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HOW TO SOLVE AN OPERATOR EQUATION

MARTIN MarTHIEU

Abstract,
' This article summarizes a series of lectures delivered at the Math-
amatics Department of 1the University of Leipzig, Germany in
April 1991, which were to overview Lechniques for solving operator
coualions on O -algebras connected wirh methods developed in a
Spanish-Gertuan toscarch project on “Structure and Applications
of C*-Algebras of Quotients” (SACQ). Oune of the rescarchers in
this project was Professor Pore Menal until his unexpected death
this April. To his memory this paper shall be dedicatad.

1. Introduction

Solving cquasions belongs to the fundamental tasks of mathernatics.
Many problems in the sciences lead Lo equations involving nombers, map-
pings, and other quantities. In fact, it frequently occurs that eventually a
question can be phrased as an “equation”, although, at first, it appeared
10 be of a rather diferent nature. To find a solulion of an equation gener-
ally implies both the existence as well as the uniqueness problem. There
is no universal procedure for solving, but the devices invented seem ta
be as manifold as the possible questions, and only allow a rather rough
classification such as numerieal, approximative, algebraic methods cte.
However, it is always an important step to determine the common fea-
tures in solving a certain class of examples for the aim of developing a
machinery which enables to handle a specified collection of equations at
one time.

In the present paper, we will be concerned with eguations within a
non-commuttative infinite dimensional setting. To be more specilic, they
will be of the form

ey

(1) Tcr,:&:l_.... G T 0
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where, for each ‘parameter’ o, T, z,... z. 15 a linear operator on a C*-
algebra A (with certain additional properties) and we arc looking for
elements z; € A solving the equation (1) {or better, this system of
equations). We will firstly collect some examples of questions which can
be phrased in an equation such as (1), then describe a general tool to
tackle them, and finally indicate solutions which yicld answers to the
questions listed. As a cormmon feature, the questions in Section 2 lead
to equations in a C*-algebra, that is, we are looking for certain elements
in a C*-algebra solving the equation, while the conditions typically are
formulated in terms of operators defined on the C*-algebra. Needless
to say that there are many more instances which can be settled by the
proposed methods.

2. Examples

We have selected our examples from the following four classes of op-
erators on C*-algebras: derivations, completely positive operators, cen-
tralizing mappings, and generators of dynamical semigroups.

2.1. Derivations.

Let A be a C*-algebra and 8 a derivation on A, i.e. a linear mapping
from A4 into itself satisfying Leibniz’ rule §(zy) = x86(y) + 8(z)y for
all z,y¥ € A. Each derivation § is automatically bounded whence it is
meaningful and worthwhile to know under which circumstances § is a
compact operator, with respect to the norm or a weaker topology. Here,
we ask when & s weekly compact, that is, when does § map the unit
ball of A into = subset whose closure is compact with respect to the
weak topology on A. (This is more closely related to the point of view
taken in this paper than the norm compact case, which, however, can be
treated similarly.)

Specialize to the case A = B{H), the algebra of all bounded linear
operators on some Hilbert space H. Since B(H) is the second dual of
K (H), the closed ideal of all compact operators on 4, and & is continuous
with respect to the o(B(H), K(H)*)-topology, § coincides with (§)**,
the second adjoint of the restriction & of § to K(H). It is well known that
8, is weakly compact if and only if (§)** maps K{H)*" into K(H) [15,
V1.4.2]. Moreover, by Gantmacher’s theorem (15, VI.4.8], §| is weakly
compact if and only if (8;)** is weakly compact. Putting all this together
yields that & = (4)** is weakly compact if and only if §B{H) C K(H).

In the general case we have to replace K(H)} by the ideal K{A) of
all compact elements in A, and, using appropriate representations, we
obtain the following, cf. [23, Theorem 2.7).
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Proposition 1. A derivation § on o C*-algebra A is weakly compact
if and only of §** A € K(A).

Again, K{A) is §-invariant and thus § induces a derivation § on the
generalized Calkin algebra A/K({A}.

Corollary 2. If § is weakly compact, then &=0.

Suppose § were inner, i.e. § = &§,, where .(2} = zo — oz, and the
elerent @ belonged to K (A). Then, § is weakly compact by [41, The-
orem 3.1]. On the other hand, §** is always inner by Sakai’s theoretn.
Therefore, the original question of weak compactness of & leads to the
following operator equation.

