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THE FUNDAMENTAL THEOREM OF
ÁLGEBRA BEFORE CARL FRIEDRICH GAUSS

A bstract

JOSFP PLA 1 CARRERA

This is a paper about the first attempts of the demonstration of
the fundamental theorem of algebra .

Before, we analyze the tie between complex numbers and the
number of roots of an equation of -n-th degree .

In second paragraph we see the relation between the integration
and fundamental theorern .

Finally, we observe the linear differential equation with constant
coefficients and the Euler's position about the fundamental theo-
rern and then we consider the d'Alembert's, IJuler's and Laplace's
dernonstrations .

lt is a synthesis paper dedicated to Pere Menal a collegue and
a friend .

És quan dormo que hi veig ciar
Josep Vicens FOIX

En la calle mayor de los que han muerto, el
deber de vivir iré a gritar

Enrique BADOSA

To be or not to be .
That is the question .

William SHAKESPEARE

1 . Introduction : The Complex Numbers

In the year 1545 Cerolaino Cardano wrote Ars Magna' . In this book
Cardano offers us a process for solving cubic equations, learned froln

1There are many interesting papers en complex numbers . See, for example, Jones,
P . S . [431 ; Molas, C.-Pérez, J . [57] and Rernmert, R. . [67] . Moreover, in this paper,
our interest en complex numbers is limited only in their connexion with algebra and
particulary with the Fundamental Theorem of Álgebra.
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Niccoló Tartaglia2 . 1n his book it appears for the first time an special
quadratic equation :

But, as Remmert remembers us, "it is not clear whether Cardano was
led to complex numbers through cubic or quadratic equations" 5 . The
sense of these words is the following : while quadratic equations

equations

If some one says you, divide 10 into two parts, one of which mul-
tiplied into the other shall produce 30 or 40, it, is evident this case
or equation is impossible3 .

Cardano says then
Putting aside the mental tortures involved, multiply 5 +

	

-15 by
5 -

	

-15, making 25 - (-15), which is +15 . Hence this product
is 40 . . . This is truly sophisticated . . « 4.

.x 2 + b = ax, with 0 = 4a 2 - b < 0,

have no real roots [and they are therefore impossible equations], cubic

2

	

3
x3 = px + q, with 0 = ( 2 )

	

- (3)

	

< 0'
have real roots which are given as sums of imaginary cubic roos I . This
question was further developed by Rafael Bombelli in his L'Algebra, pu-
blished in Bologna in 1572 . Bombelli worked out the formal algebra of

2Cardano's rule for cubic equation x 3 = px + q is

x= a 2+~--A

	

~-i-+ -,/A +- a 2-~, where0=(2)2-(3)3 .

The history of the process for solving cubic equations is now perfectly known . See,
for example, Burton, D . M . [12, 302-312] ; Stillwell, J . [76, 59-62] ; Vera ; F. [80,
47-59] and van der Waerden, B . L . [85, 54-55] .

See also Tartaglia, N . [78, 69 and 120] .
3Cardano, G . [16, Ch . 37] . See also Struik, D . J . [77, 67] .

The equation x2 - lOx = 40 [or 30] has the solutions 5 f

	

-15 [or 5 f v~-~-5 ] and
both solutions are formally corrects, but in this time they have not any sense .
4Cardano, G . [16, Ch . 37] . See also Struik, D . J . [77, 69 and footnote 7] .

The narre imaginary is introduced by René Descartes, as we will see soon . But
it is debt, perhaps, to following Cardano's words : " . . . you will nevertheless imagine
-15 to be the difference between . . .", completing, in that case, the square .
It is interesting to observe that Cardano accompanied his result over this kind of

quadratic equation with the comment :

	

"the result in that case is as subtle as it 1s
useless" [see Cardano, G . [16, Ch . 37, rule 11] and also Struik, D . J . [77, 69]] .
RRemmert . R. [67, 57] .
6We can see van der Waerden, B . L . [84, 194] : it is not possible solve, by real
radicals, an irreductible cubic equation over Q whose three roots are al¡ real [casus
irreductibilis, following Cardano] .
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cornplex numbers . He introduced (in actual notation) the cornplex unit 7
i and eight tindatnental rules of computation s :

(+1)

	

i = +i; (+l .) - (-i) = -i ; (+i) - (+i) _ -1 ; (+i)

	

(-i) _ +1;
(-1) - (-i) = +i ; (-i)

	

(+i) _ +1 ; (-i)

	

(-i) _ -1 .

His principal aitn consisted to reduce expressions as '' ca_+ b i to the
form c + d i9 , because then it should be possible to use formally the
Cardano''s expression by solving the rasus i7-redzttctibilis x3 = 1.5x + 4 .
Bombelli obtains, according the Cardano's expression,

_r= ''2+lli+ 3 2-11 i .

Hencex=(2+i)+(2-i)=4.
Fran~ois Viéte wrote in 1591 a higher level paper, which relates algebra

to trigonometryr° . In this paper' 1 Viéte offers us iris solution of the
cubic equation by cú -c76la1' functions, which shows that solving the cubic
is equivalent to trisecting a,n arbitrary anglel2 .
notation) from the identity

so that

cos 30 = 4 cos 3 0 - 3 cos

x3 - px = rl

	

[t>> 4 > 0] .

(2ii.) 3 =2f :11i,

He starts (in modera

[or z'; - ñ z - 4 cos 30 = 0, where z = cos 0] . Suppose now that the cubic
to be solved is given by

7 1t is perhaps interesting to remember that the syrribol i for indicate imaginand zenit
is debt to Euler : "In the following 1 shall denote the expression vr--1 by the letter i
so tha.t ii = -1" [Euler, L . [25, 13011 . See Kline, M . [44, 410] : "In his earlier work
Euler used i (the first letter oí' iraféraitirs) for an infinitely largo duantity. After 1 .777
he used i. for v~---I " .
8 11eally, Bombelly introduced piv di meno [for +i ] and meno di mono [for -¡l and
rules of calculation such as

mero di meno via muno di meno fa mono
which means (-2) - (-2) = -1 .

See Bombelli, 13. . [9, 1691 or Bertolotti reprint, 133 .
9 Bombelli did not through too much on the nature of cornplex numbers, but he knows,
for example, that

3 2f11i=2fi .

See Bombelli, li. . [9, 1101 or Bertolotti reprint, 140-141. .
l0This paper, "De a3quatione recognitione et erriendatione", written by Viéte in 1 .591,
was not published until 1615 by his Scottish friend Alexander Anderson .
"See Viéte, F . [81, Ch . VI, Th . 31 .
1Z See Hollingsdale, S . [41, 122-1231 .
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If we introduce an arbitrary constan; A, setting x = Az, then

z3 - ¡2 z -

	

3 = 0 .

