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LINEAR TRANSFORMATIONS OF TWO
INDEPENDENT BROWNIAN MOTIONS AND

ORTHOGONAL DECOMPOSITIONS OF BROWNIAN
FILTRATIONS

Ching-Tang Wu and Marc Yor

Abstract
Brownian motions defined as linear transformations of two in-
dependent Brownian motions are studied, together with certain
orthogonal decompositions of Brownian filtrations.

1. Introduction

Let W = (Wt)t≥0 and W̃ = (W̃t)t≥0 be two independent Wiener
processes defined on a complete probability space (Ω,F ,P). We consider
semimartingales of the form

dXt = dWt + Yt dt,

where Yt is linear in W and W̃ , and we investigate when X is again a
Brownian motion (relative to its own filtration). Our purpose is to ex-
tend in this setup involvingW and W̃ , some results about non-canonical
representations of Brownian motion, in terms of only one Brownian mo-
tion (Wt). In Section 2, we shall consider the special case

Yt = f(t)W̃t + g(t)Wt,(1)

where f and g are two continuous functions satisfying some integral
conditions. We characterize those cases where X is a Brownian motion.
This extends a result of Deheuvels [3] for f ≡ 0. In addition, we extend
results of Jeulin-Yor [6] concerning the distribution of the process

Wt − ν
∫ t

0

Ws

s
ds.(2)
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For ν /∈ [0, 1], we show that the law of (2) coincides with that of

Wt ±
√
ν2 − ν

∫ t

0

W̃s

s
ds.(3)

In the case ν = 1, it is well-known that the process in (2) is a Brown-
ian motion, and then the representation (2) is a so-called non-canonical
representation of Brownian motion. Many studies about such represen-
tations have been made, starting with Lévy [8], [9]; see, e.g. [5] for many
references; also [2], [7] . . . . In a somewhat different vein, de Chávez [12]
considers some processes obtained from Brownian motion by “formal”
Girsanov transformation, i.e.,

Wt −
∫ t

0

d〈W,D〉s
Ds

,

where (Dt) is a martingale, but is not necessarily integrable, nor posi-
tive. In the last part of Section 2, we examine such examples, only to
conclude that the situation is quite different from that of the preceding
non-canonical representations of Brownian motions, which nonetheless
preserve the Gaussian structure.

In Section 3, we characterize Brownian motions X of the form

Xt =Wt +
∫ t

0

(f(u)W̃u + g(u)Xu) du,(4)

with X0 = 0, where f and g satisfy some integrability conditions. Fol-
lowing [13] we describe in Section 3.1 a basic orthogonal decomposition
of the Brownian filtration. In Section 3.2 we will construct a Brownian
motion X of the form (4), and then another Brownian motion Y which
is represented in terms ofW and W̃ and is independent of X. Using iter-
ation, we get two sequences of Brownian motions X(n) and Y (n), which
are independent of each other. This leads to the construction of new or-
thogonal decompositions of Brownian filtrations. In Section 3.3 a similar
decomposition of a Brownian motion related to X will be investigated.

2. A class of linear transformations of two Brownian
motions

Let (Wt) and (W̃t) be two independent Brownian motions and let
T ∈ R+ ∪ {+∞}. Denote A(0, T ) the set of all measurable functions
ϕ : (0, T ) → R satisfying ∫ t

0

√
u|ϕ(u)| du <∞,
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for all t < T . Deheuvels [3] has shown that if (Wt)t≥0 is a Brownian
motion and if g belongs to A(0,∞), then the process (Xt)t≥0 defined by

Xt =Wt +
∫ t

0

g(u)Wu du,

is again a Brownian motion if and only if g(t) ≡ 0 or g(t) = −1/t.
We would like to generalize this result with two functions f and g in
C(0,∞) ∩ A(0,∞), by considering the process X given by

Xt =Wt +
∫ t

0

(f(u)W̃u + g(u)Wu) du,(5)

and asking for which functions f and g X is again a Brownian motion.

Theorem 2.1. Denote

Ut =
∫ t

0

Ws

s
ds and Ũt =

∫ t

0

W̃s

s
ds,

then

(a) for any ν ∈ R,

{Wt − νUt; t ≥ 0} (law)
= {Wt − (1 − ν)Ut; t ≥ 0},

(b) for ν /∈ [0, 1],

{Wt − νUt; t ≥ 0} (law)
= {Wt ±

√
ν2 − νŨt; t ≥ 0},

(c) if the functions f, g ∈ C(0,∞)∩A(0,∞), then the process (Xt)t≥0

given by (5) is a Brownian motion if and only if f(t) = ±
√
ν − ν2/t

and g(t) = −ν/t, for some ν ∈ [0, 1]; in particular, both processes

X±
t :=Wt −

∫ t

0

(
ν

s
Ws ±

√
ν − ν2

s
W̃s

)
ds,(6)

are Brownian motions.