(1.1) Can &, = 0 be solved in K{4)?

Going one step further we can ask a similar question for the product
8,65 of two derivations §,,8; on A (which, in general, is no longer a
derivation): when is &8, (weakly) compact? This question should be re-
lated to the Dunford-Pettis property of a commutative C*-algebra which
implies that T, T3 is a compact operator whenever Th, T are weakly com-
pact on A. By similar arguiments as above, it can be formulated in terms
of operator equations as follows.

(1.2} Can 8, 8., = 0 be solved in K{A4)?
Questions of this kind are studied in [25] and [27].

2.2. Completely positive operators.

Recall that a linear mapping T on a C~-algebra A is said to be com-
pletely bownded if the norms ||T,,]| of the canonical extensions 75, of T 1o
the matrix algebras M, (A} over A are all bounded by some real number,
and T is completely positive if all T), are positive operators on M, (A).
The prototypes of completely bounded operatlors are the elementary op-
erators given concretely as mappings of the form

T

S Z ;b with 2 € A, a1,... @y, b1,... by € M{A},
=t

where M{4) denotes the multiplier algebra of A. This Is justified by
the representation theorem for completely bounded operators and the
fact that certain completely bounded operators can be approximated
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by elementary operators, ¢f. {12]. A natural question in this context
is: what does a completely positive elementary operator .5 look like?
Although this is involving inequalities, we immediately are led to an
operator equation.

Denote by M, the (two-sided) multiplication z +— axd. If § =
E;;l Mg, b, 18 positive, it is hermitian-preserving from which

Z My PR Z 'Fl'!b Wy

i=i
follows. As a result we are to consider the following operator equation.
(1.3} Which elements 25, y; € M{A) solve Yoy My, =07

This question has emerged to be not only an example, but of funda-
mental significance for our approach, cf. [28].

2.3. Centralizing mappings.

Let R be aring. An additive mapping F : B — R is centralizing if, for
every © € R, we have [z, F(2)] = 2F(z) ~ F{x)x € Z(8), the center of
R. In many cases, the existence of certain centralizing mappings yields
commubativity criteria for . For cxample, if £ is a prime rting, then
R is commutative if there is a non-zero centralizing derivation on R
(38, Theorem 2], see also [30], or if there is a non-identical centralizing
automorphisin on R {31, Theorem)]. In the context of operator algebras,
there are analogues of these results as follows,

Proposition 3. There is no non-zero centralizing derivation on o
C* -algebra.

This seems to be a folklore extension of Singer’s classical result that
there are no non-zerc derivations on commutative C”-algebras. In fact,
if 6 is a centralizing derivation on a C*-algebra A, it casily follows that
A C Z(A). Hence, the restriction § of § to Z({A) vanishes so that,
6% = 0. The identity

26(x)yb(z) = 8 (ayz) — 562(yw) — *(ww)e + 2(yle  (z,y € A)
therefore yields Mg(q) 52y = 0 for all z € A, whence § = 0

The case of antomorphisms requires some more work and was frst
studied by Miers.
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Proposition 4. [32, Theorem 5] Let o be a centralizing *-
automorphism on a von Neumann algebra A. There is o central projec-
tion e € A such that a{e) = ¢, o g = idae and A(l —e} is commuiative.

Whether this result remains frue for arbitrary (not necessarily *-
preserving) automorphisims was answered ounly recently by Bresar, who
also obtained a general structure theorem for centralizing mappings on
von Neumann algebras as follows.

Proposition 5. [8, Theorern 2.1] Let F be a centrolizing aedditive
mapping on ¢ von Neumann algebre A. Then there exist an element
¢ € Z{A) and an additive mapping ¢ : A — Z(A) such thet F = L, + (.

Here and in the sequel, we will denote by L, the left multiplication
 — az and by R, the right mulliplication z — za.

We will now reformulate both the assumption as well as the conclusion
in terms of operator equations. This will enable us to obtain an extension
of Bresar's result to arbitrary C*-algebras in Section 4.

Observe at first that every centralizing additive mapping £ on a -
algebra A is in fact commuting, 1.e. [z, F(z)] = 0 for all z € A (9,
Proposition 3.1]. Replacing z by = + y therefore gives

[z, F@)] + ly, F(z) =0 (z.y € A)
or equivalently,
(2) Bppy — 0,7 =10 for all 4y € A.