We can now match coefficients in the two forms

T2 = 4

	

and

	

3 = 4 cos 30,

	

so that

	

A _

With this value of A ; we can select a value of 0 so that

cos 30 = 4q =

	

q/2
(p/3)3

In the casos in-eductibilis, we have

0 =
(2)2

- ( 3 ) 3 < 0

	

and then <1

and thus the condition for three real roots ensures us that 1 cos 301 < 1,
which is essentiall3 .

In 1637 René Descartes wrote La Géométrie" . This appendix was
his only mathematical work; but a what work! 1t contains the birth of
analytic geometry 15 . In Book III of his La Géométrie Descartes gives
a brief summary of that was known about equations 16 . Between his

13Then he proves the equivalence : we have cos 30 = u, where M =

	

"72

	

Civen te,
(p/3)3

.

we can construct a triangle with angle 30 = cos-1 /a . Trisection of ;his angle gives us
the solution z = cos B of the equation . Conversely, the problerrn of trisecting al] angle
with cosine fa is equivalen ; to solve the cubic equation 4z3 - 3z = p .
1alt is, as it is well known, the third appendix of his famous Discours de la rnéthode
pour bien conduire sa raison el chercher la verité dagas les sciences. The other
appendices are La Dioptrique and Les Météors . For a comment we can see Bos,
H . J . M . [10], Milhaud, C . [56, 129-175], Pla, J . [63], or Scott, J . F . [71, 84-157] .
1*SThe analytic geometry was independently discovered by Pierre Fermat ; a French
amateur matliernatician, ¡ti his "Ad locos planos et solidos isagoge" [32] .
16 Uohn Wallis in his Algebra [86] declared that there was little in Descartes which
was no to be found in the Artis Analytica; Praxis [39] of Harriot" [see Scott, J . F . [71,
138] and Wallis, J . [87, 126]] . But, says Scott [Scott, J . [71, 139]], "this statement is
far from true" .
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algebraic assertionsl7 , we are interested in the following :
in every equation there are as many distint roots as is the number
of dimensions of the unknown quantities18 .

This is an important approach to Fundamental Theorem of Algebra, but
it is not the first and perhaps never the more explicit .

The first writer to assert that "every such equation of the nth degree
has n roots and no more" seems to have been Peter Roth` . The law was
next set forth by a more prominent algebraist, Albert Girard, in 1629 :

Every algebrasc equation admits as many solutions as the deno-
mination of the highest quantity indicates . . . 20

Girard gives no proof or any indication of one . He merely explains his
proposition by sorne examples, including that of the equation x 4 - 4x +
3 = 0 whose solutions are 1, 1 ; -1 + if

	

~

	

.21;-1-if

r 7 '1'he otlier irnportant assertions in Book 111 of La Géométrie are :

- A polynornial P(x) whicli vanisiies at c is always divisible by the factor x-e
and tren

P(x) = (x - c) - Q(x), where deg (Q(x)) = deg (P(x)) - 1 .

[This theorem was probably already known by Thornas Harriot, following
Remmert ; R. [68, 99 foctnote 2] .]
Descartes' mile of signs : we can determinate from this also tlie number of
true and false roots that any equation can have, as follows : Every equation
can have as 7nany t7n¿e roots as it contains changes of signs, from + to - or
front - to -i - ; and as 2nany false roots as tlie number of times two -{- signs
or tuwo - signs are found in succession . [This law was apparently known by
Cardano [Cantor, M . [[15, 11, 539], but a satisfactory statement is possibly
due te Harriot [I-Iarriot, [39, 18, 268]] . See also Sinith, E . D . [73, 11, 471] .]
[On lirnitations or inistakes in Descartes' rule see, for exarnple, Scott, J . F .
[71, 140] .]
Tliis rule was formulated in a more precise rnanner by Isaac Newton in his
Arithmetica Universalis, composed between 1673 and 1683, perhaps for New-
ton's lectures at Cambridge, but first published in 1707 . Newton's rule counts
rnoreover cornplex roots .
This Newton's work contains also the formulas, usually known as Newton's
identities, for sucos of tlre power of the roots of polynornial equations .

ls Descartes, R . [19, 372] . English translation in Smith, D.E.-Latham, M . [75, 159] .
t 9 Peter Roth, who nan,e also appears as Rothe, was a Nürnberg Rechenmeister, died
at; Nürnberg in 1617. He wrote, in 1600, his Arithrnetica philosophica, where we can
find the quoted staternent .
2°See Cirard, A . [38] in Viéte and alü [83, '139] and in Struik, D . 3 . [77, 85] . See also
Fropfke, 3 . [79, 111(2), 95] for further detai1s.
21 Tlrere are opposed opinions about the real content in there forrnulations . Whilst for
Smith [Smitlr, D . E . [73, 11, 471]] "tris law was more clearly expressed by Descartes
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Later another mathematician, named Rahn [or Rohnius], also gave a
clear statement of the law in his Teutschen Algebra [66] .
The question about these formulations of the Theorem is the following :

these algebraists accepted real and complex numbers and only them as
solutions of equations? The answer is not easy nor clear . Girard accepts
the "impossible solutions" with these words

Someone could also ask what these impossible solutions are . I
would answer that they are good for three things : for the certaintly
of the general rule, for being sure that there are no other solutions,
and for its utility 22 .

Descartes, by his sido, realized the fact that an equation of the nth degree
has exactly n roots23 . But, for Descartes ; the imaginary roots do never
correspond any real quantity24 .

[19] ; who not only stated the law but distinguished between real and imaginary
roots and between positivo and negativo real roots in making the total number", for
Remmert [Remmert, R . [68, 100]], contrarily, "Descartes takes a rather vague position
on the thesis put forward by Girard" .
22 Girard, A . [38] in Viéte and alü [83, 141] . In other sido [Viéte and alii [83, 142]]
he says : "Thus we can give three names to the other solutions, seeing that there are
some which are greater than nothing, other less than nothing, and other enveloped,
as those which have V/'-- , like V"--3 or other similar numbers ."

Remmert, R. [68, 99], goes further . He says: "He thus leaves open the possibility
of solutions which are not complex" . Remmert thinks that, in his ambiguity, Girard
leaves an open door to the solutions more cornplicated than the complex . The problem
consists to know the exact sense of the Girard's words "iTrapossible solutions" because,
for him, "there are no other solutions" . [About this question see also Gilain ; C . [37,
93-95] .]
23 This assert is debt to the Descartes' text [see Descartes, R . [19, 380] . English
translation in Smith, D.E.-Latham, M . [75, 175]] :

Neither the true nor false roots are real ; sometimes they are imaginary; that
is, while we can always conceive of as niany roots for each equation as I have
already assigned, yet three is not always a defanite quantity corresponding to
each root so conceived of. Thus, while we may conceive of the equation

x3 -6x2 +13x-10=0

as having three roots, yet three is only one real root, 2, while the other two,
however we may increase, diminish, or multiply them in accordance with the
roles just latid down, remains always imaginary .

In this text there is a rather interesting classification signifying that we may have
positivo and negativo roots that are imaginary.