Proof: Concerning (a) and (b), we only need to check that the covari-
ances on both sides are equal.

(i) The proof of (a) can be found in [6].
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(ii) The covariance of (Ut) or (Ũt) is given by

E[UsUt] = E[ŨsŨt]

= E

[(∫ s

0

Wu

u
du

)2
]

+ E
[(∫ s

0

Wu

u
du

) (∫ t

s

Wv

v
dv

)]

= 2s+ s log(t/s),

for s < t. The covariance of Γ, which denotes here either the right-hand
side, or left-hand side in (b), is equal to

E(ΓsΓt) = s+ (ν2 − ν)ϕ(s, t),

where ϕ(s, t) = 2s+ s log(t/s) is indeed the covariance of Ut or Ũt.

(iii) Denote Zt = Wt + i
√
ν − ν2Ũt, and Γt = Wt − νUt. Therefore,

essentially from the previous computations, we find

E(ΓsΓt) = E(ZsZt) = E(WsWt) − (ν − ν2)E(ŨsŨt).

Hence, the covariance of the process (Wt − νUt ±
√
ν − ν2Ũt)t≥0 is

E(ΓsΓt) + (ν − ν2)E(ŨsŨt) = s+ (ν2 − ν)(ϕ(s, t) − E[ŨsŨt]) = s,

which implies that the processes X± are Brownian motions.

(iv) Conversely, since in [3] the case f ≡ 0 has been proved, here we
may assume f �≡ 0. Suppose (Xt)t≥0 is a Brownian motion, then from
Lemma 2.3 in [4], we know that, for s ≤ t,

f(t)E(XsW̃t) + g(t)E(XsWt) = 0.

Due to (5) we can compute E(XsW̃t) and E(XsWt), which yields:

f(t)
∫ s

0

uf(u) du+ g(t)
(
s+

∫ s

0

ug(u) du
)

= 0.

Taking derivatives with respect to s, we get

sf(s)f(t) + (1 + sg(s))g(t) = 0.(7)

Since f is continuous, there exists a countable collection of disjoint
component intervals {(ai, bi) : i ∈ N} in (0,∞), such that

f(t)



�= 0, ∀ t ∈

∞⋃
i=1

(ai, bi),

= 0, ∀ t ∈ (0,∞) \
∞⋃

i=1

(ai, bi).
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Without loss of generality, we only need to look at the case: f ∈
C(0,∞) ∩ A(0,∞), f(t) �= 0 for all t ∈ (a, b), and f(t) ≡ 0 on the
set (0,∞) \ (a, b). Then for all s, t ∈ (a, b), s < t, we can rewrite (7) as

sf(s) +
g(t)
f(t)

(1 + sg(s)) = 0,

which implies g(t) = cf(t) for some nonzero constant c, for all t ∈ (a, b).
Taking this result in (7) it follows that

f(s) = − c

(1 + c2)s
,

which is nonzero on R+. Since f is continuous, we get (a, b) = (0,∞),
which gives the results.

Now, we look for some extension of the third assertion in Theorem 2.1
to the n-dimensional case:

Theorem 2.2. Let (Wt)t≥0 be an n-dimensional Brownian motion and
let α = (α1, α2, . . . , αn) ∈ Sn−1 (⊂ Rn), i.e.,

∑n
j=1 α

2
j = 1. Then the

(n-dimensional) process (Wα
t ), defined as

Wα
t :=Wt −

(∫ t

0

lα(Ws)
ds

s

)
α,(8)

is an n-dimensional Brownian motion, where lα(x) =
∑n

j=1 αjxj with
x = (x1, x2, . . . , xn). Moreover, for each t > 0, the process (Wα

s ; s ≤ t)
is independent of lα(Wt).

Proof: We only need to complete α into an orthonormal basis
{α, β1, . . . , βn−1} of Rn. Then (lα(Wt), lβ1(Wt), . . . , lβn−1(Wt))t≥0 is an
n-dimensional Brownian motion, and

lα(Wα
t ) := lα(Wt) −

∫ t

0

lα(Ws)
ds

s
,

whereas: for all β⊥α,

lβ(Wα
t ) := lβ(Wt),

which proves the first assertion. The second assertion follows directly
from E[Wα

s · lα(Wt)] = 0 for all t > 0 and for all s ≤ t.

