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THE FUNDAMENTAL THEOREM OF
ALGEBRA BEFORE CARL FRIEDRICH GAUSS

Abstract

Josep PLa 1 CARRERA

This is a paper about the first altempts of the demonstration of
the luindamental theoremn of algebra.

Before, we analyze the tie between complex numbers and the
number of roots of an equation of n-th degree.

In sceond paragraph we sec the relation between the integration
and fundamental theorem.

Finally, we observe the lincar differential equation with constant
coeflicienis and the Buler's position about the fundamental theo-
rem and then we consider the d’Alembert’s, Buler’s and Laplace’s
dermonstrations.

It is & synthesis paper dedicated to Pere Menal a collegue and
a friend.

I35 guan dorme gue hi veig clar

Josep Vicens FOIX
En la calle mayor de los que han muerto, <l
deber de vivir iré a gritar

Enrique BADOSA

Ta be or not to be.
That is the question.

William SHAKESPEARE

1. Introduction: The Complex Numbers

Inn the vear 1545 Gerolamo Cardano wrote Ars Magna'. Tn this book
Cardano offers us a process for solving cubic equations, learned from

"There are many inleresting papers on complex mumbers, Sce, for example, Jones,
P. S. [43); Molas, C.-Pérez, J. [57] and Remmert, R. {67]. Morcover, in this paper,
our interest on complex nnmbers is limited only in their connexion with elgebre and
particulary with the Fundamental Theoremn of Alyebra.
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Niccold Tartaglia®. In his book il appears for the first time an special
quadratic equation:
If some one says you, divide 10 into two parts, one of which mul-
tiplied into the other shall produce 30 or 40, it is evident this case
or equation is impossible®.

Cardano says then

Pulting aside the mental tortures involved, rmultiply 5+ /15 by
5 — W/ —15, making 25 — (—15), which is +15. Hence this product
15 40 ... This 15 fruly sophisticated ... 1.
But, as Remmert remembers us, “it is not clear whether Cardano was
led to complex numbers through cubic or quadratic equations”®. The
sense of these words is the following: while quadratic equations

1
% +b=az, withA::laz—b<0,

have no real roots [and they are therefore impossible equations], cubic
equations
2 3
23 =pz+q, with A = (2) - (E) <0,
2 3
have real Tools which are given as sums of imaginary cubic roots®. This
question was further developed by Rafael Bombelli in his L°Algebra, pu-

blished in Bologna in 1572, Bombelli worked out the formal algebra of

2Cardano’s rule for cubic equation 2% = pz + ¢ is

= :(/g+\/z+ {/%—\/_A- whereﬂz(g)z—(f)a,

3

The history of the process lor solving cubic equations is now perfectly known. See,
for example, Burion, D. M. [12, 302-312; Stillwell, J. [76, 59-62|, Vera, F. (80,
47--59] and van der Waerden, B. L. [85, 54-53].

See also Tartaglia, N. [T8, 69 and 120].
3Cardano, G. [16, Ch. 37]. Sec also Steuik, D. J. [77, 67}

The equation 2% — 10x = 40 [or 30] has the solutions 5 £ +/—15 lor 5 & v/—5] and
both solutions ave formally corrects, but in this time they have not any sense.
*Cardano, G. [16, Ch. 37]. See alsc Struik, [D. 1. [T7, 69 and footnote 7.

The name #maginary is introduced by René Descarles, as we will sce soon. But
it is debt, perhaps, to following Cardano’s words: “... you will nevertheless irmagine
/=15 to be the difference between ... ", completing, in that case, the square.

It is interesting to observe that Cardano accompanied his result over this kind of
quadratic cquation with the comment: “Lhe result in that case ts as subtle as it'is
useless” [sec Cardano, G. [16, Ch. 37, rule 1] and also Struik, D. J. (77, 69]].
SRemnert, R. [B7, 57].

SWe can see van der Waerden, B. L. [84, 194]: [t is not possible solve, hy real
radicals, an irreductible cubic equation over & whose three roots are all real [casus
trreductibilis, following Cardana).
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complex numbers, He introduced (in actual notation} the complex unit”
i and eight fundamental rules of computation®:

(+1) -4
(=1) -4

His principal aim consisted to reduce expressions as /o + bi to the
form ¢ + di¥, because then it should be possible to use formally the
Cardano’s expression by solving the casus iveductibilis 27 = 15z + 4.
Bombelli obtaing, according the Cardano’s expression,

p= 24117+ V2114,

Hence = (2+4) + (2 —4) = 4.

Frangois Viele wrote in 1591 a higher level paper, which relates algebra
to trigonometry'®. TIn this paper'! Vidte offers us his solution of the
cubic equation by circuler functions, which shows that solving the cubic
is equivalent to trisecting an arbitrary angle'?. He starts (in modern
nobation} from the identity

i (1) (=i} = =6 (1) - (+0) = =4 () - (=) = +1;
=4 (=1} - (=1} = +i; (—3) - (+1) = +1;{—4) - (—i) = — L.

cos 38 = 4 cos”  — 3cosd
[or 28— %z - %cos 36 = 0, where 2 = cos 0], Suppose now that the cubic
to be solved is given by

—pr=q [pg>0.

71t s perhaps interosting to rementber Lhat the symbol i for indicate imaginary unit
is debt to Kuler: “In the following [ shall denote the expression —1 by the letter
so that 4 = —17 [Euler, L. [25. 130]]. Sec Kline, M. [44, 410]: “In his earlier work
Eulor used i (the frst letter of snfinitus) for an infinitely large quantity. After 1777
he used 7 for /=17,
8 zoally, Bombelly introduced pitt di meno |for <i) and meno di meno [for —¢] and
rutes of caleulation such as
mene di menoe via meno di mene fa mena
which means {—i) - (—i) = —1.
See Bombelli, R. [9. 169] or Bertolotti reprint, 133
YBombelli did not Lhrough Loa much on the nature of complex numbors, but he knows,
for example, Lhat
(24 =2+£114,

30 that

¥eriti=244.

See Bombelli, R. '9, 110! or Berlololti reprind, 140-141.

197 his paper, “De wquatione recognitione ot eimendatione™, written by Vigte in 1591,
was not published until 1613 by his Scottish lviend Alexander Anderson.

MSee Vidte, F. [81, Ch. VI, Th. 3].

125¢c¢ Hollingsdale, S. [41, 122-123].



882 J. Pra 1 CARRERA

If we introduce an arhitrary constant A, setting = = Az, then

3 14 9 _
Z —X‘EZ—?—O.