It seems that for Descartes the roots are always real or imaginary and no other
kind of root is possible . [about with this oppinion, see Gilain, C . [37, 95-97] .]

The use of word imaginary in his actual sense begin here [see Smith, D .E.-Latham,
M . [75, 175, footnote 207]] .
24 Descartes confess that one is quite unable to visualizo imaginary quantities [see
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This impossibility or difficulty for visualizing irrlaginary quantities was
perhaps the reason which carried the English mathematician John NVallis
to give a geometrical interpretation in his Treatise of Algebra of 168525 .
He says : "The Geometrica,l Effection, therefore answering to this

Equation

may be this" 2s .

Smith, D.E .-Latharn, M . [75, 187]] . As says Rernmert, R. [67, 58], "Newton regarded
complex quaritities as indication of the insolubility problein" . In the Newton's own
words : "But it is just that Che Roots of Equation should be impossible, lest they
should exhibit the cases of Problems that are impossible as if they were possible"
[Newton, I . [59] 2nd ed ., 1931 .
25This representation is duoted in Smith, D . E . [74, 46-54] . [See also Stillwell, J . C .
[76, 1.91-192]] . In a letter to Collins, May 6, 1.673, Wallis suggests a construction a
little different from arny of the constructions found iri his Algebra [see Cajori, P . [13]] .
We shall see this alternative construction liere:

Figure l a

a-aTb-a+c=0

"Tliis imaginable root in a quadratic
equation 1 llave had tlioughts long since
of designing geometrically, and nave had
several projects the that purpose . One
of thcm was this :
Supposing a quadratic equation

A2 -2SA+AE=0.

lf S [=

	

F] be bigger than

	

AE [that is S2 > AE], tiie roots are Sf

	

S2-- AE _
AE , putbing . . . ; S = 2Z and . . . V -- á X, where V [=

	

SZ - AE ] acided te and

takes from S, yields S + V = A, S - V = E, that is, [the roots are] S f

	

VZ [see
figure la] .
But if AE be bigger than S2 , the roots axe S i

	

.S 2 - AE = [S f

	

VZ ] , where

v

Figure lb

2%Wallis, J . [87] in Sinith, D . E . [74, 52] . Wallis calls the independent ; terrn ae . l t is
the product of two roots a. and e of the equation a - a -T b - a -1- ae = 0 .

Before this, Wallis offers us the following calculation for solving

a-ta-2a 175+256=0 .

AE, which was the sino, now become
the secant, and V, that was tlie co-
sitie, is now tlie tangent [see figure lb] .
Por S2 - AE = V2, Clie difference
of the planc S2 and AE, the greater
is to be expressed by the hypotenuse,
and the lesser by the perpendicular ."
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On ACa = b bisected in C, erect a Perpendicular CP = V"c. And
taking PB = 2b make a Rectangular Triangle [figure 3a] .

If PC = f < 2b = PB, then
the solutions are Real and are pre-
cisely AB and Ba.

[In this case AB = 2 b-

	

á b2 - c and aB = 2 b+ V ñb2 - c [see Smith,
D. E . [74, 53]] .]

Figure 3b

áb + i

	

c - áb2 . Wallis uses the later BC to obtain the imaginary part
of the solution .]

This geometrically representation was not accepted by the mathemati-
cians27 and would be still necessary to wait a hundred years to obtaining

The solutions are a =

	

175 +

	

-81 and e =

	

175 -

	

-81 . The geometrical
representation is [following Wallis, J. [87] in Smith; D. E. [74, 50-51]] :

271n Stillwell, J. [76, 192],
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A B C

Figure 3a

a

But if PC > PB. "the aboye
construction fails" and "the Right
Angle will be at B" . Then the
solutions are Irnagiraa7-y and are
AB and aB [see figure 3b] . [Now
AB

	

=

	

2 b - i

	

c - 4b2 , aB

	

=

175+

	

-81

Q
Figure 2

we can see the Wallis' figures and the modera
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the correct and acceptable representation' s . We shall not cominent this
work .

2 . The technique of integration and complex quantities

The eighteenth century use of the integral concept was limitad . New-
ton representad the transcendental functions as series arld integrated
these functions term by term21 . Gottfried Willielm Leibniz and Johann
Bernoulli treated the integral as the inversa of the differential 30 .

In this context the decomposition of rational fractions [or functions]
into partial [or simple] fractions made possible a decisivo stop in integral
calculus31 .
The problern was calculate the integral

where P and Q are polynomials and deg(P) < dog Q and, for getting it,
Gottfried Wilhelm Leibniz and Johann Bernoulli, together other trlathe-
rrlaticians of his time, saw the necessity to express every real polynomial
as product of real factors of first and second degree32 . Tltis fact shows
us that tliey liad very much confidente in the Fundarnental Theorem of
Algebra33 .

representation .
28The satisfactory geometrically representation of complex quantities was carried by
the Norwegian mathernatician Caspar Wessel in 1797 and independently by the Swiss
Jean Robert Argand in 1806 . This lasa work, despite its considerable merit, rernained
unnoticed until a Frencli translation apperead in 1897 .
29See Pla, .I . [64, 9-20] .
30See Kline, M . [44, 406] : "If dy = f'(x) dx, then y = f(-c) . 'lhat is, a Newto-
nian antiderivative was chosen as the integral, but differentials were used in place of
Newton's derivatives" .
31 The existente of an integral was never questioned .
32The Arilhrnetica Universalis of Isaac Newton contains, as we have said before, the
substance of Newton's lecturas from 1673 to 1683 at Cambridge . In it are fourid many
important results in equations theory, such as the fact that the imaginary roots of
a real polynornial "nrust occur in conjugate pairs" . This fact is a very important
result and it was naturally accepted by the mathematicians of the and of seventeenth
century . But, following Leibniz, this fact presents difficulties, as we shall sea next .
33See Leibniz, C . W . [49] ; [51] and Bernoulli, Ih . [6] .

The: chance did that in 1702, July 10, Johann Bernotilli, thinking to enunciate hirri
a new result, wrote to Leibniz that liad found tlie integral of differential quantities

qdx, where p and q are polynomials . But Leibniz responded : "No only 1 llave already
the solution of this problern, but rnoreover 1 llave it from the first years in which 1
practicad the higher geometry . In this result 1 llave seen an essential comporieril; of
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be transformed also [using now z =

	

- b2 ] into the differential of "a
sector or circular arc -2 tdt ta and reciprocally" . Finally he observes
that the integral of

b2 +z2

depends on the quadrature of the circle, and moreover

which are two differentials of imaginany logarithms : one sees that
imaginary logarithms can be taken for real circular sectors be-
cause the compensation which imaginary quantities malees on be-
ing added together of destroying themselves in such a way that
their sums is always real37 .

We have observed there the introduction of imaginary logarithmic dif-
ferential into the integration of rational functions38 .