Remark 2.1. The second assertion of this theorem can be seen as an
extension of Theorem 1.1 in [13].
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Remark 2.2. We look at the special case: n = 2. Using the third asser-
tion of Theorem 2.1 we already knew that each component of Wα is a
Brownian motion, since

lα(Ws) =
√
νW (1)

s +
√

1 − νW (2)
s ,

for some ν ∈ [0, 1]. It is also not difficult to check the independence of
each component of Wα

s .

Proposition 2.1. The processes Y ± defined by

Y ±
t := W̃t −

∫ t

0

(
1 − ν
s
W̃s ±

√
ν − ν2

s
Ws

)
ds,

are Brownian motions; each of them is independent of the corresponding
process (X±

t ) as defined in (6).

Proof: If we exchange the roles of W and W̃ in the processes X±, we
obtain that the resulting processes are still Brownian motions. Thus, we
see that the processes Y ± are Brownian motions. It remains to check
E[X+

t Y
+
s ] = E[X+

s Y
+
t ] = 0 for all s ≤ t, and the same for X− and Y −.

This follows from direct computation.

Now, we discuss questions concerning random predictable integrands
η(s,W ) ∈ {−1,+1}, where W is a one-dimensional Brownian motion.
We consider the process

W η
t :=Wt −

∫ t

0

η(s,W )
(∫ s

0

η(u,W ) dWu

)
ds

s
.

This process (W η
t )t≥0 may be thought of as the Girsanov transform of the

original Brownian motion W when one changes the original probability
with the “density”

Dt ≡ h
(
t,

∫ t

0

η(u,W ) dWu

)
,

where

h(t, x) =
1√
t
exp

(
x2

2t

)
, (t > 0).

Note that h(t, x) is space-time harmonic, hence (Dt)t>0 is a positive
local martingale. However, E[Dt] = ∞, for every t > 0, so that our
“application” of Girsanov theorem can only be formal (for another in-
teresting formal Girsanov transformation, see the appendix in [1], and
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also [14]). Nonetheless, in the case η(u,W ) ≡ 1, this formal transform
indeed yields the Brownian motion

W �
t :=Wt −

∫ t

0

Wu

u
du.

More generally, for any deterministic Borel function η(s) taking values
only in {−1,+1}, the process (W η

t )t≥0 is a Brownian motion. Indeed,
with our previous notation, we find∫ t

0

η(s) dW η
s =

(∫ ·

0

η(s) dWs

)�

t

.

Hence, the left-hand side is a Brownian motion, and so is (W η
t )t≥0.

Now, we ask whether, when η(s,W ) is a random predictable integrand
taking values in {−1,+1}, W η is still a Brownian motion. The previous
arguments, in case η is deterministic, do not apply, since we should
expect a priori that the filtration of W η is strictly smaller than that
of W . Indeed, we also ask whether, for a fixed t, Fη

t = σ{W η
s , s ≤ t}

is independent of the variable
∫ t

0
η(s,W ) dWs. The answers to both

questions are “no” in general.

Concerning the first question, remark that, if W η were a Brownian
motion, then we would obtain

E

[
η(s,W )

∫ s

0

η(u,W ) dWu

]
= 0, ds-a.s.(9)

However, this condition cannot be satisfied for

η(s,W ) := I(s≤t0)(s) + sign(Wt0)I(t0,∞](s),

for t0 ∈ (0,∞), since, for this process η, the left-hand side of (9) con-
verges, as s ↓ t0, towards:

E[sign(Wt0)Wt0 ] = E[|Wt0 |] > 0.

We have also considered the case where η(s,W ) = sign(Ws) := σs. In
this case, we write (W̄t) for this W η, and we have

W̄t =Wt −
∫ t

0

Cs

s
ds,

where Cs =Ws − σsLs with Ls, the local time at 0 of Ws. And we have
remarked that assuming: E[(W̄t)2] = t is equivalent to:

E

[
|W1|L1

∫ 1

0

Φ
(√

v

1−v |W1|
)
dv

]
=E

[
L2

1

∫ 1

0

Φ
(√

v

1−v |W1|
)
dv

]
,(10)
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with Φ, the distribution function of |N |, where N ∼ N (0, 1). In fact,
with the help of the auxiliary variable N2, now assumed to be indepen-
dent of the pair (W1, L1), (10) is equivalent to

E

[ |W1|3L1

W 2
1 +N2

]
= E

[
W 2

1L
2
1

W 2
1 +N2

]
.(10′)

Since the density function of (|W1|, L1) is
√

2/π(x+y) exp(−(x+y)2/2),
we need only to check whether

E

∫ ∞

0

∫ ∞

0

x2y(x2 − y2)
N2 + x2

exp
(
− (x+ y)2

2

)
dx dy

?= 0

holds, but F. Petit obtained that the left-hand side is equal to
√

π
2 (2 −

3 log 2), hence not equal to 0. This implies that the process (W̄t)t≥0 is
not a Brownian motion.

