uous, a pathology that, as we will show in Section 4, only can occur in
absence of completeness. However, in the particular case of left-division
absolute valued algebras it is not difficult to derive from Proposition 4
and Theorem 2 that isomorphisms must be isometric.
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3. Existence of one-sided division
absolute valued algebras

By Corollary 3 the completion of a left division absolute valued al-
gebra is a left division absolute valued algebra, and by Proposition 4
and Theorem 2 every left division complete absolute valued algebra is a
Hilbert space. Then one can ask naturally for those cardinal numbers
N for which there exist left division complete absolute valued algebras
with hilbertian dimension equal ¥. Since in finite dimension the answer is
clearly R = 1, 2, 4, or 8 (sce Proposition 3), we will center our attention
in the infinite-dimensional case, and in fact we will prove the existence of
(antomatically left division) complete absolute vaived algebras with left
unit of arbitrary infinite hilbertian dimension and with the additional
property that they have no nonzero proper closed left ideals {note that
every left division algebra has no nonzero proper right ideals). By invok-
ing Theorem 2, the verification of this fact is equivalent to prove that
every mfinite-dimensional smooth complete normed Jordan algebra has
an “irreducible™ unital *-representation on its own Hilbert space. At this
respect we recall shat a self-adjoint set S of bounded linear operators on
a real or complex Hilbert space K is said to act irreducibly on K if the
only closed S-invariant subspaces of K are 0 and K, While for complex
I this concept has been widely studied, this is not the case for the real
context in which we are mainly interested, so we begin our argument
with the following

Lemma 3. Let K be a complex Hilbert space, S a self-adjoint sub-
set of BL(K) acting trreducibly on K, and (@ be any nonzero proper
S-invariant closed real subspace of K. Then K = Q@2 1Q. As a conse-
guence, S {regarded as a self-adjoint set of bounded linear operators on
the real Hilbert space Q) acts irreducibly on Q.

Proof: First note that, being ¢ N iQ a complex proper closed S-
invariant subspace of X and acting § irveducibly on K, we must have
§QNiQ = 0. Denoting by « the (real linear) orthogonal projection from
K onto @, by the S-invariance of ¢ and the self-adjointness of 5, #
commutes with every element in S. Now, regarding compiex numbers as
linear operators on K, m — it is & bounded complex-linear operator on
K commutiug with the elements of S, hence, by the irreducibility of §
on K, we have

7 —iwi = o+ i

for snitable @ and 3 in R {see {7, Proposition 2.3.8}}. Multiplying on the
right this equality by #, we have 7 — imin = aw + 8w so, since @ # 0
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and @ NiQ = 0, we obtain @ = 1 and —wim = Sx. By taking adjoints in
the last equality it follows that 8 = 0 and therefore

7 —imi=1.

Thus, since —ini is clearly the orthogonal projection frem X onto 14,
we have that i) is the orthogonal tomplement of € in K, that is K =
Q& i@ . For the consequence asserted in the staternent, note that any
nonzero S-invariant closed (real) subspace R of ¢ is a real subspace of
K which also satisfies the assumptions on @, hence the above proved
fact about  applies to R giving clearly R = ¢}, and certainly S acts
irreducibly on €}, as desired. ®

The existence of “irreducible” unital +representations of smooth com-
plete normed Jordan algebras on (real) Hilbert spaces will follow from
the above lemina and the next proposition, which coantains basic facts
about the “canonical anticommutation relations”, and is taken almost
literally from [8, pp. 6-11] (see precisely [8, Proposition 5.2.2]}.

Proposition 5. Given a complex Hilbert space H, there are a nonzero
complez Hilbert space K (the so called Fermi-Fock space of H) und e
conjugate tinear mapping f — a(f) (the “ennihilation” operator) from
H into BL{K) satisfying the following three properties:

1) 2a(f).a{g)* = (flg)! and a(f).a(g) =0 for all f,g in H {“canon-
ical anticommutation relations”), where .7 denotes Jordan prod-
uet and I denotes the identity operator on K. _

it} K is finite dimensional whenever H is so, while, if H is infinite-
dimensional, the hilbertion dimension of K eguals the one of H.

ity The self-adjoint set of operators {a(f),a{g)* : fig € H} acls

treductbly on K.