37 Bemoulli, Jh . [6] in Fauvel, ,I .-Cray, J . [31, 439] . In fact Bernoulli obtains

In this sense it is interesting te note that, several years later, in 1712, Johann Bernoulli
carried out the integration to obtain an algebraic relation between tan nB and tan 0 .
His argument is as follows . Civen

we have

hence, taking differentials,

and then

Integration gives

and whence

adz

adz _ 1 adz

	

1 adz

b2 + z 2

	

2b

	

b+iz + 2b . b - iz

tan-1 z

	

1

	

log i -z= -

	

.
2i

	

i+ z

y = tan nB,

	

x = tan B,

n B = tan-1 y-- n - tan-1 a, ;

ndB -

	

dy

	

dx
1+y2 1+x2

[
1

	

1

	

_

	

1

	

1
y+i

	

y-i] .dy-71 [x+i

	

x-

log
y+Z

= log
rx+21n

y-i x-i

(x - i)n - (y + i) = (x + i)` - (y - i) .

38We do not explain the history of imaginary logarithms . But theie are many papers
on complex logarithins as, for example, Cajori, F . [14], Kline, M . [44, 407-408] ; Naux,
I . [58] and Stillwell, .1 . [76, 220-222] .
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But this situation is not easier than it seerns . In his presentation
about the integral of rational functions, Leibniz shows us a difficulty,
a limitation or merely a question . It is always possible decompose a
real polynomial into a product of real lineal factors or real quadratic
factors?39 or, every polynomial has always a real and complex root and,
with every complex root, has also the conjugate complex root? Although
always Leibniz is clear and rotund when he says

As soon as I had found my Arithmetic Quadrature ; reducing the
quadrature of circle into a rational quadrature and observing that
the sum

depends of the quadrature of the circle, I immediately observed
that a time reduced to the summation of a rational expression, all
quadrature can be converted in many kinds of summation of the
more simple . And I will show, by a decomposition proceeding of
a new genes because it must be in this manner . This proceeding
consists to convert a product of factors into a sum; this is, to
transform a fraction with a denominator of higher degree, egaall
to product of roots, into a sum of fractions with simple denomi-
nators, 4°

when he rnust integrate f~ he finds a problern . It is possible obtain
a,,+a4 to multiply ~+ a2 by -x7---%-a2 , but they are not real . And it is not
possible to obtain a real decomposition ; because

39This assert is absolutely clear in Newton, 1 . [59], - as we have seen in the footnote
32 .
40 Leibniz, G . W . [50, 351-352] .

In this work Leibniz obtains naturally the integration of rational functions, as for
example

dx

	

_ 1 . .~

	

dx

	

dx
x2 -1 2 .e-1 2 x-1-1'

although " J
.
~ is the quadrature of the hyperbola'' .

Next year Leibniz studies the case in which the roots are not simple and therefore
the sum is transformated into the sum of fractions with multiple denominators [see
Leibniz, G . W . [51]] .
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x4 +a4 = [x+avi] -
IX

-a-v/i ]

	

[x+av'--i ]

	

[x-ay/--¡ 141

arad therefore it is not possible to reduce f x4+a4 to the quadrature of
the circle nor to the quadrature of the hyperbola . It would be necessary
to introduce the quadrature of J ,~ as a new function 42 .
There is neither hesitation about the importante which Leibniz

granted t11e complex numbers and his contributions, "when they were
almost forgotten", were remarkable41 . Between these it is interesting to
observe that he obtained an imaginary decomposition of a positive real
number which surprised his contemporaries and enriched the theory of
lmaginaries :

Then

b
2 +

=

	

1+vr--3 +

	

1-v/---344 .

41Leibniz does not observe that

x4 +a4 = [.2 2 + avf2x + a21 . ¡x2 - a. ,,í2x + a2] .

The possible mistake is debt to have begun by the complex conjugate decomposition

x4 +a4 = [x2 +¡a2] . [x2 - ¡a 2j .

42We have already introduced the quadrature of the hyperbola f -̀x*a and the quadra-
Cure of circle .l x

	

~ . Then, says Leibniz, "1 wait that we will be able to follow this
--zdxa- d.mprogression and we will found the problems related with f x

	

, f

	

g, . . . " [see
Leibniz, G . W. [50, 3601] .
43Moreover, for Leibniz, complex numbers are Che natural consequence of have ac-
cepted real numbers : "From the irrationals are born the impossible or imaginary
quantities whose nature is very strange but whose usefulness is not to be despised"
[see Leibniz, G . W . [50, 51]] .
44See a letter from Leibniz to Huygens, writen in 1674 or 1675 [Cerhardt, C . 1 . [36,
563] and see also Hofinann, J.E . [1972], 1.47 and McClenon, R . B . [55]] : "1 once carne
upon two equations of this kind x2 +y2 = b, x - y = c" . He obtains then

- c2

	

and

	

x2 - 2 +
b2

	

b b
-C 2 = 0

	

or

	

x = 1

	

c2 .
4

	

11 2 - V

	

9

, lb

	

,/ b

	

f62

	

1 / b2
d=x+y= 11 2 + V 9 -c2+ ~1 2 - V 4

_

	

_

	

_

	

- C2

	

or

	

d2 =b+2c.
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Moreover ; as says Boyer, "Leibniz did not write the square roots of
complex numbers in standard complex form, nor was he able to prove
his conjecture that

if f(z) is a real polynomial."4s

Finally in an unpublished Leibniz's paper46 appears the so-called de

Moivre's formula. He does not explain how he found it, but it is com-
prehensible to us as

where x = COSO, y = cos é47 . But these important mathematical contri-
butions did not enough to clarify the nature and reality of the complex
numbers .

Finally

If we put b = 2 and e = 2, there results N/Z =

	

1 +v--3 + V/1 - í--3 .
But that what results really surprising is the use of Cardano's rule by obtaining

this kind of results . Taking Albert Girard's equation

whose true root is 4 and the sum of roots is zero, Leibniz obtains

4--2+

By using the equation

he shows finally that

f(x+2y)+f(x - 271)

2y= 6+

	

x2-1+ 6--

b+2c= 1%2+~4- c2+
V b2 - ~ b4

-c2

x3 -13x-12=0,

x3 - 48x - 72 = 0,

is real,

-3 +2-

	

-3 = F6

	

2725 +
s

-6 = V36 +

	

-2800 + s 36 -

	

-2800

Hofmann says us "the identity (*) is implicit in Euclide's book X, 47-54 [if 4cz <
b2 ], but "nobody noticed it at the time" .
45Boyer, C . B . [11, 444] . This conjecture is done by Leibniz in Cerhardt, C . I . [36,
5501 .
46 Leibniz, G . W. [49] .
47See Hofrnann, J .E . [1972], 145-146 ; Schneider, I . [72, 224-229] and Stillwell, J .
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Leibniz adventures his mistic nature, saying : "The nature, mother
of the eternal diversities, or the divino spirit, are zaelous of her variety
by accepting one and only one pattern for all things . By these reasons
sha has inventad this elegant and admirable proceeding . This wonder
of Analysis, prodigy of the universe of ideas, a kind of hermaphrodite
between existente and non-existente ; which we have named imaginary
roots" as .