Now, concerning the second question, let us consider the particular
case: η(s,W ) = zgs , where gs := sup{u ≤ s : Wu = 0} and (zv)v≥0

is predictable, valued in {−1,+1}. Then the balayage formula (see, for
example, [11]) yields

η(s,W )Ws =
∫ s

0

η(u,W ) dWu,

so that, in this case:

W η
t =Wt −

∫ t

0

Ws
ds

s
≡W �

t .

If the independence were true, we could get

E[W η
t (η(t,W )Wt)] = 0,

from which we deduce, by differentiating

E[η(t,W )] =
1
t
E[η(t,W )W 2

t ].(11)

Now, using η(s,W ) = zgs
and conditioning on Fgt

, we obtain, from (11)

E[zgt
] =

2
t
E[zgt

(t− gt)].

But, this certainly cannot hold in this generality (i.e. for all z predictable,
z∈{−1,+1}), since it would imply the absurd result that 2(1−(gt/t))=1.
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3. An orthogonal decomposition of Brownian filtrations

3.1. The basic example of an orthogonal decomposition.

Let (Bt)t≥0 be a standard Brownian motion. In [6] and Chapter 1
of [13] it has been shown that the natural filtration generated by (Bt)t≥0

can be decomposed into the direct sum of two independent σ-algebras

FB
t = Gt ⊕ σ(Bt)(12)

for all t ≥ 0, where the σ-algebra Gt is given by

Gt := σ
(
Bu −

∫ u

0

Bv

v
dv; u ≤ t

)
.

Define an operator T (acting on Brownian trajectories) by

T (B)t := Bt −
∫ t

0

Bu

u
du.(13)

It has been established that the process (T (B)t)t≥0 is a Brownian mo-
tion; see [3] and Chapter 1 in [13]. For the sake of convenience, we
write T 0(B) = B and Tn(B) := T (Tn−1(B)) for n ≥ 1. Consequently,
for any non-negative integer n, the process Tn(B) is a Brownian motion
relative to its natural filtration. Using this notation we can rewrite the
decomposition (12) as

FB
t = σ(Bt) ⊕ σ(T (B)u; u ≤ t) = σ(Bt) ⊕FT (B)

t .

Using the same argument as above iteratively, we can get an orthogonal
decomposition of the σ-algebra FB

t in the following form:

FB
t = σ(Bt) ⊕ σ(T (B)t) ⊕ · · · ⊕ σ(Tn(B)t) ⊕FT n+1(B)

t .(14)

Given the independence of Bt, T (B)t, . . . , T
n(B)t and of the σ-field

FT n+1(B)
t , and also that FT n+1(B)

t decreases, as n → ∞, to the triv-
ial σ-field, (see [6]), one can conclude from (14) that

FB
t =

∞⊕
n=0

σ (Tn(B)t) .(15)

These remarks have already been made in [6].

Remark 3.1. Since (t−
1
2Tn(B)t)n∈N is an orthonormal system in L2(P),

we conclude that for fixed t ≥ 0, the sequence (Tn(B)t)n≥0 is not
strongly L2-convergent, but converges weakly to 0 in L2.

Remark 3.2. In the following, we shall use again the sequence {Tn} of
the iterates of T , but this time with respect to two Brownian motions.
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3.2. Construction of orthogonal decompositions of Brownian
filtrations.

Let W , W̃ be two independent Wiener processes. Consider the pro-
cess X satisfying the stochastic differential equation

dXt = dWt + (f(t)W̃t + g(t)Xt) dt,(16)

where f and g are continuously differentiable functions on (0, 1). In
Corollary 5.2 in [4] we saw that the solution of (16) cannot be a Brownian
motion, provided that f and g satisfy∫ t

0

uf2(u) du <∞ and
∫ t

0

ug2(u) du <∞(17)

for all t < 1. However, if we release condition (17) to f, g ∈ A(0, 1), we
get the following result.