We can now match coefficients in the two forms

4dp
5

3
¥ and % = 1cos 38, sothat A=

With this value of A, we can select a value of 4 so that

4 2
cos 3¢ = i a/

In the casus trreductibilis, we have

A=(9 = () <0 and then (L:/Qa? <1

and thus the condition for three real roots ensures us that | cos36] < 1,
which is essential'?.

In 1637 René Descartes wrote Lo Géométrie'®. This appendix was
his only mathematical work; but a what work! It conlains the birth of
analytic geomelry®. In Book III of his La Géoméirie Descartes gives

a brief summary of that was known about equations'®. Between his

L3 Then he proves the cquivalence: we have cos 3¢ = ¢, where p = % Given e,
we can construct a triangle with angle 36 = cos™! p. Trisection of this angle gives us
the solution z = cos# of the equation. Conversaly, the problem of trisecting an angle
with cosine g is equivalent to solve the cubic equation 428 — 3z = ;.

141y ig, as it is well known, the third appendix of his famnons Discours de la méthode
pour bicn conduire sa reison el chercher lo verité dons les sciences. The other
appendices are La Diopirigue and Les Météors. For a comment we can see Bos,
H. J. M. [10], Milhaud, G. [686, 124-175], Pla, J. [63], or Scott, J. F. [T1, 84-157].
5 The analylic geomeiry was independently discovered by Pierre Fermat, a French
amateur mathemalician, in his *Ad locos planos et solidos isagoge™ [32].

Y64]5hn Wallis in his Algebra [86] declared that there was little in Deseartes which
was 1o to be found in the Artis Analytica: Prazis [39] of Harriot” jsee Scott, J. F. [71,
138] and Wallis, J. {87, 126]]. But, says Scott [Scott, J. [T1, 138]], “this statement is
far from true®.
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algehraic assertions!?, we are interested in the following:
in every equalion there are as many distint rools as is the number

of dimensions of the unknown guantities!®.

This is an important approach to Fundemeniel Theorem of Algebra, but
it is not the Rrst and perhaps never the more explicit.

The first writer to asserl, that “every such equation of the nth degree
lias n roots and no more” secins to have been Peter Roth!?. The law was
next set forth by a more prominent algebraist, Albert Girard, in 1629:

Buery alychraic equation admits as maeny solulions as the deno-
mination of the highest guantily indicates .., %

Girard gives no proof or any indication of one. He merely explains his
proposition by some examples, including that of the equalion al —dn +
3 = 0 whose solutions are 1,1, -1 zv@ —1 — /2%,

17 'he other nnportant assertions in Book 11 of La Géométrie urc:

- A polynoniial P(z) which vanishes at ¢ is alwavs divisible by the actor x — ¢
and Lhen

Plx) = (2 — ) Q{z), where deg (Qz)) = deg (P(=)) — 1.

[This theorem was probably already known by Thomas Harriot, lollowing
Remmert, R, [68, 99 lootnote 2.

- Pescartes’ rule of signs: we can doterminate from this also the munber of
true and false roots that any equation can have, as follows: Every eguation
can have as many true rools as i confaing changes of signs, from + lo ~ or
Jromw —~ Lo +; and as many false rools as the nmunber of times two + signs
or two — signs ave Jound in succession. {This lnw was apparently known by
Cardano [Cantor, M. [[15, I1, 539], but a satisfactory statement is possibly
dune to Harriot [Harriot, (39, 18, 268]]. Sce also Smith, E. D. [78, 11, 471}
[On limitations or mistakes in Descartes’ rule see, lor example, Scott, J. F.
(71, 140}.]

This rule was formulated it a more precise manner by Isaac Newton in his
Arithmetice Universelis, composed between 1673 and 1683, perhaps for Now-
ton's leclures at Camnbridge, but first published in 1707. Newton's rule counts
morcover complex roots,

This Newton's work contains aiso the forinulas, usually known as Newlon's
identitics, for sums of the power of the roots of polynomial equations.

8D)escartes, R. [19, 372]. Bnglish translation in Smith, 1. E.-Latham, M. [75, 159).
1¥Pater Roth, who nume also appears as Rothe, was a Nlirnberg Rechenmeister, died
at Nurnberg in 1617, Me wrots, in 1600, his Artthmetica philosophica, where we can
find the quoted statement.

2080e Girard, A. [38] in Vigte and alii (83, 139] and in Struik, D. J. [77, 85]. Sce also
Troplke, J. [79, ITI{2}, 95] for further details.

2P hare are opposed opinions about the real content in these formulations. Whilst for
Swith [Sinith, D, B, {73, 11, 471]] “this law was more clearly expressed by Descartes
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Later another mathematician, named Rahn [or Rohnins], alsa gave a
clear statement of the law in his Teutschen Algebra [66].

The question about, these formulations of the Theorem is the following:
these algebraists wccepled veal and cornpler numbers and only them as
solutions of equations? The answer is not easy nor clear. Girard accepts
the “impossible solutions” with these words

Someone could also ask what these impossible solutions are. |
would answer that they are good for three things: for the certaintly
of the general rule, for being sure that there are no other solutions,
and for its utility®?.

Descartes, by his side, realized the fact that an equation of the nth degree
has exactly n roots®. But, for Descartes, the imaginary roots do never
correspond any real quantity?®?.

[19], who not only stated the law but distinguished between real and imaginary
roots and between positive and negative real rools in making the toral number”, for
Remmert {Remmeri, R. [68, 100]}, contrarily, *Descartes takes a rather vague position
on the thesis put forward by Girard”.

22Gjrard, A. [38) in Vigte and alii [83, 141]. In other side [Viete and alii [B3, 142])
he says : “Thos we ean give three names to the other solutions, seeing that there are
some which are greater Lhan nothing, other less than nothing, and other envelopad,
as those which have +/—, like v/=3 or other similar numbers.”

Remmert, R. (68, 99], goes further. He says: *He thus leaves open the possibility
of solutions which are not complex”. Remmert thinks that, in his ambiguity, Girard
leaves an open door to the solutions more complicated than the complex. The problam
consists to know the exact sense of the Girard's words “irnpossible solutions” because,
for him, “there are no other solutions”. [About this question sec alse Gilain, C. [37,
93-93).}
23This assert is deht Lo the Descartes’ text [see Descartes, R. {19, 380]. English
translation in Smith, D.E.-Latham, M. [75, 173]):

Neither the true nor folse rools are real;, somelimes they arve imaginary,; that
is, while we can always conceive of as many reots for each cquetion as { have
atready essigned, yef there is nol alwoys a definite quantily corresponding to
each root 5o concetwed of Thus, while we may ronceive of the equation

20 — 627+ 13— 10 =0

as having Lhree roots, yel there is only one real root, £, while the other two,
however we may tncrease, diminish, ov raulliply them in accordunce with the
rules fust laid down, remains always imaginary.