Secondly, if ' = L.+ ¢ where A is a C*-subalgebra of a C*-algchra B
with centralizer Cp(A), ¢ € Cp(A) and ¢ : A — Cp(A), then [z, F(y)] =
[z ey + {2, W) = |, ¢y] for all z,y € A. Hence

e, Fly)—cyl =0 (z,y € A)
or equivalently,
(3) 5;.—(@)_53, =0 for all y € A

Conversely, if ¢ € Cg(A) satisfies {3), then { = F — L defines an additive

mapping from A into Cp{A). As a result we arrive at the following

question.

(1.4) Suppose that F satisfies (2) for all ¥ € A. Ts there an element

¢ € Cg(A) for a ‘suitable’ C*-algebra B containing A satisfying
(3) for all y € A7

Note that (3) precisely is a system of operator equations of the form (1)

parametrized by all clements in A.
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2.4. Generators of dynamical semigroups.

Let A be a unital C*-algebra. A bounded hermitian-preserving linear
operator L : A — A with L(1) = 0 is called completely dissipative if, for
all n e M,

Lo(z*2)y 2 " L () + L.(27)z (z € M, (A)).

These operators are the generators of norm-continuous one-parameter
semigroups (7}).eg, of unital completely positive operators 7, on A,
which describe the irreversible dynamics of open quantum systems, or,
equivalently, sexrve as transition operators of non-commutative Markov
processes. In many concrete situations, they are built from two proto-
types: the completely posilive operators and the hermitian-preserving
generalized inner derivations & x» = Ry + Li-. The converse question,
when a given completely dissipative operator L can be decornposed into
(4) L=+ b -

with ¥ completely positive from A into some possibly larger C*-algebra
B and k € B was first studied by Corini, Kossakowski and Sudarshan
(18] and Lindblad [21], and related to cohomological properties of A in
[22] and [11]. TF A C B(H), then a decomposition (4) of L always exists
with A4 C A" and & € A”. In gencral, this decomposition will not
be unique. The unigueness problem can be reformulated in terms of an
operator equation as follows. Suppose that

L=+ 8 by = 2 + 6
are two decompositions. Then, putting a = k; — ko, we have
(8} daer + 91 —P2 =0,
Thus, we may ask
{1.5) Under which conditions does (5) imply that §, .- = 07

A more general question would be which a in A” solve the equation
(5).
3. Devices

All the above equations (1.1) through (1.5) can be subsumed under
the general form (1). To motivate our tools for solving them, let us
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furthcrmore consider a special casc of {1.3). Let A = B{(H) and 6 € A
be given.

{1.3) Which ¢ € A solve M, , =07

In our particular situation, the answer is quickly reached. 1f M, p = 0,
then axbé =0 for allz € Aand £ € H. If & =0, obviously all & € A arc
sotutions. IF b # 0, pick £ € H with 0§ 0 and note that b€ is cyclic for
A, e Abf =H, and thus e =10

Clearly, this method only works in the presence of a Hilbert space on
which A acts ‘transitively enough’, e.g. il A is irredncible. The algebraic
method presented now works without underlying space.

Tt is convenient to rephrase (1.3) using the following concept. For cvery
C*-algebra A we let &(A) be the algebra of all elementary operators on
A. We define a surjective algebra homomorphism

(6) 0 M{A) & M(A)™ — &(A), 0{a®b) =M.,

where M{A) @ M(A)" denotes the algebraic tensor product of M{A)
with its opposite algebra. The problem now is to determine the kernel
of ¢, T'he following was proved in [24, Part |, Corollary 4.4].

{7 15 injective of and only if A is prime.

Since primitive C*-algebras are prime, it is tempting Lo use represen-
takion Lheory in order to approach the general case from che special one.
However, as it emerged, there may be problems in putting the ‘local®
informaticn together to obtain a ‘globul’ picture. It seeins advantageous
to view the prime C”-algebras as the milding blocks, which results in
regarding a C*-algebra as a semiprime algebra rather than a sernasiniple
oug. In fact, similar techuigues and results as those described below are
available in the setting ol semiprime rings.