Call a representation of a Jordan algebra on a nonzerc Hilbert space
irreductble if its range is a self-adjoint set of bounded linear operators
acting irreducibly ou the given Hilbert space.

Proposition 6. Every smooth complete normed Jordan algebra has
an irreducible unital x-representation on a (real) Hitbert space. Moreover
for such en algebra (say J) the following assertions are equivaleni:

i} J has en trreducible unitel *-representation on s own Hilbert
space.
i} J has a unital =-representaiion on s own Hilbert space.
iil) The hilbertian divnension of J cquals 1, 2, 4, 8, or any infinite
cardinal number. :
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Froof: For any cardinal nunber R, consider the complex Hilbert space
of (complex) hilbertian dimension ¥, let K and a be respectively the
complex Hilbere space and the conjugate-linear mapping from A into
BL(K) given by Proposition 5, and define a {real-linear) mapping s
from F into BL{KY} by s(f) := i(a{f) + a(f)*). From assertion (i) in
Proposition 5 we obtain

s{f).s{g) = —fle(f | g\
for all f and ¢ in | so that the sel
J={M+s(f): 2 eR, fe H)}

is a real Jordan algehra of operators on X that, algebraically considered,
is a copy of the smooth complete normed Jordan algebra of (real) hilber-
tian dimension 2R + 1 (actually one can see that, when endowed with
the operator norm, this copy is even an isometric copy, but this fact is
irrelevant for our argument). Moreover, since clearly

s(f}" = -s(f)

for all f in H, J appears unitally #represented on the real Hilbert
space Kp underlying K. In a first instance, taking into account thai
the smooth complete normed Jordan algebra of hilbertian dimension 2§
can be unitally +-embedded in the one of hilbertian dimension 28 +'1
and applying assertion (i) in Proposition 5, this argument shows that
any finite-dimensional smooth normed Jordan algebra can be unitally
x-represented on a nonzero finite-dimensional (real) Hilbert space and,
to obtain irreducible unital x-representations, it is enough to pass to the
restriction of the operalors in the range ol the existing representation
to a subspace which is minimal among the nonzero subspaces that are
invariant under the range of the given representation (such a minimal
subspace always exists because of the finite dimensionality). Retaking
the initial argument in the infinite-dimensional ¢ase, J is the smooth
complete normed Jordan algebra of arbitrary infinite Lilbertian dimen-
sion B (= 2N+ 1 in this case), and the identity operator on J is a unital
s-representation of JJ on the Hilbert space Kg which, in view of asser-
tion (i} in Proposition 5, has also hilbertian dimension equal to Y. If
this representation is nol irreducible, by the definition of J there must
exist a nonzero proper closed real subspace ¢ of K invariant under the
self-adjoint set ol bounded complex-linear operators

S={s{f):-feH})



046 A. RODRIGUEZ PALACIOS

But, it follows from the definition of the mapping s and the conjugate-
linearity of the mapping a that
(2} + is(f)