In this text there is a rather inleresting classification signilying that we may have
positive and negative rools that arc imaginary.

Tt seems that for Descarles the roots are always real or imaginary and no other
kind of rool is possible. [About with this oppinien, see Gilain, C. [37, 95-97] ]

The use of word imeginagry in his actual sense begin here [sec Smith, D.E.-Latham,
M. [75, 175, footnote 207]].
24Dgscartes confess that onc is quite unable to visualize imaginary quantities [scc
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This impessibility or difficulty for visualizing imaginary quantities was
perhaps the reason which carried the English mathematician John Wallis
to give a geometricnl interpretation in his Trectise of Algebra of 1685%.

He says: “The Geometrical Elfection, therefore answering to this
Equation

a-aFb-ate=10

may be this” 28,

Smith, 12.15-Latham, M. [75, 187]]. As says Rennnert, R, [67, 58], “Newwon regarded
complex guantities as indication of the insolubility problem™. 1n the Newton's own
words: “But it is just that the Roots of Equation should be iinpossible, lest they
should exhibit ihe cases of Probleins that arc impossible as if they were possible”
[Newton, 1. [59] 2nd ed., 193],

25 'his representation is guoted in Smith, D. . [74, 46-54]. iSec also Stillwell, .J. C.
(76, 191-192]]. In a letter to Collins, May G, 1674, Wallis suggests a construction a
little different from any of the constructions found in his Algebra [see Cajori, F. [13]].
Woe shall see this alleruative constraction here:

“This imaginable root in o quadratic
eguation I have had thowghts long since
of designing peometrically, and have had
S sevoral projects the that purpose. Onc
VAE of them was this:
~ B v A Supposing a quadratic equation
S 5

A2 2844 AR =0

Figure la
Irs [: ﬂ'—z*’:] be bigger than VAL [that 15 52 > AE], the rools are 55V E? - AR =

]
{ ;:, . putting ..., 5= %Z and ... V = %,\’? where V [: W54 — AE] added to and

takes from S, yiclds S+ V = A, SV = £, that is, {Lhe roots are] § 4+ V72 [sce
figure laj.
But if 4E be bigger than 52, the rools are § =4/ 57 - AE = [S + Ve ], where

VAE, which was Lthe sine, now become
the secant, and V¥, that was the co-
sine, is now the tangent lsee figure 1b].
For 52 — A = V2, the dilference
of the plane 52 and AR, Lhe greater
S is to be cxpressed by the hypotenuse,

and the lesser by the perpendicnlar.”

Fignra 1b

26Wallis, J. [87] in Smith, D. E. [T4, 52}. Wallis calls the independent tenn ee. It is
the product of two roots a and e of the cquation ¢- o F b o +ae =10.
Before Lhis, Wallis offers us the following caleulation for solving

- 20V 1TH 4 256 = 0.
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On ACa = b bisected in C, erect a Perpendicular CP = /c. And
taking PD = %b make a Rectangular Triangle [figure 3a).

P
] M
If PC = e < $b = PB, then 1
the solutions are Real and are pre- P
cisely AB and Ba. A B C «
Figure Ja

b—y/ 6% — cand aB = $b+,/ 162 — ¢ [see Smith,

But if PC > PB, “the abave
construction fails” and “the Right
Angle will be at B®. Then the
solutions are fmaginary and are
AB and aB [see figure 3b). [Now

Ly AB = b~ i\Je~ib?,aB =

[In this casec AB =
D. E. [74, 53]]]

b=

C
Figure 3b

%b + iy /e — %bi’. Wallis uses the later BC o obtain the émaginery pert

of the solution.]
This geometrically representation was not accepted by the mathemati-
cians?” and would be still necessary to wait a hundred years to obtaining

The solutions are o = V175 + =81 and e = /175 — +/—8l. The geometrical
representation is {following Walllis, J. [87] in Smith, D. E. [74, 50-51]|:

F
20 12 (15
V175 — /=381 V1754 /=81
P —a1
A 3 C o
Figure 2

27In Stillwell, J. [76, 192], we can see the Wallis® figures and the modern
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the correct and acceptable representation?®. We shall not comment this
work.

2. The technique of integration and complex gquantities

The cighteeuth century use of the integral concept was limited. New-
ton represented the transcendental [unctions as series and integrated
these functions term by term®®. Gottiried Wilhelm Leibniz and Johann
Bernoulli treated the integral as the inverse of the differential®.

In this context the decomposition of rational fractions {or functions]
into partial [or simple] fractions made possible a decisive step in integral
calentus®!

The problem was calculate the integral

/I gdm,

where P ad @ are polynomials and deg( P} < deg @ and, for getting it,
Cottfried Wilhelm Leibniz and Johann Bernoulli, together other mathe-
maticians of his tiine, saw the necessity to express every real polynomial
as product of real factors of first and second degree®. This fact shows
us that they had very much confidence in the Fundamental Theorem of
Algebra™?.

represcotalion,
28The gsatisfactory geometrically represeniation of cornpler quantities was carried by
the Norwegian mathematician Caspar Wessel in 1797 and independently by the Swiss
Jean Robert Argand in 1806, 'This last work, despite ils considerable merit, remained
unnoticed until a French translation apperead in 1897,
295¢¢ Pla, J. [64, 9-20].
305ee Kline, M. [44, 406): “If dy = f'(z) - dz, then ¥ = f{x). That is, 2 Newto-
nian antiderivative was chosen as the integral, but differentials were used in place of
Newton's dorivitives”.
31 he existence of an integral was never questioned.
32 he Arithmeticn Universofis of [saac Newton contains, as we have said before, the
substance of Newton’s lectures from 1673 to 1683 al Canubridge. In it are found many
important results i equations theory, such as the fact that the imaginary roots of
a real polynomial “must ocour in conjugate pairs™. This Iact is a very important
result and it was naturally accepted by the mathematicians of the end of seventeenth
century, But, following T.eibniz, this fact presents diffieultics, as we shall see next.
3G0e Leibniz, G, W, [49), :51] and Bernoulli, Jh. |6].

The chance did thal in 1702, July 10, Johann Bernonlli, thinking to enunciate him
a now result, wrote to Leibniz that had found the integral of differential quantities
f,iuf::;, where p and g are polynomials. But Leibniz responded: “No only | have already
the solution of this probler, but moreover 1 bave it from the first years in which I
practiced the higher geometry. In this result I have seen an essential component of
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be transformed also [using now z = /3 — 2] into the differential of “a

e e ot [N n .
sector or circular arc REN =y and reciprocally”. Finally he observes

that the integral of
adz

b2 + 22
depends on the quadrature of the circle, and moreover

adz 1 erelz 1 adz

b2 4 22 _Q_b.b+iz+2_5.b—iz

which are two differentials of imaginary logarithms: one sces that
imagnary logerithms can be taken for veal circuler sectors be-
cause the compensation which tmaginary quantities makes on be-
ing added together of destroying themselves in such a way that
their sums is always real®’.