This mysterious character stood during several centurias, may be until
the Euler's time with the contributions of the own Euler and d'Alembert .

Kline is absolutely clear in this sense :
Complex numbers were more of a bine to the eighteenth-centrl,ry
mathematicians . These numbers were practically ignorad from
their intvoduction by Cardan until aboutt 1700 . Then complex
numbers were usad to inteyrate by the methode of partial fractions,
which was followed by the lengthy controversy about complex nnm-
bers and the logarithms of negativo and complex nnmbers. Despite
his correct resolution of the probleni of the logaráthms of complex
nurnbers, neither Euler nor the other, ntathematicians were clear
about those numbers.

Euler tried to understand rahat complex numbers really are, and
in his " Vollstündige Anleitung zur Algebra", which frst appeared
in Russian ira 176'8-6.9 and in Germany in 1770 and, is the best
algebra text of the eighteenth century, says,

Because all conceivable numbers are either greater than zero
or less than 0 or equal to 0, then it is clear that the square
roots of negativo numbers cannot be included among the pos-
sible numbers [real nurnbers] . Consequently we must say that
these are irnpossible nnmbers . And this circumstance leads
us to the concept of such nurnbers, which by their nature are
irnpossible, and ordinarily are callad imaginary or fancied
numbers, Because they exist only in tire imagination

Euler made 7nistakes with, complex nurnbers . In this Algebra he
writes - v'-1 = v/4- = 2, Because ~/a, - \íb- = /_a b . He also
gives i, 2 = 0.2078795763, but misses other valv,es of this quan-
tity`~ a .

[76, 56-57] . Moreover Leibniz is conscious of this result and "when it appeared in De
Nloivres's paper in the Philosoptaical 7i-ansactions, 20, n° 240 of May 1698 (publislred
in 1699), Leibniz -quite modestly- put in his rightful claim of authority in Acta
Eroditorvm (May 1700) : 199-208 [Gerhardt, C . l . [35, V, 346-347]]" [sea Hofinann,
J.E. [1972], 146, footnote 17] .
4S Leibniz, G . W. [49, 357] .
49 K1ine, M . [44, 5941 .
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3. The three first attempts to prove
the Fundamental Theorem of Algebra

One possible enunciate of the Fundamental Theorem of Algebra 5° is :
Every polynomial P(x) vith real coefficients has a cornplex root.

Before 1799, year in what Karl li%iedrich Gauss gave his first rigorous
proof of Fundamental Theorem of Algebra 51 , three important mathe-
maticians had already made three attempts to prove the Theorem . The
first is debt to a French mathematician and philosopher, Jean le Rond
d'Alembert, and was published in 1748 ; but elaborated in 1746 . Three
years later, in 1749, Leonhard Euler gave an algebraic demonstration,
very different of the d'Alembert's demonstration . This demonstration
was completed by Joseph Louis Lagrange in 177252 . Several years later
another French mathematician ; Pierre Simon Laplace, tried to prove the
Theorem . l t was the year 179553 .

50There are excellent papers about the Fundamental Theorem of Algebra. See ; for
example, Bashmakova, 1 . [4], Dieudonné, J . et alii [20, 68-71], Gilain, C . [37], Houzel,
C . [42], Petrova, S . S . [61], Remmert, R . [67] and van der Waerden, B.L . [1980], 94-
102 .

The Givains's text offers us a distintion between the Fundamental Theorem of
Algebra-sometimes known as the d'Alembert's Theorem- and the Theorem of lin-
ear factorization -sornetimes known as the Kronecker Theorem- very clever for
understand posterior developments a.nd clarify the different kinds of demonstrations
[see Gilain, C . [37, 92]] .

But I think that, historically, this distintion is not clear . The former mathemati-
cians to Gauss was not conscious of that fact .
51 Gauss considered the Theorem so important that he gave four proofs ; the principles
on which the first is based was discovered by Gauss in October 1797, but the proof
was not published until 1799 . In this proof, similar to d'Alembert's attempt of proof,
he does not introduce cornplex numbers. He proves the Theorem in the forro :

Every polynomial P(x) urith real coefficients can be factored into linear or
quadratic factors .

The second and third proofs of Theorem were published in 181 .6 . The second proof
is purely algebraic, following perhaps the Euler's intention. The forth proof is based
in the same principle of the first and was published in 1849 . In this proof Gauss
uses already cornplex numbers more freely because, he says, "they are now common
knowledge" . In the third proof he used, in fact, that what we today know as the
Cauchy integral theorem .
A half century dedicated by Gauss to prove the Theorem .
Following these different demonstrations we can find precisely the differences noted

by Gilain .
52The Euler and Lagrange attempts were published, respectively, in 1751 and 1774 .
53 Pierre Simon Laplace made an attempt to prove the Theorem, quite different
from the Euler-Lagrange attempt but also algebraic, in his Legons de mathématiques
donnés a l'Ecole Norrnal, published in 1812 .
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Really therefore was Euler the first of three three mathematicians
which userted the true of the Theorem . So ül a letter to Nikolaus
Bernoulli,' Euler ennuniates the factorization theorem for real polyno-
mials, closing the question poned by Leibniz 54 .

54We have already seen that "does not seein to have ocurred to Leibniz that f could
be of the forro a + b i, because if he had seen that

he would have noticed that the product of the factors

[X +a-,,/¡,] - [X -{- av'-] and [X - a,/¡,] - [X - av--]

are both reals and then he would have obtairied

X4 +a4 = [X2 +afX+a2 ] . [Y2-cefX+a2] .

So he wuold have avoid hin mistake . l t is remarkable that he should not have ¡)con

led to this factorization by the simple advice for writing X4 +0.4 = [X2+a2]2-2a2X2"
[see Rerrimert, R . [67, 100]] .

See also Kline, 1VI . [44, 597-598] : " . . . Leibniz did not believe that every polynomial
with real coefficients could be decomposed into linear and quadratic factors . Euler
took the correct position . In a letter to Nikolaus Bernoulli of October 1, 1742, Euler
afñrmed without proof that a polynomial of arbitrary degree with real coefficients
could be so expressed [see Euler, L . [1.8621, 1, 5251 . Nikolaus did not believe the
assertion to be correct and gave the example of

-4x3 +2x2 +4x+4

with the itnaginary roots 1. +

	

2 -{- /-_3, 1 -

	

2 + ,---3, 1 + V2 -

	

r-_3, 1 -

-,/2 - v'---3, which he said contradicts Euler's assertion [see Euler, L . [27, 11, 695]]" .
On December 15, 1742, Euler into a letter to Goldbach [see Euler, L . [27, 1, 170-171]1,
after assert that he doubted once when he saw this example, did it doubt once seen
the example, "pointed out the complex roots occia- in conjvgate pairs, so the produt
of x - [a + b i ] and x - [a - b i ], wherein a + bi and a - b i are a con,jugate pair, gives
a quadratic expression with real coefficients . Euler then showed that hin was true for
Berrioulli's example . But Goldbach, too, re. jected the idea that every polynomial with
real coefficients can be factored into real factors and gave the example x4 -h 72x - 20
[see the letter from Goldbach to Euler of february 5, 1743 in Euler, L . [27, 1, 193]] .
Euler then showed Goldbach that the later liad rnade a rnistake and that he [Euler]
liad proved this theorem for polyriomials up to the sixth degree . I-Iowever, Coldbach
was not convinced, because Euler did not succeded in giving a general proof of this
assertion" .