S05) 350 g gy - 8

a(f) = =5 -

for all f in H. These equalitics, together with assertion (i} in Propo-
sition 5, show that & acts irreducibly on K (in the complex sense). By
Lemma 3, S acts irreducibly on  (in the real sense) that is, the mapping
T — T/Q from J into L{{}} is an irreducibie unital x-representation of J
on the real Hilbert space @ which, in view of the equality K = Q@iQ) (see
again Lemma 3) and the infinite-dimensionality of K, is also of hilbertian
dimension equal to X. Thus, in any case, the infinite-dimensional smooth
complete normed Jordan algebra J of hilbertian dimension X has an irre-
ducible enital *-representation on a Hilbert space of hilbertian dimension
N. Since the finite-dimensional case has been considered previously, this
concludes the proof of the first paragraph in the proposition, and even
proves the implication (37) = (i) in the infinite-dimensional context.
To finish the proof of this implication note that, if for 2 = 1, 2,4, 8
we denote by A; the absclute valued algebra R, €, H, O respectively, the
smooth normed Jordan algebra J; of dimension ¢ can be recognized as
the Jordan algebra of operators on A; given by {L,, : a; € 4;}, and
then the identity mapping on J; is an irreducible unital +-tepresentation
on the Hilberl space of A; which of course has dimension 4. Since the
implication (1) = (i) is clear, let us conclude the proof of the propo-
sition showing that (i) = {iit), namely, if a smooth complete normed
Jordan algebra .JJ has a unital *-representation on its Hilbert space, any
finite dimension different from i = 1, 2, 4, 8 must be cxcluded for J. But
this follows from the first paragraph in Theorem 2 together with the
implication (#i2) = (i¢) in Proposition 3. @

With Proposition 4 and Theorem 2, the above proposition leads di-
rectly to the following

Theorem 3. Left division complete absolute volued algebras of hilber-
tian dimension N exist if and only if N equals I, 2, 4, 8, or any infinite
cardinal number. Moreover, for suck o cardingl X there exist in fact (au-
tomatically left division) complete absolute valued algebras with left unit
of hilbertian dimension R with the property that they have no nonzero
proper closed left ideals.

Remarks 5. i) Since the completion of a smooth normed Jordan
algebra is a smooth normed Jordan algebra, it follows from the first
paragraph in Proposition 6 that every smooth normed Jordan algebra
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has a unital *-representation on a Hilbert space. With the implication
{#) = (34) in Lemma 2, this shows that every smooth normed Jordan
algebra can be viewed as a subspace P of bounded lincar operators on
a suitable normed space (which actually can be chosen to he a Hilbert
space) satisfying the assumptions in Theorem 1. Now certainly we are
sure that Theorem 1 cannot say more.

ii) Every infinite-dimensional simooth complete normed Jordan algebra
J has nonirreducible unital *-representations on its Hilbert space. For,
if 4% is any unital *-representation of J on its Hilbert, space, the mapping
¥ @ from J into L(J D' J), given by

¥ 8 P(z){y, 2) = W(=)(y), ¥(=)(2))

for all z, ¥, z in J, is a nonirreducible unital *-representation of J on the
Hilbert space J @' J which has the same hilbertian dimension that of J.
Via Theoremn 2, Lhis fact reflects on the existence of complele absolute
valued algebras with left unit (of arbitrary infinite hilbertian dimension}
having nonzero proper closed left ideals.

iii) If A is an infinite-dimensianal left-division absolute valued algebra,
then all operators of right multiplication on A are noninvertible. This
follows from implication (¢) = (4i4) in Propesition 3.

The test of this seclion will be devoted to obtain some interesting
consequences of the existence of infinite-dimensional one-sided division
absolute valued algebras. The first result we witl prove in this direction
is that small pertubations of the produce of a left division complete abso-
hute valued algebra give rise to new left division algebras, thus providing
in view of Theorem 3 a very wide collection of infinite-dimensional com-
plete nored left division algebras. The arbitrarity of the perturbation,
together with the structure theory of left division absolute valued alge-
bras (Proposition 4 and Theorem 3), shows that the algebras obtained
by this procedure cannot be in general ahsolute valued algebras. As a
matter of fact, we will realize that all these algebras fail to be division
algebras.

Proposition 7. Lel A be o left division complete absolule valved ol-
gebra, tet O be any continuous bilinear product on the Banach spaece of
A, and let d denoie the distance from [ to the product of A. Then we
have:

) Ifd < 1, the wector space of A with the product U is a lefl dunsion
algebro.