We have observed there the introduction of #maginary logorithmic dif
ferential into the integration of rational functions3®.

FBernoulli, Jh. [6] in lauvel, J.-Gray, J. [31, 439]. In fact Bernoulli obtains

_1 1 t—z
tan” "z = — - log - .
24 4z

In this sense it is interesting to note that, several years later, in 1712, Johann Bernoulli
carried ont the integration to obtain an algebraic relation between tan nf and tan §.
His argument is as follows. Given

y=tannfl, x =tan@,

we have
nl=tan ly=n. tan—! T
hence, taking diflerentials,
dy dx
=Tmn:- "
L+ 42 1+ 2%

ndl =

and then

[RIEE PN SRS
y+i y—i y=n w41 T —i ’

¥tz — log [:c-i—'i.]”
—i ;

] £ —1

Integration gives

log

and whence
(w ="y +i)=(z+4)" (g i)

3EWe do not explain the history of imaginary logarithms. But there are many papers
on complex logarithius as, lor example, Cajori, F. [14], Kling, M. [44, 407-408]; Naux,
L. (58] and Stillwell, .J. [T6, 220-222}.
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But this situation is nol ecasier than it seems. In his presentation
about the integral of rational functions, Leibniz shows us a difficulty,
a limitation or merely a question. It is always possible decompose a
real polynomial into a product of real lineal factors or real quadratic
factors?3? or, every pelynomial has always a real and complex roat and,
with every complex root, has also thie conjugate complex root? Although
always Leibniz is clear and rotund when he says

As seon as I had found my Arithmetic Quadrature, reducing the
quadrature of civcle into ¢ rational quadrelure and observing that
the sum

dx
1+ z?

depends of the quadrature of the circle, I immediately observed
that a time reduced 1o the summation of ¢ rational expression, afl
quadreture cun be converted in many kinds of surmation of the
more simple. And [ will show, by a decomposition proceeding of
a new genus because it must be in this manner. This proceeding
consists to conwvert o product of factors into u sumy; this is, lo
transform a fraction with o denominator of higher degree, equal
to product of roots, into a sum of fractions with simple denomnu-
natm's,‘m

when he mnust inteo'mre f 7——4— he finds a problem. Tt is possible obtain

i + —+— to multiply —,—m by —,——g, but they are uot real. And it is not

possible to obtain a real decomposition, because

39This asserl is absolutely clear in Newton, [ [59], as we have scen in the footnote
3z
OLeibniz, G. W. [50, 351-352].

1n this work Leibniz obtains naturally the integration of rational functions, as for

example
de 1 da 1 dx
221" 2 J oe—1 2 o+ 1"

although “J 2 5 the qtnclrnturc af the hyperbola”.

Next year Lubm/ studies the case in which the roots are not simple and therofore
the sum is transformated into the sumn ol [ractions with multiple denominators [see
Leibniz, G. W. [51]].
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a2t ot = [:::4—&\/@]-[3;—(;\/1-'] - [.1:+m/—_?2] : [m—a\/—_z']'“

and therefore it is not possible to reduce [ -5 s to the guadrature of

the circle nor to the gquadrature of the hypcrboia 1t would be necessary
42

L5

to ntroduce the quadrature of | oot 88 a new function’

There is neither hesitation aboul the importance which Lethniz
granted the complex numbers and his contributions, “when they were
alimost forgotten”, were remarkable®®. Between these it is interesting to
obscrve that hie obtained en dneginary decomposition of « posttive real
number which surprised his contemporaries and enriched the theory of
nnaginaries:

\/Ez\/:1+J—_3+\/1—vC§44,

A Leibuiz does not observe that
2+l = [.'.';2 + av'2a - 02] . "1.2 —av2r + az].
The possible mistake is debt to have begun by the comples conjugate decomposifion

2t + ot = [z + ia?] - [z? - ia?].

efr
Tt

2 We have a.lr(:acly mtroduced Lhe guadrature of Lhe hyperbola f and the quadra-

Lure of circle f W Then, says Leibniz, “1 wait thal we will be able to follow this

+w oz

progression and we will found the problems related with et ) TiaEr " [sec
Leibniz, G. W. [50, 360]].

Bidoreover, for Leibniz, complex numbers are the natural consequence of have ac-
cepted real numbers: “Fromn the irrationals are born the impossible or imaginary
guantities whose nature is very strange but whose uscfulness is nol Lo be despised”
[sec Leibniz, G. W. [50, 51]].

44Gun a lotter from Leibniz to Huygens, writen in 1674 or 1675 [Gorhardt, C. 1. 386,
563] and sce also Hofmann, J.B. [1972], 147 and McCleaen, R. B. [35]]: “1 once came
upeon two cquations of this kind 2% + 32 = b,x -y = . He oblains then

or d®=6+2¢c
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Moreover, as says Boyer, “Leibniz did not write the square roots of
complex numbers in standard complex form, nor was he able to prove’
his conjecture thag

flatiyy+ flaz—diy) is real,

if 7(2) is a real polynomial.”*°

Finally in an unpublished Leibniz's paper?® appears the so-called de
Moivre’s formula. He does not explain how he found it, but it is com-
prehensible to us as

2y = V‘T'i‘\fﬁ.'rz—]—‘— v —Vz? -1,

where 2 = cos @,y = cos £47. But these important mathematical contri-
butions did not enough to clarify the nature and reality of the complex
numbers.

Finally

—  fv . fe 2o [e
{+) \/b-=—2C\/§+ H—cz-i-\/?—- z-cz

if we put &= 2 and ¢ = 2, there resulis V8 = \/] + -3+ \/1 — /=3
But that what resulls really surprising is the use of Cardano's rule by obtaining
this kind of results. Taking Albert Girard’s eguation

2% — 13z - 12 =0,

whose true root is 4 and the sum of roots is zero, Leibmiz obtains

—1225 ~1225
4=24 /-2 +2 —f-=

By using the equation

¥ — 48z - 72 =0,

he shows finally that

6= /36 + V2800 + /36 ~ /=200

Holmann says us “the identity (x) is implicit in Enclide’s book X, 47-54 [ 46% <
%], but “nobody noticed it at the Lime”.
“$Boyer, C. B. [11, 444]. This conjecture is done by Leibniz in Gerhardt, C. 1. [36,
550].
6] gibniz, G. W. [49).
17Sec Hofrmann, J.E. [1972], 145-146; Schneider, 1. [72, 224-229] and Stiltweli, J.
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Leibniz adventures his mistic nature, saying: “The nature, mother
of the eternal diversities, or the divine spirit, are zaclous of her variety
by accepting onc and only one pattern for all things. By these reasons
she has invented this elegant and admirable proceeding. This wonder
of Analysis, prodigy of the universe of ideas, a kind of hermaphrodite
between existence and non-existence, which we have named smaginary
rools” 8.