The reader interested to follow the succession of these letters can see, for example,
Gilain, C . [37, 106-108] .
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Next year, in a very important paper55 , Euler thinks about the homo-
geneous nth-order differential equation with constant coefficients

and finally,

2

	

3
O=Ay+Bdx+C jX+D jX+

	

+Ld
n
nx,

where A, B; C, D, . . . , L are constants .

	

He points out that the general
solution of [1] must contain n arbitrary constants and the solution will
be a sum of n particular solutions yj, every one multiplied by an arbitrary
constant . So the general solution of y has the form

y=CIy1+C2y2+ . . +C;~yn-

Then he makes in [1] the substitution

y = e [f rdx] ,

	

with r constant,

and obtains the polynomial equation in r,

(3] A+Br+Cr2 +---+Lrn =0 .

In fact, the general solution depends of the factorization of the poly-
nomial [3] and of the nature of its roots -reals or complex ; simple or
multiple-, and indirectly his result depends essentially of the Funda-
mental Theorem56 .

55 Euler, L . [22] .
56Each root ri of the polinomial equation [3] furnishes a partial solution into the sum
[2] in accordance with the nature of each root rj , j = 1, . . .,n :

- if rj is a real simple root of [3], then it furnishes into the sum [2] the sumand

zj = Dj erj X ;

- if rj is a multiple real root of multiplicity k, the k equal roots rj furnish into
the sum [2] the sumand

zj,k = eT' x ¡Do + Dl x + . . . + Dk-1 xk-1

- if rj = aj + ¡Oj is a simple complex root of [3], then it and its conjugate
T.7 = aj - i/jj furnish into the sum [2] the sumand

zi = e°j z [Di cos /3j x + DZ sin /3j x]

- si rj = aj +iOj is a multiple complex root of multiplicity k, then the k equal
roots rj = cej + i ej and their k conjugate roots furnish into the sum [2] the
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But, as we have already said, the first attempt of demonstration of the
Fundamental Theorem of Algebra is debt to d'Alembert57 .

3 .1 . The d'Alembert's attempt .

Really d'Alembert proves the existente of the root of P(x) in two
steps58 :

1 . There is the minimum xo of the module jP(x)j ;
2 . The d'Alembert's lemma: if P(x0) r,~ 0, then any neighborhood of

sumand

P=0

ea ¡ x x P [Di C tosOj x + DZ e sin PI x]

Somewhat later [Euler, L . [24]] he treated the nonhomogeneous nth-order linear dif-
ferential equation

X(x) =Ay+Bdy-1-Cd22a .

57 ll'Alembert remembers the Johann Bernoulli's text and then he says : "Nobody,
what 1 know, have went more far [in the question of the decomposition of polynomials],
if we exclude mister Euler, which in the tome VII of Miscellanea Berolinensia declares
that he has demostrated the proposition in the general case . But 1 seem me that Euler
never has published yet en this theorern [d'Alembert, J . le Rond [2, 183]] .
5SSee d'Alerribert, J . le Rond [2] and Petrova, S . S . [62] . In the d'Alernbert's words :

In order lo reduce in general a differential rational function to the quadra-
ture of the hyperbola or lo that of the cirele, it is necessary, according to
the rnethod of M. Bemoulli [Mero. Atad . Paris, 1702], to show that every
rational polynomial, without a divisor composed of a variable x and of cons-
tants, can always be divided, when it is of even degree, tinto trinomial factors
xx + fx + g, xx -l- hx -1- i, etc ., of which all coeficiente f, g, h, i� .. . are real . It
is clear that this diiculty affects only the polynornial that cannot be divided
by any binomial s: -{- a, x -}- b, etc ., because we can always by divison reduce
to zero all the real binomials, if tivo are any, and it can easily be seen that
the products of there binoinials will give real factors xx -1- fx -f- g [see Struik,
D . J . (77, 89, footnote 1J] .



898

xo contains a point xr such that Ip(xl)j < jp(x0)j59 .

Then, if 1 and 2 are true and xo is the point in which ~P(x)j atteints
the minimum, then IP(xj = 0 . This is the sketch of the d'Alembert's
proof60 .

The second step is, for d'Alembert, the more important" and the
proof offered by d'Alembert depends essentially on the Newton's method

59D'Alembert accepts without demonstration the step 1 and the Newton's method .
A simple elementary proof of d'Alembert lem?na was given by Argand in 1806 . This
mathematician was one of the co-discoverers of the geometric representation of com-
plex numbers . He represents the complex numbers as a vectors ¡rito the plan . Then

J . PLA I CARRERA

P(x) =a~x'+a,,-¡x"-i+ . . .+alx+ao

is a vector OA,+1 . The demonstration consists to see that it is possible to choose x
such that the point A,,+1 coincides with O . By seeing this, he explains

P(x0 + 0 x) = P(xo) + A z1 x + terms in (A x) 2 , (0 x) 3 ,

	

.

	

= P(x0) + A 0 x + c

P(x0) + E

where A is constant and ¡El is srnall
compared to I0 xI when 10 xI is srnall .
Then, choosing the adequate direction
of vector 0 x, it is possible obtain that
A 0 x was opposite in direction to P(x0) .
Theri

IP(x0+ox)I < IP(xo)I .

[See Ddrrie, H . [21, 108-112], or Still-
Figure 4

	

well, J . [76, -197-200] .]
6OBy seeing a complete proof of this kind, see, for example, Aleksandrov et alü [1] ;
Ddrrie, H . [21, 108-772], or Rey Pastor, J . et al¡¡ [69, 239-241] .
61 The first step was naturally accepted in the eighteenth century. The rigorous
demonstration can be seen into Cauchy, A . [1821], Ch . X : "For every polyriomial

P(x) = anx" +a,,-rx'-1 + . . . + aix + ao E C[x],

there is a x0 E C such that IP(xo)j = inf I PP I .
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of polygon 62 . Applying this, d'Alembert obtains

k>o

Ck . [y - yo]1k .