Proposition 3.1. For any constant c such that 0≤|c|<1 the process X
satisfying the stochastic differential equation

dXt = dWt +
cW̃t − c2Xt

(1 − c2)t dt,(18)

with X0 =0, is a Brownian motion with respect to its own filtration (FX
t ).

Proof: For the case c = 0, it is clear, since X =W is a Brownian motion.
If c �= 0, the solution to (18) is given by

Xt =
∫ t

0

(u
t

)a

dWu +
1
c

∫ t

0

(
1 −

(u
t

)a)
dW̃u,(19)

with the constant a defined by

a :=
c2

1 − c2 .(20)

Applying (19) we get E[XsXt] = s for s ≤ t. This ensures that the
Gaussian process X is a standard Brownian motion with respect to its
own filtration.

In the following discussion of (18), we will always exclude the trivial
case c = 0.

Now, we want to construct a new Brownian motion from W and W̃
which is independent of X. Our first attempt is a Brownian motion,
say Ỹ , of the form

dỸt = dW̃t +
−cWt − c2Ỹt

(1 − c2)t dt.
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We can easily check that for any given t the variables Xt and Ỹt are
independent. But the processes X and Ỹ are not independent. Hence
we have to look for other Brownian motions which might be independent
of X. The following proposition gives us one example.

Proposition 3.2. The process Y satisfying the stochastic differential
equation

dYt = dW̃t +
cWt − (1 − c2)W̃t − c2Yt

(1 − c2)t dt,(21)

is a standard Brownian motion independent of X.

Proof: The solution to (21) is given by

Yt =
1
c

∫ t

0

(
1 −

(u
t

)a)
dWu −

∫ t

0

(
1
a
− a+ 1

a

(u
t

)a
)
dW̃u.(22)

For s ≤ t, it can be shown that E[YsYt] = s. It means that Y is a
Brownian motion. Furthermore, we have E[XsYt] = E[XtYs] = 0, for
all s ≤ t. This implies that X and Y are independent.

Remark 3.3. At the beginning of Section 3.1 we saw that if W̃ is a
Brownian motion, the process (T (W̃ )t)t≥0 is a Brownian motion and

its natural filtration (FT (W̃ )
t ) is strictly smaller than (FW̃

t ). Using this
notation, (21) can be written in the form

dYt = dT (W̃ )t +
cWt − c2Yt

(1 − c2)t dt.

Since W and W̃ are independent, the processes T (W̃ ) and W are
therefore also independent. In the same way, we know that the process
(T (W )t)t≥0 is a Brownian motion independent of W̃ as well as T (W̃ ),
and that FT (W )

t � FW
t . Using again the same argument as in Proposi-

tion 3.2, we know that the process X̃ satisfying

dX̃t = dT (W )t +
cT (W̃ )t − c2X̃t

(1 − c2)t dt,(23)

is a Brownian motion independent of Y . Looking at the processes X
and X̃, we see that the equations (23) and (18) have the same form.
Only the σ-algebras generated by the driving Brownian motions T (W )
and T (W̃ ) are strictly smaller than those generated by W and W̃ , re-
spectively. Hence, we get also F X̃

t ⊆ FX
t . Furthermore, we deduce

E[XtX̃s] = 0, for all s ≤ t. This implies that the variable Xt is indepen-
dent from F X̃

t , hence that F X̃
t � FX

t .
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Iterating this procedure, we define

X
(n)
t :=

∫ t

0

(u
t

)a

dTn(W )u +
1
c

∫ t

0

(
1 −

(u
t

)a)
dTn(W̃ )u,(24)

and

Y
(n)
t :=

1
c

∫ t

0

(
1 −

(u
t

)a)
dTn(W )u +

∫ t

0

(u
t

)a

dTn+1(W̃ )u,(25)

for n ≥ 0 and 0 < |c| < 1. In other words, the processes X(n) and Y (n)

satisfy the stochastic differential equations

dX
(n)
t = dTn(W )t +

cTn(W̃ )t − c2X(n)
t

(1 − c2)t dt,(26)

and

dY
(n)
t = dTn+1(W̃ )t +

cTn(W )t − c2Y (n)
t

(1 − c2)t dt.(27)

The next proposition gives us more information about these two se-
quences of stochastic processes.

Proposition 3.3. For n ≥ 0 and t ≥ 0, we have

X
(n+1)
t = T (X(n))t and Y

(n+1)
t = T (Y (n))t.

Proof: From (24), (25), the definition of T (X(n)), T (Y (n)) and the sto-
chastic Fubini Theorem, we get the desired results.