The ideal structire of a prime algebra is distinguished by the fact
that cvery non-zero ideal is essenfial, i.e. intersects cach other non-
zero ideal non-trivially, This allows to “move around from oue place
to another” within the C*-algebra without loss of information. For an
arbitrary C*-algebra 4 we therefore denote by I, and Z,, the collections
of all essential and all closed essential ideals of 4. respectively. Note that
these are directed downwards by inclusion, i.e. £y, {2 € Z, implies that
hniel. _

For every semiprime ring R, the multiplier ving M(R) is defined by
its universal property that /2 is an esseutial ideal in M (R} and there is
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a unique extension p of the inclusion p : B — M) which makes the
following diagram commutalive, whenever R is an ideal in another ring

3,

R £ M(R)
Ly

Fal
5

in other words, M (R} is the (abstract) idealizer of R. Usually, M () is
constructed via double centralizers of K. Moreover, 7 is injective if and
only if R is essential in §. Now, i[ [,J € T, and J C [, then J will
be an essential ideal in M (/) whence, from the above, there is a unique
injective *-homomorphism py; : M{F} — M(J) making the following
diagram commutative

J 2L MWD
Ly
ﬂ,j(_{) £1.

We may describe gy ; as “restricting the double centralizers”. By means
of this, we obtain a directed system {M{I}; prs, J C I} of C*-algebras
and inclusions, and its algebraic direct limit alglim M{I) along 7, will

—

be denoted by @(A) and called the bounded symmetric algebra of quo-
tients of A. This is a pre-C*-algebra with completion @,(A) = 1_1_11_} M{I)
denoted henceforth by Mj,.(A) and called the local multiplier algebre of
A '

For each I € 7, let P({I} denote the Pedersen ideal of I [37, 5.6]. Using
the fact that P(I} is *-invariant, belongs to Z., and that P(I)P(J) =
POnP{) forall 1,7 € I, we define Q,(A) = alglim M{P(I)) along

—

T, and observe that this definition leads to the symmetric alyebra of guo-
tients of A as defined (slightly differently)} in ring thecry. It follows that
Qs(A) embeds as a *-subalgebra into Q;(A) and is in fact the bounded
part of @4(A) [2, Theorem 1.3]. A stronger relation between (Js(A) and
2:(A) proved in [3, Theorem 2] is that Q,(A) is the central localization
of @y(A).

Remarks. The construction of M,.(A) was first performed by Ped-
ersen (36] and Elliott [16] under the name of essential multipliers. They
used it Lo study operator equations of ithe form

(8) & = bq, e —Mioc(A),
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and
(9 o= M, -, u € Mi.(A) unitary,

that is, to obtain innerness of derivations § and *-antomorphisms ¢ in
Mig:(AY. In particular, Pedersen proved that (8) always has a solution
if A is separable 36, Proposition 2].

At aboutl the same time, Kharchenko introduced the symmetric ring
of quotients for semiprime rings and used it in particular in Galois the-
ory [19], [20). This theme was [urther pursued by Passman (34], {35],
Montgomery [33], and others. 1t is to be seen in a long tradition go-
ing back to the 30’s in investigating general rings of quotients, ¢f. [40].
The basic idea — to enlarge a given ‘domain’ by additional ‘numbers’
(=*{ractions’, ‘quoticnts’) in order to be able Lo solve more equations —
also serves as the motivation for our approach to operator equations.

In the late 80°s, Mioo{A) was rediscovered independently by Ara [2],
[3) and the author [26], [29] which then lannched a joiut research project
on the structure and applications of local multipliers [4], [5], {6]; a com-
prehensive account of this is to be given in (7).

We will now compile some of the basic properties of M,c(A).

Proposition 6. Lei A be a C*-algebre with locel mulliplier algebra
Mioe(A).
(1) A is commnulative if end only of My,.(A) 98 commulative,
(i) A is prime if and only if My,.(A) has trivial center.
(iii) For each I € I, and cach unitization B of A we have

ﬂf{luc(?.) - ﬂ”frin(:(A) = -ﬁ'{iuc(B)‘

(iv) Let A be the primitive spectrum of A, If A ig discrete, then
M, (AY = M({A).
(v) If A is an AW *-algebra, then M (A) = A

From (7) and (ii) in the above proposition we see that the kernel
of 8 is closely related to the center Z = Z{M,.(A)) of My (A). It is
therefore important to analyse its structure. The following was proved in
[5, Theorem 1 and Corollary 1] and can be viewed as a local version of the
well-known Dauns-Holnann theorem identifying the center Z{(M(A)) of
1'1)'(/1) with the algebra C(BA) of all continuous complex-valued functions
on the Stone-Cech compactification SA of A.