This mysterious character stood during several centuries, may be until
the Buler’s time with the contributions of the own Euler and d°Alembert.

Kline is absolutely clear in this sense:

Compler numbers were morve of a bane to the eighteenth-century
mathematicians.  These numbers were practically ignoved from
their infroduction by Cardan until about 1700. Then complex
numbers were used to integrate by the methode of partial fractions,
which was followed by the lengthy controversy aboul complex nwm-
bers and the logorithins of negative and complez numbers. Despite
his correct vesolution of the preblem of the logarithms of complex
nwmnbers, neither Euler nor the other mothemalicions were clear
about those numbers,

Euler tried to understand what compler numbers really are, and
in his “ Vollsténdige Anleitung zur Algebra”, which first appearcd
in Russian in 1768-069 and in Germany in 1770 and is the best
algebra text of the eighleenth century, says,

Because all conceivable numbers are either greater than zero
or less than 0 or equal to 0, then it is clear that the square
roots of negative numbers cannot be included among the pos-
sible nunibers {real numbers]. Consequently we must say that
these are impossible numbers. And this circumstance leads
us to the concept of such numbers, which by their nature are
impossible, and ordinarily are called imaginary or fancied
numbers, because they exist only in the imagination

Euler made mistakes with compler numbers. In this Algebra he

writes V—1 - V=4 = V4 = 2, because /o Vb = va b, He also

gives i = (1L.2078795763, but misses other values of this quan-

tity®o.

[76, 56-57). Marcover Leibniz is conscious of this result and “when it appeared in De
Moivres's paper in the Plilosophicel Transactions, 20, n® 240 of May 1693 {published
in 1699}, Leibniz —quile modestly— put in his rightful claim of authority in Acta
Erodatorum (May 1700): 199-208 [Gerhardt, C. 1. [35, V, 346-347]]" [sec Hofmann,
J.E. [1972], 146, footnote 171,

1B eibnix, G. W. {49, 357

WKline, M. (44, 594].
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3. The three first attempts to prove
the Fundamental Theorem of Algebra

One possible enunciate of the Fundamental Theorem of Algebra®® is:
Fuery polynomial P(z) with real coefficients has a complez voot.

Before 1799, year in what Karl Friedrich Gauss gave his first rigorous
proof of Fundemental Theoremn of Algebra®', three important mathe-
maticians had already made three attemmpts to prove the Theorem. The
first is debt to a Irench mathematician anrd philosopher, Jean le Rond
d’Alembert, and was published in 1748, but elaborated in 1746. Three
years later, in 1749, Leonhard Euler gave an algebraic demonstration,
very different of the d’Alembert’s demonstration. This demonstration
was completed by Joseph Louis Lagrange in 177252, Several vears later
another French mathematician, Pierre Simon Laplace, tried to prove the
Theotem. It was the year 1795%

*0There are excellent papers about the Fundamnental Theorem of Algebra. See, for
example, Bashmakova, 1. {4], Dieudonné, J. et alii [20, 68-71], Gilain, C. [37}, Houzel,
C. {42]. Petrova, S. 5. [61), Remmert, R. {87] and van der Waerden, B.L. [1950], 94—
102.

The Givains's text offers us a distintion between the Pundamental Theorem of
Algebru —sometimes known as the d’ Alembert’s Theorern— and the Theorem of lin-
ear factorization —sometimes known as the Kronecker Theorem— very clever for
understand posterior developments and clarify the different kinds of demonstrations
[see Gilain, C. {37, 92]}.

But | think that, historically, this distintion is nol clear. The former mathcemati-

clans to Gauss was not conscious of that fact.
5! Gauss considered the Theorem so important that he gave four proofs; the principles
on which Lhe first is based was discovered by Ganss in October 1797, but the proofl
was not published until 1799, In this proof, similar to d*Alembert’s attempt of proof,
he does not introduce compler numbers. He proves the Theorem in the form:

Every polynomial P(x) with real coefficients can be foctored into linear or
quadratic factors.

The second and third proofs of Theorem were published in 1816. The second prool
is purely algebraic, following perhaps the Euler’s intention. The forth proof is based
in the same principle of the first and was published in 1849, In this proof Gauss
uses already complex numbers more freely because, he says, “they are now common
knowledge™. 1n the third proof he used, in [act, that whal we today know as the
Cauchy tntegral theorem.

A half century dedicated by Gauss to prove the Theorem.

Following these different demonstrations we can find precisely the differences noted
by Gilain.
527he Buler and Lagrange attempts were published, respectively, in 1751 and 1774.
53Pjerre Simon Laplace made an attempt to prove the Theorem, guite different
from the Euler-Lagrange atiempt but also algebraic, in his Legons de mathémaliques
donnés a I'Ecole Normal, published in 1812
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Really therefore was Euler the first of these threc mathematicians
which asserted the true of the Theorem. So in a letter to Nikolaus
Bernoulli, Euler enmuniates the fectorization theorem for real polyno-
mials, closing the question posed by Leibniz™.

54ye have already scen that “does not seem to have ocurred to Leibniz that V1 could
he of the Torm e -+ b1, because if he had scen that

Vi %\/Z[l +i] and V—i= %\/@-[l—i],
he would have naticed that the product of the factors
[¥ +avil (X +av—i]and [X - avil [X —av=i]
are botl reals and then he would have obtained
Xitat = [(XP+av2X +a° - [X% —av2X +a?]

So he wuold have avoid his inistake. 11 is reinarkable that he should not have been
ledd to this faclurization by Lhe simple advice for writing X4 4at = [X2pa?]? 242X
{see Remmert, R. [67, 100]].