Due to this proposition we can rewrite (26) and (27) as

Tn(X)t = Tn(W )t +
∫ t

0

cTn(W̃ )u − c2Tn(X)u

(1 − c2)u du,

and

Tn(Y )t = Tn+1(W̃ )t +
∫ t

0

cTn(W )u − c2Tn(Y )u

(1 − c2)u du.

Corollary 3.1. For f, g ∈ C(0, 1) ∩ A(0, 1), the expectations

E

[
X

(n+1)
t

(∫ 1

0

f(u) dX(n)
u +

∫ 1

0

g(u) dY (n)
u

)]

and

E

[
Y

(n+1)
t

(∫ 1

0

f(u) dX(n)
u +

∫ 1

0

g(u) dY (n)
u

)]
are equal to 0 for all t ≤ 1 if and only if f and g are constant.
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Proof: Without loss of generality, we may assume n = 0. From

E

[
T (X)t

∫ 1

0

f(u) dXu

]
=

∫ t

0

f(u) du−
∫ t

0

1
u

∫ u

0

f(v) dv du,

we see that this expectation is equal to 0 if and only if f is a constant.
In the same way, we get

E

[
T (Y )t

∫ 1

0

g(u) dYu

]
= 0 if and only if g is constant,

and this completes the proof.

From Section 3.1 we know that the processes (Tn(X)t)n≥0 and
(Tn(Y )t)n≥0 do not converge strongly in L2, but converges weakly to 0
in L2. For each n ≥ 0 the processes X(n) and Y (n) are Brownian motions
and

FX
t = FX(0)

t � FX(1)

t � · · · � FX(n)

t � · · · ,

FY
t = FY (0)

t � FY (1)

t � · · · � FY (n)

t � · · · .
Explicitly, the orthogonal decompositions of the filtrations generated by
(Xt)t≥0 and by (Yt)t≥0, respectively, are given by:

FX
t = FX(0)

t =
∞⊕

n=0

σ(X(n)
t ) and FY

t = FY (0)

t =
∞⊕

n=0

σ(Y (n)
t ),

for all t > 0. In addition, the processes X(n) and Y (n), Y (n) and X(n+1)

are mutually independent. Now, we look at some more relations between
the natural filtrations of X(n), Y (n), Tn(W ) and Tn(W̃ ).

Proposition 3.4. (i) The filtration generated by X(n) and Y (n) is
strictly smaller than that generated by Tn(W ) and Tn(W̃ ), i.e.,
for all n ≥ 0 and t ≥ 0,

FX(n)

t ⊕FY (n)

t � FT n(W )
t ⊕FT n(W̃ )

t .

Moreover, we have

FX(n+1)

t ⊕FY (n)

t � FT n(W )
t ⊕FT n+1(W̃ )

t .

(ii) For all 0 ≤ n < m, the σ-algebra FX(n)

t ⊕ FY (n)

t is not contained
in FT m(W )

t ⊕ FT m(W̃ )
t . The same negative result is also true for

the σ-algebras FX(n+1)

t ⊕FY (n)

t and FT m(W )
t ⊕FT m+1(W̃ )

t .
(iii) For |c| < 1 and t ≥ 0,

FX+cY
t = FW+cW̃

t .
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Proof: Here we show only the case

FX(1)

t ⊕FY (0)

t � FW
t ⊕FT (W̃ )

t .

The general case can be proved by a similar method. We can easily check
the inclusion

FX(1)

t ⊕FY (0)

t ⊆ FW
t ⊕FT (W̃ )

t ,

due to the definitions of (X(1)
t ) and (Y (0)

t ). Suppose the σ-algebras
FX(1)

t ⊕FY (0)

t and FW
t ⊕FT (W̃ )

t coincide. Then we know from the above
proposition that the random variable X(0)

t is independent of FX(1)

t ⊕
FY (0)

t . It is therefore also independent of FW
t ⊕ FT (W̃ )

t . But it is easy
to compute

E[X(0)
t T (W̃ )t] = −c(1 − c2)t,

which obviously contradicts the above assumption. The second assertion
follows by the same argument and the property E[X(n)

t Tm−1(W )t] �= 0
for all m > n. The last statement follows directly from the relation:

Xt + cYt =Wt + cW̃t,

for all t ≥ 0.