Proposition 7. For every C*-ulgebra A, the center Z of My, (A) is
an AW* algebra and can be identified with C(I‘H 81, where the inverse
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timit (in the calegory of compact spaces} is taken over all dense open
subsets I of A.

The key to this result is by observing that Z = C,, where C; =
alglim Z{M(I)), I € 1., is the center of QQ3(A) and called the bounded

eztended centroid of A. This one takes the role of the extended centroid
C =alglim Z{(M(P(I))), I € Z., being of fundamental importance in
—

ring theory. In analogy to the central closure AC we define the bounded
central closure ©A by °A = AC, = AZ. The nicest C*-algebras in this
framework are those which are boundedly centrally closed, that is 4 = A.
They can be characterized as follows.

Proposition 8. A is boundedly centrally closed if and only if A is
extremally disconnected.

The fact that every von Neumann algebra is boundedly centrally closed
{which follows in pariicular from Proposition 7 (v)) allows to incorporate
the results on von Neumann algebras in our approach, and the fact that
Mioc(A) is boundedly centrally closed [8, Theorem 2] yields an important,
stability property.

It can be shown that every C*-subalgebra B of M,,(A) containing
both A and C, has center Z(B) equal to Z [7], and hence may be
regarded as a Z-bimodule in a natural way. Applying this to M{A),
the bounded central closure of M({A), we obtain from (6) an induced
hemomorphism

0z : *M(A) &z cﬂﬁr(A)Op — E(CA), Oz(a®zb)= Ma s,
where the tensor product is taken in the category of bimodules. Using
the fact that A is boundedly centrally closed if and only if M(A) is,
we can now formulate the fundamental result yielding solutions to the
opcrator equations listed in Section 2.
Theorem 9. 7] For cvery C*-alyebra A, we have that
kerf = {u € M{A) @ M{A)?" | uz =0},

where uz s the canonical irnege of w in “M{A) Q4 M{A)?. Therefore,
if A is boundedly centrally closed, then 85 1is injective.

This result can be considerably strengthened using appropriate met-
ric structures. Let £(A) be endowed with the cbnorm, ie. [|Sfla =
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sup || S,|| for all § € &(A). Let “M(A) @z “M(A)? be endowed with

Tt
the central Havgerup tensor norm || - ||z, defined by

‘1/2 Hi "’?ijm | = i a; ®z b;}*
j=1 =1

where the infimum is taken over all representations of u in
cM{A) @z “M(A). Then we have

k3
el zs = inf {”Z a0}
J=t

Theorem 10. {7] For every C*-algebra A,
8z : (*M(A) @z “M(A)7, || - | zn) — (E°A), - lles)
i§ an isomelry.
Corollary 11. 8z is an isomeiry for every von Neumann elgebra.

This last result was recently obtained in [10, Theorem 2.4}, see also
(39}, for von Neumann algebras acting on separable Hilbert spaces using
a number of non-trivial results on von Neumann subfactors as well as
direct integral theory.

4. Solutions

In this final section we will outling answers to the questions raised in
Section 2 exploiting the tools described in the previous section. As an
immediate consequence of Theorent 9 we obtain the following answer to
{1.3).

Theorem 12. Let @ = (@1,...,¢n), b = {(by,...,by) € M(A)" be
such that {b,... ,bn} is Z-independent. [f Z;‘zl Ma,p, = 0, then
a=0.