) If A is infinite-dimensional and d < 1, then oll operators of right
maudtiplication on A relative to the product U are norinverible.
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Proof: For ¢ in A, let us denote as usual by L, and R, respectively
the operators of left and right multiplication by « relative to the inifial
product, and by LY and RY the ones relative to the product O . Ifd < 1,
since A is a left division absolute valued algebra, for every ¢ in A\{0}
we have that L, is invertible and

I Lo = L IS dlalt<lal=ll L2" I,

so by completeness of 4 LY is invertible, and (i) is proved. Let us assume
A infinite-dimensional and & < 1. Then, for ain A with {ja ||=1, R, is
a linear isometry form A into A which is not onto (see Remark 5 (iii))
and

| R — R IS dilaf< 1,

s0 Lemma. 1, together with the fact that the set of noninvertible elements
of & Banach algebra is closed, gives that RS is not invertible, and (ii)
follows. &

Given an algebra 4 and an element A in the base field, the A-mutation
of A, denoted by A, is defined as the algebra with the same vector
space that of A4 and product given by

{a,b) — Aab+ (1 — Mba.

Corollary 4. Let A be o left division complete gbsclute valued algebrn,
and A be a real number. Then we have:

i) IfA> %, then AN is a lefi division algebra and, if in addition A
is assumed to be infinite-dirnensional, then all operators of right
multiplication on A are noninvertible.

iy fa= ]5 and A is infinite-dimensional, then oll operators of left
(=right) multiplication on AN are noninvertible.

i) If A < 3, then AV is @ right division algebra and, if in addition
A is assumed to be infinite-dimensional, then all operators of left
multiplication on A™ are noninvertible.

Proof: (i) and (ii) follow directly from Propaosition 7 by taking as the
preduct O the one given by

elb := ab + %ba,

while (iii) follows from (i) applied Lo 1 — A taking into account that the
opposite algebra of AV~ is AR, &



ONFE-SIRED DIVISION ABSOLUTE VALUED ALCGERBRAS 949

Remark 6. A consequence of the above corollary is the well-known
fact that all A-mutations with A # % of a finite-dimensional absolute
valued algebra are division algebras.

Our concluding result in this section, together with Theorem 3, will
show the existence of infinite-dimensional complete normed algebras such
that the operators of left and right multiplication by any nonzero element
are surjective. Unfortunately, in our examples all these operators will fail
to be one-to-one. Our argument begins with the casy observation in the
following lemma. By #nvolufion on a real {resp.: complex) vector space
we mean a linear {resp.: conjugate-linear) operator on the space with
square the identity operator.

Lemma 4. Let A be a real or complex complete absolule valued algebra
whose Banach space is a Hilbert space, {el — be an involution on the vector
space of A, and define o new (bifinear) product O on A by

alb := Ri(e)

{where, as usuel, By, denotes the operator of right multiphcation by b
relative to the mitial product). Then, for every b in AV{0}, the operator
RE of right multiplication by b relative to the product 11 is surjective.

Proof: Wote that RE = Rg, s0 it is enough to prove tha Ry is a
surjective operator for any norm-one clement b in A, But, being A an
absolute valued algebra, for such a b, Ry is a linear isometry so, since the
Banach space of 4 is a Hilbert space, we have R 1%, = I (the identity
operator on A), hence certainly [t} is surjective. W

Our foliowing observation, which is also of easy verification, involves
standard terminology of H*-algebras. Following [23] and [11], a left
semi—H* -algebra will be a real or complex Hilbert space A together with
a continucus bilinear product on 4 (denoted usually by juxtaposition)
and an imvolution ~ on the vector space of 4 satisfying

{eb|e)=(b]ac)
lor all ¢, b, ¢ in A.