In Chapter 1 in [13] it has been shown that

Tn(B)1 =
∫ 1

0

Ln

(
log

(
1
u

))
dBu,

for a sequence of orthonormal polynomials (Ln(u)) for the measure e−u du
in R+. In the following we want to find an analogical argument for our
two new sequences of Brownian motions X(n) and Y (n). We will show a
representation of them as stochastic integrals with respect to W and W̃
and get that the corresponding integrands are no more orthonormal.
Nonetheless, they have some interesting properties.

Proposition 3.5. The processes X(n) and Y (n) can be represented as

X
(n)
t =

∫ t

0

p(n)

(
log

t

u

)
dWu +

1
c

∫ t

0

q(n)

(
log

t

u

)
dW̃u,(28)

Y
(n)
t =

1
c

∫ t

0

q(n)

(
log

t

u

)
dWu +

∫ t

0

p(n+1)

(
log

t

u

)
dW̃u,(29)

where the functions p(n)(u) and q(n)(u) satisfy the recurrence relation

γ(n+1)(u) = γ(n)(u) −
∫ u

0

γ(n)(v) dv,
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with initial conditions p(0)(u) = e−au and q(0)(u) = 1 − e−au. More
explicitly, p(n)(u) and q(n)(u) can be represented in the following form:

p(n)(u) = −1
a

n−1∑
k=0

rnk
(−u)k

k!
+

(
a+ 1
a

)n

e−au,(30)

and

q(n)(u) = Ln(u) − p(n)(u),(31)

where the sequence (rnk ) satisfies the recurrence relation:


rn+1
0 = rn0 +

(
a+ 1
a

)n

, ∀ n ≥ 0,

rn+1
n = 1, ∀ n ≥ 1,

rn+1
k = rnk + rnk−1, ∀ 0 < k < n,

rpq ≡ 0, for p ≤ q,

(32)

and (Ln(u))n≥0 is the sequence of Laguerre polynomials given by

Ln(u) =
n∑

k=0

(
n
k

)
(−u)k

k!
,(33)

which is an orthonormal basis of polynomials for the measure e−u du
in R+.

Proof: Let p(0)(u) = e−au and q(0)(u) = 1 − e−au. From (24) and the
stochastic Fubini Theorem (see, e.g., [10]) we have

X
(n)
t =

∫ t

0

p(0)
(

log
t

u

)
dTn(W )u+

1
c

∫ t

0

q(0)
(

log
t

u

)
dTn(W̃ )u

=
∫ t

0

p(1)
(

log
t

u

)
dTn−1(W )u+

1
c

∫ t

0

q(1)
(

log
t

u

)
dTn−1(W̃ )u

= · · · =
∫ t

0

p(n)

(
log

t

u

)
dWu+

1
c

∫ t

0

q(n)

(
log

t

u

)
dW̃u,

(34)

where

γ(k+1)

(
log

t

u

)
= γ(k)

(
log

t

u

)
−

∫ t

u

1
v
γ(k)

(
log

t

v

)
dv,

for γ(k) = p(k) or q(k), and for all k ≥ 0. Applying a change of variable,
we obtain

γ(n+1)(u) = γ(n)(u) −
∫ u

0

γ(n)(v) dv.
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The relations (30) and (31) follow directly by induction.

Remark 3.4. We can write the recurrence relation (32) as

rnm =
n−1∑

i1=m

i1−1∑
i2=m−1

· · ·
im−1−1∑
im=1

im−1∑
im+1=0

(
a+ 1
a

)im+1

,

for n > m, with initial conditions rnn−1 = 1 and rn0 = a(a+1
a )n − a.

Proposition 3.6. Let m, n be nonnegative integers, then the sequences
of functions (p(n)(u))n≥0 and (q(n)(u))n≥0 possess the following proper-
ties:

(a)
∫ ∞

0

p(n)(u)e−u du =

{
1 − c2, n = 0,
0, n ≥ 1.

(b)
∫ ∞

0

q(n)(u)e−u du =

{
c2, n = 0,
0, n ≥ 1.

(c)
∫ ∞

0

p(n)(u)p(n+m)(u)e−u du =
c2m(1 − c2)

1 + c2
, for all m ≥ 0.

(d)
∫ ∞

0

q(n)(u)q(n+m)(u)e−u du =




2c4

1 + c2
, m = 0,

−c
2(m+1)(1 − c2)

1 + c2
, m ≥ 1.

(e)
∫ ∞

0

p(n+m)(u)q(n)(u)e−u du =



c2(1 − c2)

1 + c2
, m = 0,

−c
2m(1 − c2)

1 + c2
, m ≥ 1.