Now the strategy to describe completely positive elementary operators
is as follows, cf. [7]. If 8§ = Z;‘zl M, », 18 completely positive, we may

without loss of generality assume Lhat both {a1,... e} and {by,... b}
are Z-independent. Then

i "
E Jlllm'u:_,- B = E ﬂffb} ,ﬂ.;.
f=1 3=l

*i.a., “M{A) @y “M{A)P inherits the operator space structure of "M (A) @y “Af{A).
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together with Theorem 12 implies the existence of a self-adjoint matrix
A = (Agy) € My(Z) such that

(]0) 5= Z A;L.j ﬂf{,i,bj.

k=1

Since Z is an AW*-algebra by Proposition 7, A can be diagonalized by
(14, Corollary 3.3], i.e. there is a unitary matrix U € M,,(Z) such that
UAU is diagonal with diagonal entries Ay, ..., A,. Hence, by putting
b=bU* € “M(AY™* we can write S as

(11) S = ZE Ay My,
=

Irom the complete positivity of § we then conclude that A; > 0 for all

h

1 <7 < n and hence, letting ¢; = A,/ by, obtain the following answer to

the question raised in 2.2.

Theorem 13. [7] An elementary operator § on a C*-algebra A is
completely positive if and only if there are ¢, ..., ¢y € *M{A) such that
§=37, Me: o .

For prime €"-algebras, this was obtained in [24, Part T, Theorem 4.10).

For simplicity, we stick to the prime case in answering the questions of
Sections 2.1 and 2.4. I{ A is a prime C*-algebra, then, by Theorem 12,
Ity + Ly = 0 for some a,b € M (A} if and only if e = —b € Z(M(A)) =
C1. Suppose that § is a weakly compact derivation on A, If § = 0,
it clearly can be implemented by a compact element. If § # 0, then
6A C K(A) (Proposition 1) implies that K{A4) # {0} and thus 4 can
be faithfully represented as an irreducible algebra on some Hilbert space
H such that K{A) becomes K(H). By the arguments used in 2.1, we
see that § = 8, for some a € B(H) and &, = § = 0 on the Calkin
algebra C(H) = B(H)/K(H). Since C(H) is prime, Z{C{H)) = C1
wherefore @ = Al, equivalently, a + Al € K(A). Consequently, we have
the following,

Proposition 14. Let & be a derivation on a prime C*-algebra A.
Then 6 is weakly compact if end only if § = 8, for some a € K({A).

In fact, this result takes over verbatim to the case of a general C*-
algebra, which was first proved by Akemann and Wright [1, Theorem
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3.3] using representation theory. As a result, a derivation é is weakly
compact if and only if the answer is “yes” in (1.1).

In a similar vein, 6,8z 18 weakly compact if and only if §, or 9, is
weakly compact, provided A is prime. Henee, 6162 is weakly compact
if and only if at least one of the z; in {1.2) can be taken from K(A).
The formulation of the answer in the general case is somewhat more
complicated, and we refer the reader for this (as well as for the norm
compact case) to [258). Note thal

6:.‘:16:::2 - M:z.;cz_.l - I"’r‘rwh:l'-'z - iw-'!:z,xl - ﬂ/‘rieﬂﬁz-tl

and therefore {1.2) is closely related to (1.3) and a description of (weakly)
compact elementary operators which was obtained in {24, Part II].

Specializing the above observation to the case b = ¢* we obtain that
boqr = 0 if and only if @ = —a" € iR1 whenever A is prime. Using a
slight elaboration of this we obtain the answer to (1.5}.

Theorem 15. Lel A be o unital C*-algebra and P a proper closed
prime ideal of A. Let L+ A — A be linear. Under the hypothesis
P$A C P, each two decornpositions of L of the form L =) + 8y - with
¥ A — A completely positive and k € A only differ by an addilion by
Buue, CEP.

Corollary 16. Let A be a unitel infinite dimensional prime C"-
algebra and L © A — A. Then there is at most one decomposition
L =Y+ 6y withk € A andp : A — A complelely positive and
compact.

These resulls are proved in [17]. Corollary 16 was first abserved by
Davies (13, Theorem 2! in the case A = B{H).

We finally turn our attention to the structure of centralizing map-
pings of C*-algebras and the questions raised in Section 2.3. Unlike in
the other examples, there seems to be no direct connection with equa-
tions involving elementary operators such as (1.3). The following lerma
indeed is the key observation which enables us to solve equation (3).

Lemma 17. If F' is an arbitrary mapping on o ring it such thal
Sppyy — Oy & maps R into some ideal J of R, ther, for all z,y,u,v € R,
we have

(12) (M (.5 0) = Moy() 1000 ) B €V

This result was obtained in [8, Lemma 2.2] for commuting additive
mappings and J = {0}. Although we are dealing heve with C*-algebras
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only, we give the proof in full generality as an illustration of the tech-
niques and with a hope for future applications.