See alse Kline, M. [44, 507-598]: ©. .. Leibniz did not believe Lhat every polynomial
with real coctlicients conld be decompuosed into lingar and gquadrutic factors. Buler
took Uhe correct position. In a letter to Nikolaus Bernoulli of Gctober 1, 1742, Buler
affirmed without proof that a polynomial of arbitrary degree with real coefficients
could be so expressed [soe Buler, L. [1862], |, 525]. Nikolaus did not helieve the
assertion Lo he correct and gave the example of

& — a3 -+ Dop? 4+ 4w 4+ 4

with the imaginary roobs 1+ /2++v=3, 1 — /24 /=3, 1+ /2 V=3, 1=
/2 — /=3, which he said contradicts Buler’s assertion (see Buler, L. (27, 11, 695]}".
On December 15, 1742, Euler into a letter to Goldbach [see Buler, L. (27, I, 170-171]],
after assert that he doubted once when lie saw this oxample, did it deubt once scen
the exawmple, “pointed out the compler rootls oceur in congjugate pairs, S0 the produt
of x — [a+ bi] and = — lu — bil, wherein a4+ b and a — bi are a conjugate pair, gives
a quadratic expression with real coefficients. Buler then showed that his was true for
Bernoulli's exmunple. But Goldbach, too, rejecied the idea thut every polynomial with
veal cocfficients can be factored into real factors and gave the example 24 + 72 — 20
fsce the letter from Goldbach to Euler of february 5, 1743 in Buler, L. [27, 1, 193]].
Euler then showed Goldbach that the later had inade a mistake and that he [Euler]
had proved this theoremn for polynomials up to the sixth degree. However, Goldbach
was not convinced, because Euler did not succeded in giving a gencral proof of this
assertion”,

“The reacler interested to foltow the succession of these leviers can see, for example,
Gilain, C. [37, 106-108].
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Next year, in a very important paper®, Euler thinks about the homo-
geneous nth-order differential equation with constant coeflicients

dy d?y d3y

d™y
1 == —-— = —= ‘e
(1] O=Ay+B2+C 5 +Dog +o Lo,

where A, B, C,D,..., L are constants. He points out that the general
solution of {1] must contain n arbitrary constants and the solution will
be a sum of n particular solutions y;, every one multiplied by an arbitrary
constant. So the general solution of ¥ has the form

2} y=Crin+Coyz+ -+ Coyn-

Then he makes in [1] the substitution

Y= e[-f”h] , with r constant,
and obtains the polynomial equation in r,
[3) A+Br+Cri4.. 4 L™ =0.
In fact, the general solution depends of the factorization of the poly-
nomial {3] and of the nature of its roots —reals or complex; simple or

multiple—, and indirectly his result depends essentially of the Funda-
mental Theorem®®.

55 Euler, L. [22].
58 Bach root ryj of the polinomial equation [3] furnishes a partial solution into the sum
[2] in accordance with the nature of each root vy, 7 = 1,... n:

- if r; is a real simple root of {33], then it furnishes into the sum [2] the sumand
zp = D3

- if r; 18 a multiple real root of multiplicity &, the & equal roots 7; furnish into
the sum |2] the sumand

ik =l Ed [!)0 + D By :rk_l}

- ifry = oy +18; is a simple complex root of [3], theun il and its conjugate
75 = o; —i/; furnish into the sum [2] the sumand

zj =% * [D] cos By = 4 D7 sin By 1]

and finally,

- 81Ty = a; +i{0; is a multiple complex rook ol multiplicity &, then the & equal
rools r; = a; +18; and their & conjugate roots furnish into the sum (2] the
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But, as we have already said, the first attempt of demonstration of the
Fundamental Theorem of Algebra is debt to d’Alembert®?.

3.1. The d’Alembert’s attempt.

Really d’Alembert proves the existence of the root of P{z) in two
steps®s;

1. There is Lhe minimum zg of the module |P{z)|;
2. The d’Alembert’s lemma: if P(zg) # 0, then any neighborhood of

sumand

k=1
2t = ec\.izxf D‘ECOS,G'T-}-D‘E 1[1'692
Gk = (B 2 SISy
£=0

Somewhat later [Euler, L. [24!] he treated the nonhomegeneous nth-order linear dif-
ferential eguation

5Ty Alembert remembers the Johann Bernoulli's text and then he says: “Nobody,
what | know, have went more far [in the question of the decormposition of polynomials|,
il we exclude mister Buler, which in the tome VII of Miscellanee Berolinensie declares
that he has demostrated the proposition in the general case. But [ seem me that Euler
never has pnblished yet on this theorem [d'Alembert, 1. le Rond [2, 183)].

58306 d'Alembert, J. le Tond [2] and Petrova, S. 8. [62]. [n the d*Alembert’s words:

In order to reducc in general a differential rutionol funclion to the quedre-
ture of the hyperbola or to that of the circle, it is necessary, according to
the method of M. Bernoulli [Mem. Acad. Paris, 1702], to show thal every
rational polynomicl, witheut o divisor composed of a variable z und of cons-
tands, can alwoys be divided, when it s of even degree, info {rinomial factors
w4 fu+ g, e+ ha 41, efe, of which all coeficients f,9,0,4,. .. are real It
is clear that this difficully affects only the polynomial that cannotl be divided
by any binemicl 2 + a, o + b, cle., because we can always by divisen reduce
to zero all the real binowmials, if lwo are any, ond i€ can eustly be seen that
the products of there binomials will give real factors ze + fu+ g [see Struik,
D.J 1T, 89, feoinote 1.
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zg contains a point 2y such that |P(zy)} < |P{xg)]®.

Then, if 1 and 2 are true and g is the point in which [P({z)} atteints
the minimum, then |P{xg)| = 0. This is the sketch of the d*Alembert’s
proof®0.

The second step is, for d’Alembert, the more important®' and the
preof offered by d°Alemberi depends essentially on the Newton'’s method

591y Alembert accepis without demonstration the step 1 and the Newton’s method.
A simple elementary proof of d' Alerbert lemma was given by Argand in 1806. This
mathematician was one of the co-discoverers of the geometric represcntation of com-
plex numbers. lle represents the complex numbers as a vectors into the plan. Then

—1

Pley=ona”™ +uq 2™+ -+arz+a

is a vector OA,1. The demonstration consists to see that il is possible to choose x
such that the point 4,41 coincides with &, By seeing Lhis, he explains

Pleg+ Ax) = Plzg) + AAx + lerms in (A ¥ (ALY, = Plrg)+ Al e

where A is constant and |¢| s small
compared to |A x| when |[A x| is small.
Then, choosing the adequate direction
of veclor Az, it is possible obtain that
A A 2 was oppesite in direction Lo P{za).
Then

iPleg + Az} < [Plza]l.

[Se= Dérrie, H. [21, 108-112], or Siill-
Figure 4 well, J. [76, 197-200].]

80By scecing a complete proof of this kind, see, for cxample, Aleksandrov et alii [1];

Dérerie, H. [21, 108-112}, or Rey Pastor, .J. et alii [69, 239-241].

1'The first stop was naturally accepted in the eighteenth century. The rigorous

demonstration can be seen into Cauchy, A. [1821], Ch. X:“For every polynomial

Pz} = anz™ + an_12" "'+ +ajxr+ao € Cla],

there is a zg € C such that |P{=zq)| = inf |P <C>I
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of polygon®. Applying this, d’Alembert obtains

(*) ﬂ:—ﬁ:g:ch.{y_.yolf?k‘

k>0

The equation (*) shows that, if v is a real point very close to yg, it is
the image of any z which appears into the form p + ¢ /—1%. Theu the
demonstration of the Theorem is founded if we can prove that yo =0 is
the image of any = [which will be naturally real or imaginary].