(f)
∫ ∞

0

p(n)(u)q(n+m)(u)e−u du =




c2(1 − c2)
1 + c2

, m = 0,

−c
2(m+1)(1 − c2)

1 + c2
, m ≥ 1.

(g)
∫ ∞

0

p(n)(u)p(n+m)(u)e−u du

+
1
c2

∫ ∞

0

q(n)(u)q(n+m)(u)e−u du =

{
1, m = 0,
0, m �= 0.
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Proof: Due to (34) and Lemma 3.5 we get the desired results.

3.3. Some related decompositions.

Let us look at some further properties of the process X. Consider the
process (Zt)t≥0 defined by

Zt := t
∫ ∞

t

1
u
dXu.

From Chapter 1 in [13] we see that this process Z is a Brownian motion.
Furthermore, it is easy to check that Xt and Zt are independent for
any t, but that the processes X and Z are not. In this section we want
to give a representation of Z in terms of W and W̃ , and to compare it
with the representation of X.

Lemma 3.1. The process X defined via (18) satisfies

Zt = t
∫ ∞

t

dXu

u
= V 1

t (W ) + V 2
t (W̃ ),(35)

where

V 1
t (W ) := (1 − c2)t

∫ ∞

t

dWu

u
− c2t−a

∫ t

0

ua dWu,

V 2
t (W̃ ) :=

ct

1 − c2
∫ ∞

t

u−a−2

∫ u

0

va dW̃v du.

Proof: It follows from Itô’s formula and (19) that

t−a−1

∫ t

0

ua dWu−s−a−1

∫ s

0

ua dWu =
∫ t

s

d

(
u−a−1

∫ u

0

va dWv

)

=
∫ t

s

(
−(a+ 1)u−a−2

∫ u

0

va dWv du+ u−1 dWu

)

=−1
a

∫ t

s

dWu

u
+
a+ 1
a

∫ t

s

dXu

u
− a+ 1

c

∫ t

s

u−a−2

∫ u

0

va dW̃v du.

(36)

There exists a standard Brownian motion Γ such that

t−a−1

∫ t

0

ua dWu = t−(a+1)Γ 1
2a+1 t2a+1 .

Applying the law of large numbers we get

lim
t→∞

t−( 1
2 r+ε)Γtr = 0,
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for any ε > 0, hence

lim
t→∞

t−a−1

∫ t

0

ua dWu = 0.

Letting t go to ∞, it follows that (36) can be written in the form (35).

From the decomposition in the previous lemma, we can derive another
representation for (35) and we will see that Zt has the same form as Xt.

Proposition 3.7. If the process X satisfies (18), then

Zt = t
∫ ∞

t

dXu

u
=

∫ t

0

(u
t

)a

dBu +
1
c

∫ t

0

(
1 −

(u
t

)a)
dB̃u,(37)

where B and B̃ are two independent Brownian motions given by

Bt = −Wt +
∫ t

0

∫ ∞

u

dWv

v
du and B̃t = −W̃t +

∫ t

0

∫ ∞

u

dW̃v

v
du.

Proof: The covariance function of (V 1
t (W ))t≥0 is given by

E[V 1
s (W )V 1

t (W )] =
(

1 − c2
1 + c2

)
sa+1t−a.

This is exactly the covariance function of the process (
∫ t

0
(u

t )a dBu)t≥0

for some standard Brownian motion B. Similarly, we have

E[V 2
s (W̃ )V 2

t (W̃ )] = s−
(

1 − c2
1 + c2

)
sa+1t−a,

which coincides with the covariance function of (1
c

∫ t

0
(1− (u

t )a) dB̃u)t≥0

for some standard Brownian motion B̃. Since the processes (V 1
t (W )) and

(V 2
t (W̃ )) are independent and generate the same filtration respectively

as B and B̃, B and B̃ are therefore independent. Hence, we get the
representation (37). Furthermore, from∫ t

0

(u
t

)a

dBu = V 1
t (W ) = (1 − c2)t

∫ ∞

t

dWu

u
− c2t−a

∫ t

0

ua dWu,

and

1
c

∫ t

0

(
1 −

(u
t

)a)
dB̃u = V 2

t (W̃ ) =
ct

1 − c2
∫ ∞

t

u−a−2

∫ u

0

va dW̃v du,

we get the representations of B and B̃ in terms of W and W̃ , respecti-
vely.
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Verlag, Basel, 1992.



256 C.-T. Wu, M. Yor

[14] M. Yor, “Some aspects of Brownian motion. Part II. Some re-
cent martingale problems”, Lectures in Mathematics ETH Zürich,
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