Proof: For all ¥, 2z € It we have

bys = (Rys — Lyz)F = (RyRy — LyL,)F
= (Ruby + Lyb.)F = R (8,F) + L, (6, F)

and hence

OF(yz) — Oyxd’ = 8p(yz) ~ R (8 ) — Ly (8, F).
By assumption, it follows thal,
(13) (8r(yay — RoA6yF) — Ly (6, FY)RC J.
Observe that

(6p(yz) — Robppy) — Lybpiy) (wu) — Liybrz) () — Roabp(2:)
+ Rz bp0)(2) + Lyadrey (1)
= Lobpyz) (1) + Rubppyay(2) — ReLobpy(u) ~ R RSy (T}
- Lnyﬁp(z)(’U,) - Ly]?.u5p(:)($) - LU;LT_,(S;:(z)('EL) — R,uthSF(y}(:I:)
-+ Rzﬂqﬁp(y} () + Ly L;cép(z) ()

= Lo (67 ()= Rabri) — Ly S ) (W R (8r0y) — Bebiyy = Ly Sy ()

= Ly(R.8, F + Lyb. F — Ro8pgyy — Lybpe ) (1) + 41
+ R, (thsyF + Lyﬁz F— Rzép(y) - L-yép(zj) () + 42

(with 71,52 € J by (13))

= L.L(RZ({S'_UF - 617‘(3;)) + Ly(‘st - ‘SF‘{z)))(T-"') +jl
+ IZH (Rz{éyf - (5;:‘&,)) + Ly(ﬁzF — 6;:‘(2]))('17) + jz e.J

since (6, F — 6,y )2 C J by assumption.
By (13} again, the first summand on the left hand side is in J toa,
from which we conclude that

Lmy—-ya: 6.&‘(3](“) + Rzu—uz 5.’?(3;] (3') € J’
equivalently,

(14) dy {z) 5;?(2) (‘U,) + (Sp(y) {2} 5-“_(2.’) eJ
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for all =,y,z,ue R.
From
6.3:'(2)(?1.) =+ 6‘;:'(1,_] (Z) clJ for all 8,z € R

and {14} it lollows that
(15) 8, (2) bpy(2) — bz} dulz) € J for all z,y,z,4 € R.
Replacing z by zu in (15) yields

8y (%) 8wy (2v) — Sy (@) bulzv) =
= 6.y(x)zép(u}{'u)-f-c‘iy(;c)ép(u)(z)v—é;:{y}(:x)c‘iu(z)v—ép(y)(3:)z:5u(v) eJ
which, together with (15), gives,
(16) Sy(m) 2 8ppuy{v) — bppla) 2du(v) € J
for all 3, ¥, z,u,v € R. But (16) is nothing but the assertion. W

As a conseguence, cvery mapping satisfying {2} has the property that
(1?) M‘sf"(y)(ﬂi)sau(“) - 1'\45!’(:,,},'5,__(“](”) =0 for all z, yu,uE A

An elaboration of the solution to {1.3), the details of which are given in
[6], then yields a family {c¥ | @,y € A} of elements in ¢ and a family
{e¥ ]z, y € A} of projections in C}, such that

(18) ¥ Sp(yy() — e 6y (z) =0 tor all 2,y € A.

It is then the self-injectivity of C which allows o find ¢ € C with cell =
¢¥, which finally has the property that

Sy () — cby(z) =0 for all =,y € A,

that is, which solves {3). An additional argunient is then needed to show
that ¢ can be found in Cy, that is, we ohtain a solution to (1.4) in “A.

We summarize this in the following statement.

Theorem 18. [6, Theorem 3.2] Let ' : A — A be a centrolizing
additive mapping on a C*-algebra A, Then lthere are ¢ € Z and an
additive mapping ¢ : A — Z such that F =1L, +¢.

Note that, by Proposition 6 (v), this is an extension of BreSar’s result
{Proposition 5). Under a natural condition, both ¢ and ¢ can be chosen
uniquely.
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5. Conclusion

We hope thaf the resulls described above may glve some evidence that
the local multiplier algebra can serve as'a ‘universe’, in which operator
equations on C*-algebras, at least those of the forin {1}, can:he solved
by a unified method.
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