D’Alembert examines the sei of real images y and takes the minimum
yo which associate 2 is of complex form. But following the developrent
(*}, all real number v very close to yp must be also an image of the
comnplex mumbers . Then, if yo # 0, there is an image closer to zero
than gy. Contradiction. This contradiction establishes the Theorem.

It is interesting to note two unportant facts which were observed by
d’Alembert into his work. The Rrst are corollaries I and II and propo-
sition 1119 and savs: “if a complex number o + b V=1 is & root of the
polynomial P}, then a—b v/~1 is another rooot of P(2) and then Pz}
can always be decomposed into quadratic factors of the kind ze+ma+n”.

The second fact, contained in the demonstration but not mencioned
explicitly®®, is: “if P(x) is a real polynomial and we substitute x by
a complex nmumber z = z; 4 72y, where 2y, z2 are real numbers, then
we obtain Pz} = Q1(z)) — i Qa(zo)}, where @i (x) and Qa(y) are real
polynomials. Then P(2) = 0 iff Q1(z) = 0 and Qz(z) = "%,

3.2. The Euler-Lagrange’s attempt.
The idea of Euler’s demonstration®” was to decompose every monic
polynomial with real coefficients (z)} of degree 2™ > 4 into a product

%2Gcc MNewlon, 1. [59] and Stillwell, J. {76, 125-126]. The seuse of this theorem is the
following: “To cvery pair {zn,yo) of complex nuinbers with yo — P{axg) = 0, there
correspond ar increasing series {gg} of rational mnnbers such that

a:-m;.:ch-[y—yg]‘*‘k

A0

in a neightorhood of yo”. This theorem was proved rigorously by Fusieux in 1850
It is possible to avoid this theorem like wo can sce, for example, in Dérrie, H. (21,

108-112j.

63see d’Alembert, J. le Rond [2, 189).

01gce d'Alembert, 1. le Rond [2, 190-191].

555ee d*Alanbert, J. le Rond [2, 186-187].

55T his fact is essential in the first Gauss’ demonstration [see, for example, Hollings-

dale, 5. [41, 319-322]].

87%ce Enler, L. [23] and Lagrange, J.-L. [45].
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Py (x) - Py{z) of two monic polynomials with real cocfficients of degree
mo=2""1
Thus, i P(x} is a polynomial of the form

P(ﬁ) — z?m + 5 x?m—Q + Cme—B T
the polynomials P {xz)}, Po{z} now take the form

s +u$'m,—1 + aﬂ:m—z +ﬁ$m—3 4o
™ u:;-':”"_l + /\xrn—‘z -+ “zm—B 4.

Then Euler asserfs that a,8,....Ap,... are real funclions in B,
C,...,u, and that, by elimination of a,8,..., A, 1, ..., is obtained a

. L 2m .
monic real polynomial in u of degree m whose constant term 1is

negative. Now this polynomial in u has a zero w by the infermediate
value theorem as Euler clearly knew®. Now we can follow quickly the
Euler’s stepst:
1. If Lthe equation has a root of the form z + % +/—1, then there is
also another of the form = — y +/—17Y;
2. Every equation of odd degree has a least one root;
3. Every cquation of even degree with negative absolute term has at
least one posilive and one negative root’.
But it is the forth theorem which gives us the key of his ideas:
Puery equation of the forth degree, as

2+ A3+ BE+Cz+ D=0

can always be decomposed into two real fuctors in the second de-
grec.
First, setting x = y — %A, he obtains that every equation of the forth
degree can be of the form 21 + M 2% + Nz + P = 0. If we decompose
this equation in two equations of the second degree, we have

[42 +uz+a] [2° —uz+ 0 =0.

%8 This fact is alse employed by Laplace in his demaonstration as we will sce next.
695ce Struik, [2.J. [77, 99-102].
T0Then the polynomial has a factor of the form zz + px + q.

Euler gives an example of how ta decompose an equation of the forth degree into
two quadratic factors.

So Fuler gives answer to the former problom posed by Nikolaus Bernoulli and
Goldbach [sec footnote 54].
"!We have Lhere a partial proof of the Belzang-Cauchy theorem on Intermediate
Value.
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If we compare this product with the proposed equation, we shall find
M=a+8-u? N=[B-oju, P=ap
from which we derive

u® + 20 vt + [M? - 4P - N7 =0,
“from which the value of uw must be found. And since the absclute term
—N - N iz essentially negative, we have hope that this equation has at
least two real values® 2.

Among the corollaries to Theorem 4 there is the statement that the
resolution into real factors is now also proved for the fifth degree, and
Scholivm II points out that, if the roots of the given fourth-degree
cquation are x,%g,xs, 24, then the sixth-degree equation in u, u be-
ing the snm of two roots of the given equation, will have the six roots
Ty, wy g, g, Bo g, Modag, w2 --xg. Sinee xy +agtaz+uwy =0,
we can write for ¢ the values wuy, us, 1y, =y, —us, —a, and the equation
in « becomes

[u? = ud] - [0? —ud] - [w? —ud] =07

72When we take one of them as 1, then the valucs of o and @ will also be real, secing
that

i

N N
28 ~un+ M~ —, 2o=unt+ M- —.

W k73

T3 can observe that the fourth roots @1, @2, 31, 24 of the equation

1) 2+ Mt Ne+P=0
satisfics
{2] ry +uwp ax o =0

4 - .
Then w can have _2) = § different values., ‘I'hen n salisfies an equation of the

sixth degree which coefficients are reals
B] Fi(n) = 0.
We have wy = o)+ %o, 40 = &1 o, 4 = @) Fng, g = @3+ 33,05 = By T4, U =

x3 + &4 and then
Wy = UG, M = MG, U = =Y

and then the equation [3] has the form

Falu) = [? = f] - [u? —uwd]- [? — ol
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Next to, into the thearem 5, he establishes

Every equation of degree 8 can always be resolved inlo two real
factors of the forth degree™.

The problem consists to see thai not only #, but also the other cof-
ficienis o, 3,7, 4, ¢.4 are reals, a rcasoning which Lagrange and, more
later, Gauss objected.

Lagrange takes this equation but he observes that when u takes the
value 0 into the rational! expressions of the other coeflicients of P (z)
and Py(z) as fonction of w, it is possible obtain undefined coefficinets
of the form %. For avoid this, he takes as unknown fwhen a, = Ij,

v = 2n + a,_1 and then observes that the “imaginary roots” of the

His constant term is -—'n.f 1;.% 1:.:25, The product 1;.":" u% 'u% is real? There 5. Fuler
daes not explain this with detail. He says only that this product is real because the
fundamental theorem of the theory of syrmmetric functions.