The equation (*) shows that, if y is a real point very Glose to yo, it is
the irnage of any x which appears into the forro p + qX63 . Therr the
denronstratiori of the Theorenr is founded if we can prove that yo = 0 is
the irnage of any x [which will be naturally real or irnaginary] .
D'Alembert examines the set of real inrages y and takes the mininmrn

yo which associate x is of complex form . Brrt following Che development
(*), all real number y very Glose to yo must be also in image of the
cornplex nurrrbers x . Tllen, if yo ,-E 0, there is an irnage closer to zero
than yo . Contradiction . This contradiction establishes the Tlieorem .

It is interesting to note two innportant facts which were observed by
d'Alembert ¡rito his work . Tlre first are corollaries 1 and 11 and propo-
sition 111 6 `1 and says : "if a complex number a + b -,/_-1 is a root of the
polynornial P(x), then a-b x/_-1 is anotlrer rooot of P(x) and tllen P(x)
can always be decomposed into quadratic factors of the kind xx+'rnx+n" .

The second fact, contained in the demonstration but not mencioned
explicitly", is : "if P(x) is a real polynomial and we substitute x by
a complex number z = z r + i z2 ; where z r , z2 are real numbers, then
we obtain P(z) = Ql(zl) + i, Q2 (Z2), where Q1 (x) and Q2 (y) are real
polynornials . Then P(z) = 0 iff Q1(z) = 0 and Q2(z) = 0"" .

3.2 . The Euler-Lagrange's attempt .
The idea of Euler's dernonstration 67 was to decompose every mon¡c

polynornial with real coefficients P(x) of degree 2" > 4 into a product

62See Newton, 1 . [59] and Stillwell, J . [76, 125-126] . The sense of this theorem is the
following: "To every pair (xo, yo) of cornplex numbers with yo - P(xo) = 0, there
correspond an increasing series {qk} of rational numbers such that

ek - [y - yo]'k

¡ti a neighborhood of yo'" . ].'his theorem was proved rigorously by Pusierix in 1850 .
lt is possible to avoid this theorem like we can see, for example, in D&rrie, H . [21,

108-112] .
63 see d'Alembert, J . le Rond [2, 189] .
64See d'Alembert . J . le R.ond [2, 190-191] .
seSee d'Alernbert, J . le Rond [2, 186-187] .
66 This fact is essential in the first Gauss' demonstration [see, for example, Hollings-
dale, S . [41, 319-322]] .
o7 See Euler, L . [23] and Lagrange, J.-L . [45] .
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P1(x) - P2(x) of two monic polynomials with real coefficients of degree
m = 2n-1 .

Then Euler asserts that

	

p, . . . . are real functions in B,
C, . . . , u,

	

and that,

	

by elimination of a, 9, 1 . . I A, N, , . . . ,

	

is obtained a

monic real polynomial in tt of degree ( 2m ) whose constant term ism
negative . Now this polynomial in u has a zero u by the intermediate
value theorem as Euler clearly knew68 . Now we can follow quickly the
Euler's steps69 :

1 . If the equation has a root of the form x + y xl-1, then there is
also another of the form x - y VI_

	

70 ;
2 . Every equation of odd degree has al least one root ;
3 . Every equation of even degree with negative absolute term has at

least one positive and one negative root71 .

But it is the forth theorem which gives us the key of his ideas :
Every equation of the forth degree, as

x4 +Ax3 +Bx2 +Cx+D=0

can alvays be decomposed into two real factors in the second de-
gree .

First, setting x = y - áA, he obtains that every equation of the forth
degree can be of the form x4 + M x2 + N x + P = 0. If we decompose
this equation in two equations of the second degree, we have

[x,2+ux+a]-[x2-ux+/.3]=0.

68This fact is also emploved by Laplace in his demonstration as we will see next .
`See Struik, D .J . [77, 99-102] .
70Then the polynornial has a factor of the form xx -I- px -f q .

Euler gives an example of how to decorripose an equation of the forth degree into
two quadratic factors .

So Euler gives answer to the former problem posed by Nikolaus Bernoulli and
Goldbach [see footnote 54] .
7r We have there a partial proof of the Bolzailo-Cauchy theorem on InteT-mediate
Value.

Thus, if P(x) is a polynomial of the form

p(X) = x2"1 + B x2m-2 +C x2m-3 + . . .

the polynomials P, (x), P2(x) now take the form

xm + u xin-1 + e¿ xm-2 +13
xM-3 + . . .

xm - u x'n-l + A x711-2 + ti xrrl-3 + . . .
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If we compare this product with the proposed equation, we shall find

11/1=a+,0- u2 ,

	

Na]u,

	

P=a,Q

from which we derive

u6 +2117u4 +[1V12 -4P]u2 -N2 =0,

"from which the value of u must be found . And since the absoluto terco
-N - N is essentially negativo, we have hope that this equation has at
least two real values � 72 .

Among the corollaries to Theorem 4 there is the statement that the
resolution into real factors is now also proved for the fifth degree, and
Scholiuln 11 points out that, if the roots of the given fourth-degree
equation are xl, x2, z3, x4, then the sixth-degree equation in u, u be-
ing the sum of two roots of the given equation, will have the six roots
X1+X2, xl+x3, T1+x4, z2+x3, x2+X4, X3+x4 . Since xl +X2+x3+X4 = 0,
we can write for u the values ul , u2, u3, -ul, -712, -u3, and the equation
in u becomes

[u2 - 711]

	

[u2 - u2]

	

[u2 - u3] = 073'

12 When we take one of them as u, then the values of a and f3 will also be real, seeing
that

73We can observe that the fourth roots XI, X2, i3, X4 of the equation

[l]

	

a4 +Mx2 +Ni,+P=0

satisfies

[2]

	

X1 +J%2 + X3 + X4 = 0 .

Then u can have ( 2 ) = 6 different values . Tlien u satisfies an equation of the

sixth degree which coefficients are reals

We have u,= Xi+x2,u2 = XI +X3,u3 = XI +X4,u4 = x2+x3,765 = .r2+X4,u6 =
x3 + x4 and then

and then the equation [3] has the forro

N

	

N
200=uu+M+-, 2a=uu+Ivl-- .

16

	

76

F6(u) = 0.

ul = -71.6, u2 = -u5, u3 = -u.4

F6~76~ _ [762 - 71,21
] '

[,a2
- u2] .

[,U2
- u3] .
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Next to, tinto the theorem 5, he establishes
Every equation of degree 8 can always be resolved tinto two real
factors of the forth degree 74 .

The problem consists to see that not only u ; but also the other cof-
ficients a, /d ; y, S, e, o are reals, a reasoning which Lagrange and, more
later, Gauss objected .

Lagrange takes this equation but he observes that when u takes the
value 0 into the rational expressions of the other coefficients of P (x)
and P2(x) as fonction of u, it is possible obtain undefined coefficinets
of the form 2 . For avoid this, he takes as unknown [when an = 1],
v = 2n + a,,_1 and then observes that the "imaginary roots" of the

13is constant term is -ea1 u2 u3 .