Lemma 5. Let A be a renl or complex left semi-H* -algebra whose
involution — is isomelric, and define ¢ new product 3 on A by b :=
R:(a). Then ~ is an algebra tnvolution on (A,0) (that is, «0b = 604
foratiabin A).
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Proof: By definition of the product. [, we have
(a0 b| e} = (a] cb)

for all a,b,c in A. Using this fact, together with the axiom of left semni-
H*-algebras
{ablc) = (] ac)

and the assumed isometry of the invelution
(afib)=(b]a)
we obtain for arbitrary a. b, ¢ in A

b0z | ¢y =(b|ca)=(b|a)=(a|2b) =
= (eOb| &) = (2] aOb) = (a0b] ¢},

hence «00b = b0a, as required. M

Proposition 8. Let A be « complete absolute valued algebre with left
unit e. Let — denole the unique isometric inear tnvolulion on the Hilbert
space of A having Re as the set of fized points, und define a new product
U on A by aldb := Rj{a). Then we have:

i} (A, 0) is a complete normed ulgebra on which ~ becomes an al-
gebra involution.
i} The operators of left and right multiplication by any nonzero ele-
ment on (A,[5) are surjective.
i) For any a in A, the equalitics a0 = a0e = a ||? e hold.

Proof: Clearly the mapping de + ¢ — Ae — g from A = Re @ @ (Q
denoting the orthogonal comiplement of Re) into A is the only isometrie
involution on the Hilbert space of A having exactly as fixed points the
clements of Re. Also with this involution (call it ~ as in the statement
of the proposition) A becomes a left semi-H*-algebra (sce Remark 4(i}).
Now the nontrivial part of assertion (i) follows from Lemma 5, while (ii}
follows from (i) and Lemma 4. To prove (iit}, note that for every o in A
we have RX R, =|| a [|? I (see the proof of Lemma 4). When applied to
e this equality gives

aba = a|?e,

and the remaining equality @dJa =|| a ||? e follows from the isometry of
-.n
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Remark 7. With the notation in the above proposition, assume that
A is infinite-dimensional. Then it is easy to see, using Remark 5(iii),
that no operator of left or right multiplication on (A,0) is one-to-one.

4. Homomorphisms into absolute valued algebras

Some results in Sections 1 and 2 will be applied here to obtain that
homomorphisms from complete normed algebras into arbitrary absolute
valued algebras are contractive, hence continuous. The proof of this
result we will give also involves some arguments in {21], and begins with
the following

Lemma 6. Let X and ¥ be Bunach spaces, ® ¢ linear mapping
from X into Y with dense range, F a bounded linear operator on X,
G Y — Y a nonsurjeckive linear isomelry, and assume $&F = G&.
Then || F ||> 1.

"Proof: et A be in R with | A |< 1, so that | G — (G — A1) ||< 1. By
Lemma 1, the range of (G — Al is a proper closed subspace of Y. Since

O(F — M) = (G- A%

and & has dense range, it follows that F — AJ cannot be surjective,
50 F — Al cannot be invertible in the Banach algebra BL{X), and so
| A €]} F ||l. Now the proof is concluded by letting A — 1. W

Theorem 4. Let A be ¢ complete normed olgebra, B an abselute
valued algebra, and & be a homomorphism from A inlo B. Then @ s
contractive.

Proof: Regarding & as a mapping from A into the completion of its
range, we may assume that the absolute valued algebra B is complete and
that the homomorphism & has dense range. First assume additionally
that @ is actually surjective, so that, since the equality

(*) L, = Ly(ay®
holds for arbitrary ain A, we can apply [21, Lemma 3.1} to obtain
Loy S r{LJ(S La €] a )

(where  denotes spectral radius, #(T) = limp—eo || T [[/?). The
result in this first considered case now follows from the clear fact that
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r(Ly} =} b || for all & in any absolute valued algebra. Consider the
remaining case of @ being not onto. Then, since ® has dense range,
B must be infinite-dimensional, and then the implication (i}=> (%) in
Proposition 3 gives that, if some left multiplication operator on B is
invertible, then all right multiplication, operators on B are noninvertible,
hence {changing A and B by their corresponding opposite algebras, if
necessary) we may assume that all left multiplication operators on B are
noninvertible. To conclude the proof it is enough to show that || e [[> 1
whenever a is in A with || ®(a) [|= 1. But, for such an a, L) is a
nonsurjective linear isometry, hence, by (*) and Lemma 6, we deduce

L} Lo || (=1l @)

as desired. W
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