We can reasoning this: Despite this product was not a sytnmetric fonction of the
symbols zj,z9, 23,24, il is unvariable when we do all possible permutations ol the
roots of the equalion {1], under the condition [2], between the roots of the equation

[1). Really this product can be obtained of the following:

L f{m +32) - (ma + ) (o +wa) + (3 + 22) - (22 + 3] - (22 + 240+

2.2 1
M7y {+(x4+s:1)-(a:4 + a2} (zq b ws) + (23 b)) {23 +a2) - (23 + 1) }

uwhy
Remember that the fundarnental theorem of the theory of symnetric functions
says:

Euery rational fouction of rools of an algebraic equation
w(E1, 22+, Tn)

which lakes k different values when it makes all possible permnutations of
roots, salisfics an alyelraic equation of degree b whose coefficients are relin-
nal fonctions of the eoefficients of the given equation.

Then, if k = 1, the fonction @(z) sctisfies a rational expression of the
coefficients of the given equation.

Euler uses largely this fundamental theorem, but he only develop, with a sufficient
rigour, for the general case of the second degree equations, but the theorem in his
general form was proved firstly by Lagrange in his transcendental paper Reflerions
sur la resolution algebrigue des equations [1771]. So it will be necessary hope the
Lagrange's apports by obtaining the general result.

T4First the term x’ is eliminated, so that the two supposed lactors can be written
2t _ur*traz+fzr+yand ot +us? +852% + ez + 1. Since u expresses the sum
of four rools ol Lhe cighi-degree equalion, it can have ?322 = 70 values, and it will
salisfy an equation of the form

0= [u? =p?] [u® ~ %] [ — %) [u? = %]

with 35 factors. The absolute term is negative, and the reasoning continues as before,
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equation in the unknown v are the expressions

P

”
Uy = Zza(kJ - Zzo(k-\""}
=1

k=1

where ¢ runs over the set S, of all permutations of set {1,2,...,n}. It
is easy see Lhat the product of v, is always < 0. Next he avoids the case
in which the product is zero, substituing v, for a useful combination
of the coeHicients of P; with real coefficients and then using his results
contained in a paper of 1770-17717% ou permutations of an equation,
finishes rightly the demonstration™.

3.3. The Laplace’s attempt.

In the year 1705, Pierre Simon Laplace made an attempt to prove the
Fundamental Theorem’”. This attempt was completely algebraic, but
quite different from the Euler-Lagrange attempt. This mathematician
and politician assumes, as his predecessors, that the roots of palynomials
“exist” 8.

Laplace says™

Of this it results @ demonsiration very simple of this general the-
overn which we hove ennounced before and which says thet every
equation of even degree can be solued into real fuctors of second
degree.
His prove is the following: Let be @y, 3y,...,%,, where n = 25,k <
1,4 € 2N 4 1, the roots of the polynomial

Plr)=a"—ba" P+ bhha i+ -+ (1), € R[], n < 1

"5 Lagrange, J-L. [45], [1773]. These papers arc the most important works on alge-
braic equations in the cighteenth century. See Dieudonne, J. et alii [20, [, 70].

761n 1815 Causs objecies ... this question has been treated as the only problem was
determinate the form of roots and its existence is accepted without demonstration.
Bul this manner of raisoning is completely illusory and it constitukes a veritable petilio
principis” [Opera Omnda, 111, 105-106]. He gives us o demonstration —his second
demonstration— [lollowing the Eulers ideas, but he avoids to apply Lhe imaeginary
rools because nolhing “guarantees it existence”. [Sce Dicudonné, J. et alii [20, 1, 71j;
Fauvel, J-Gray, J. {31, 490-491]; Swith, D. 5. [74, 292-306] or Remmert, R. [68,
104-106".

"TSce “Legons de mathématiques donnds a 'lBeole Normale”, Qeuvres eompietes, 14,
10-111, especially 63-65. For an actual proof and comentarics, see Reinmert, R
111908], 120-122.

T8 his existence is naturally a platonic existence.

Laplace, P.-S. [47, 61).
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The equation Q.(x) which roots are z; + z; + t(2;z;), where t € R
arbitrary and ¢ < j, has a degree of the form 2571 ¢, where ¢’ € 2N+180,
Then Laplace proceeds by induction on k:
- if k = 1, the new polynomial ¢,(z) will have an odd degree and
then it will be a least a real root z; + z; + ¢ {z; z;)%".
It is clear that there is infinitely many real values ¢ such that,
for a same x; and x;,

i+ z; +tl{zz;) € R
Ther there are £y # tg, 1, {2 € R, such that z,+2; 4+, (z; z;), £+
z; + tp (z; z;) € R. Then the quantities
{tl - tz] (x; Ej), z,2; and 4+ T;

are all real. So the factor =% — {z; + z;] = + z; z; will be a real
factor of second degree of P(z);

- if k > 1, then P(z) will have a real factor of second degree if every
equation of degree 2~ ¢’ has a factor of second degree, because
infinitely many

oy Fi(ma i<t eR

will be complex numbers [that is: they are of the form o« +
i18,a, 8 € R} and then, following the precedent reasoning, there
are two roots ;, ; of P(x) such that x;+x;,2;-x; € €. Therefore
the factor

z* — [z + 4] 2 + z; 25 € Cla]
and it divides exactly P(x}. Then
2~ |z +2; )z + T %; € Clz]
divides also P{z}). Thus the following real polynomial of forth
degree
[2* — [@: + @3] @ + @i 2y] [2® — (@ F w5 | 7 + TT5) =
= (2% = Re(z; + ;) & + Re(w; ;)] + (Im(z; 7;) — Im{z; + 25))°.

» 82

This quantity, “as we have seen”®2, can be solved in two real

factors of second degree®®.

80015 degree is exactely 2% g[25 g — 1)/2 = 25~ 1 ¢, where ¢’ € 2N 4 L.

81T, aplace applies the following corollary of the Intermediate value Theorem: “Every
polynomial of odd degree has at least one real root”.

§28ce Laplace, P.-S. [47, 60-63}.

#3Laplace considers the case in which the two factors

[2% — [o + 2] @+ xomg) (2® — (w0475 )2+ T ES)
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Then the problem is finished because P{z} has a real factor of second
degree ff every real equation of degree 2871 ¢’ ¢’ € 2N+ 1 has a simmilar
factor, and then [for the same reason] iff every equation of 25724",¢" €
N + 1 has a simmilar factor and following we establish the proof®d.
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