	

The product ui u2 u3 is real?

	

There is .

	

Euler
does not explain this with detail . He says only that this product is real because the
fundamental theorem of the theory of symmetric functions .

We can reasoning this : Despite this product was not a symmetric fonction of the
symbols XI, x2, x3, x4 ; it is unvariable when we do all possible permutations of the
roots of the equation [1], under the condition [2], between the roots of the equation
[1] . Really this product can be obtained of the following :

2 2 2

	

1

	

(X1+x2) - (x1+x3)'(xl+x4) + (xl+x2)'(x2+x3)'(x2+x4)+
u1 u2u3 4 {+(X4 + x1)-(x4 + x2) - ( x4 + x3) + (x3 + X4) (X3 + x2) (x3 + xl)

Remember that the fundamental theorem of the theoy/ of symmetrie functions
says :

Every rational fonction of roots of an algebraic equation

IP(x1,x2, . . ,xn)

which. takes k different values when it makes all possible permutations of
roots, satisfies an algebraic equation of degree k whose coeicients are ratio-
nal functions of the coefcients of the given equation.

Then, if k = 1, the fonction W(x) satisfses a rational expression of the
coefficients of the given equation.

Euler uses largely this fundamental theorem, but he only develop, with a sufficient
rigour, for the general case of the second degree equations, but the theorem in 11is
general form was proved firstly by Lagrange in his transcendental paper Reflexions
sur la resolution algebrique des equations [1771] . So it will be necessary hope the
Lagrange's apports by obtaining the general result .
74 First the term x7 is eliminated, so that the two supposed factors can be written
x4 - u x3 + cr x 2 +Q x +7 and x4 + u. x, 3 + 6 x 2 + e x + ?p . Since u expresses the sum
of four roots of the eight-degree equation, it can have $' 7 ' 6 ' 5 -_ 70 values, and it will12-34
satisfy an equation of the form

0 = [u2 _ p21 . [u2 _ q21 . [u 2 _ r21 . [u2 -S 21 . . .

with 35 factors . The absolute term is negative, and the reasoning continues as before .
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equation in the unknown v are the expressions

,.
va = E za(k)

_

k=1 k=1

where a runs oven the set S", of all permutations of set {1, 2, . . . , n} . It
is easy see that the produce of vo is always <_ 0 . Next he avoids the case
in which the product is zero, substituing vo for a useful combination
of the coefcients of P1 with real coeflicients and then using his results
contained in a paper of 1770-17717 on permutations of an equation,
finishes rightly the (lemonstration 7e .

3 .3 . The Laplace's attempt .

Za(k+,.)

In the year 1795 ; Pierre Sirnon Laplace lnade an attempt to prove the
Fundarnental Theoren177 . This attempt was completely algebraic, but
quite different frorrt the Euler-Lagrange attempt . This mathematician
and politician assumes, as his predecessors, that the roots of polynomials
"exist" 78 .
Laplace says79

Of this it results a demonstration very simple of this general the-
orem which we have énnounced before and which, says that every
equation of even degree can be solved into real factors of second
degree .

His prove is the following:

	

Let be x1, X2, . . . , x, where n = 2 k q, A; <
1, q E 2N + l, the roots of the polynomial

P(x) = xrr - b1 x" -1 + b2 x"-2 + . . . + (-1)n b� E R[x] n < 1 .

75Lagrange, J .-L . [45], [1773] . These papers are the rnost itnportant works on alge-
braic equations in the eightecnth century. See Dieudonné, J . et alii [20, 1, 70] .
761,1 1815 Gauss objectes " . . . this question has been treated as the ornly problem was
determinate the forro of roots and its existence is accepted without demonstration .
But this nranner of raisoning is completely illusory and it constitutes a veritable petitio
principis" [Opera Ornnia, 111, 105-106] . He gives us a demonstration -his second
demonstration- following the Euler's ideas, but he avoids to apply the imaginary
roots because uothiug "guarantees it existence" . [See Dieudonné, J . et alii [20, 1, 71] ;
Fauvel, J.-Gray, J . [31, 490-491] ; Srnith, D . E . [74, 292-306] or Remmert, R. [68,
104-106] .
77Sce "Le~ons de mathématiques donués a PEcole Nortnale", Oeuvres completes, 14,
10-111, especially 63-65 . Tor an actual proof and comentaries, see Remmert, R.
[1190b], 120-122 . '
78 This existence is naturally a platonic existence.
79 La,place, P .-S . [47, 63] .
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The equation Qt (x) which roots are xi + xj + t (xi xj), where t E R
arbitrary and i < j, has a degree of the form 2k-1 q', where q' E 2N+180 .
Then Laplace proceeds by induction on k:

- if k = 1, the new polynomial Qt (x) will have an odd degree and
then it will be a least a real root xi + xj + t (xi xj)81 .

It is clear that there is infinitely many real values t such that,
for a same xi and xj,

xi + xI + t (xi xj ) E IR .

Then there are tl :~ t2, t1, t2 E R, such that xi+xj +tl (xi xj), xi+
xi + t2 (xi xj ) E R . Then the quantities

[t1 - t2] (xi xj ),

	

xi xj

	

and

	

xi + xj

are all real .

	

So the factor x 2 - [xi. + xj] x + xi xj will be a real
factor of second degree of P(x) ;
if k > 1, then P(x) will have a real factor of second degree if every
equation of degree 2k-1 q' has a factor of second degree, because
infinitely many

xi+xj +t(xixj),i<j,tER

will be complex numbers [that is : they are of the form n +
i ¡3, a, )3 E R] and then, following the precedent reasoning, there
are two roots xi, xj of P(x) such that xi+xj, xi -xj E C . Therefore
the factor

x2 - [xi + xj] x + xi xj E e[x]
and it divides exactly P(x) . Then

x 2 +x,7 ]x+xixj Eqx]

divides also P(x) . Thus the following real polynomial of forth
degree

IX2-[xi+x;]x+xix;] [x2+x;]x+xix;]=

= [x2-Re(xi+xj)x+Re(xixj)]2+[IM(xixj)-IM(xi+xj)]2 .

This quantity, "as we have seen"82, can be solved in two real
factors of second degree83 .

BOIts degree is exactely 2" q [2k q - 1]/2 = 2k-1 q', where « E 2N -{- 1 .
81 Laplace applies the following corollary of the Intermediate value Theomm: 'Tvery
polynomial of odd degree has at least one real root" .
82See Laplace, P.-S . [47, 60-63] .
83 Laplace considera the case in which the two factors

lX2- L"i+ a.7]
X
+XiX.7]~[X2- xi+Xj]X+~iX.7]
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Then the problem is finished because P(x) has a real factor of second
degree iffevery real equation of degree 2k-1 q', q' E 2N1+1 has a simmilar
factor, and then [for the same reasorl] iff every equation of 2k-2 q", q" E
2N1 + 1 has a simmilar factor and following we establish the proof84 .
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