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LINEAR TRANSFORMATIONS OF TWO
INDEPENDENT BROWNIAN MOTIONS AND
ORTHOGONAL DECOMPOSITIONS OF BROWNIAN
FILTRATIONS

CHING-TANG WU AND MARC YOR

Abstract

Brownian motions defined as linear transformations of two in-
dependent Brownian motions are studied, together with certain
orthogonal decompositions of Brownian filtrations.

1. Introduction

Let W = (W;)i>0 and W = (Wt)tzo be two independent Wiener
processes defined on a complete probability space (2, F,P). We consider
semimartingales of the form

dX, = dW, + Y, dt,

where Y; is linear in W and W, and we investigate when X is again a
Brownian motion (relative to its own filtration). Our purpose is to ex-
tend in this setup involving W and W, some results about non-canonical
representations of Brownian motion, in terms of only one Brownian mo-
tion (W3). In Section 2, we shall consider the special case

(1) Y, = f(t)Wt + g(t)Wr,

where f and ¢ are two continuous functions satisfying some integral
conditions. We characterize those cases where X is a Brownian motion.
This extends a result of Deheuvels [3] for f = 0. In addition, we extend
results of Jeulin-Yor [6] concerning the distribution of the process

t
(2) Wt—l// %ds.
o S
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For v ¢ [0,1], we show that the law of (2) coincides with that of

.
(3) Wti\/l/Q—V/ %ds.
0

In the case v = 1, it is well-known that the process in (2) is a Brown-
ian motion, and then the representation (2) is a so-called non-canonical
representation of Brownian motion. Many studies about such represen-
tations have been made, starting with Lévy [8], [9]; see, e.g. [5] for many
references; also [2], [7] ... . In a somewhat different vein, de Chévez [12]
considers some processes obtained from Brownian motion by “formal”
Girsanov transformation, i.e.,

t d(W, D)
- [,
t ; D.

where (D;) is a martingale, but is not necessarily integrable, nor posi-
tive. In the last part of Section 2, we examine such examples, only to
conclude that the situation is quite different from that of the preceding
non-canonical representations of Brownian motions, which nonetheless
preserve the Gaussian structure.

In Section 3, we characterize Brownian motions X of the form

(4) X, = Wi+ / (F) W + g(u) X, dus

with Xog = 0, where f and g satisfy some integrability conditions. Fol-
lowing [13] we describe in Section 3.1 a basic orthogonal decomposition
of the Brownian filtration. In Section 3.2 we will construct a Brownian
motion X of the form (4), and then another Brownian motion Y which
is represented in terms of W and W and is independent of X. Using iter-
ation, we get two sequences of Brownian motions X (™ and Y™, which
are independent of each other. This leads to the construction of new or-
thogonal decompositions of Brownian filtrations. In Section 3.3 a similar
decomposition of a Brownian motion related to X will be investigated.

2. A class of linear transformations of two Brownian
motions

Let (W,) and (W;) be two independent Brownian motions and let
T € Ry U{+c0}. Denote A(0,T) the set of all measurable functions
: (0,T) — R satisfying

/0 Vaulp(u)| du < oo,
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for all ¢ < T. Decheuvels [3] has shown that if (W;);>0 is a Brownian
motion and if g belongs to .A(0, c0), then the process (X;);>o defined by

t
X =W, +/ g(u)Wy du,
0

is again a Brownian motion if and only if g(t) = 0 or g(¢t) = —1/t.
We would like to generalize this result with two functions f and ¢ in
C(0,00) NA(0, 00), by considering the process X given by

) xi=wis [ ()W + g()W,) du,

and asking for which functions f and g X is again a Brownian motion.

Theorem 2.1. Denote

t t 1§
W, = W
Ut:/ —ds and Ut:/ ds,
o $ o §

then
(a) for any v € R,

Wy — U t >0} "2 (W, — (1 = v)U,; £ > 0},

(b) forv ¢[0,1],

{W, —vU; t > 0} () {W, + Vv2 —vU; t > 0},

(c) if the functions f,g € C(0,00)N.A(0,00), then the process (Xi)i>o0
given by (5) is a Brownian motion if and only if f(t) = £vVv — 12/t

and g(t) = —v/t, for some v € [0,1]; in particular, both processes
t /7, — 2 _
(6) XE =W, — / <5WS + um) ds,
0 S S

are Brownian motions.

Proof: Concerning (a) and (b), we only need to check that the covari-
ances on both sides are equal.

(i) The proof of (a) can be found in [6].
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(ii) The covariance of (Uy) or (U;) is given by
E[UU] = E[UU]

S| ) e (o) () )]
= 25+ slog(/9),

for s < t. The covariance of I', which denotes here either the right-hand
side, or left-hand side in (b), is equal to

E(DIy) = s+ (% — v)p(s, t),
where (s, t) = 2s + slog(t/s) is indeed the covariance of Uy or U,.

(iii) Denote Z; = W; + ivv — v2U,;, and I'y = W, — vU,. Therefore,
essentially from the previous computations, we find

E(D.T,) = E(Z.Z;) = E(WW,) — (v — v} E(UU,).
Hence, the covariance of the process (W; — vU; + mﬁt)tzo is
E(D.Ty) 4 (v — ) E(U0;) = s + (v* = v)(p(s,t) — E[UT,]) = s,
which implies that the processes X* are Brownian motions.

(iv) Conversely, since in [3] the case f = 0 has been proved, here we
may assume f # 0. Suppose (X;);>0 is a Brownian motion, then from
Lemma 2.3 in [4], we know that, for s <t¢,

f(t)E(XsWt) +9(t)E(X;Wy) = 0.
Due to (5) we can compute E(X,W;) and E(X,W,), which yields:

f(@) /0s uf(u) du+ g(t) (3+/Os ug(u) du> =0.

Taking derivatives with respect to s, we get

(7) sf(s)f(t) + (14 59(s))g(t) = 0.

Since f is continuous, there exists a countable collection of disjoint
component intervals {(a;,b;) : i € N} in (0, 00), such that

# O, Vt S U (ai,bi)7
=1

—0, Vte 0,00\ Ulaiby).

=1

ft)
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Without loss of generality, we only need to look at the case: f €

C(0,00) N A(0,00), f(t) # 0 for all t € (a,b), and f(t) = 0 on the

set (0,00) \ (a,b). Then for all s,t € (a,b), s < t, we can rewrite (7) as
g(t)

sf(s) + m(l +s9(s)) =0,

which implies g(t) = c¢f(t) for some nonzero constant ¢, for all t € (a,b).
Taking this result in (7) it follows that

c
f(S) - _(1+02)S,
which is nonzero on R*. Since f is continuous, we get (a,b) = (0, 00),

which gives the results. O

Now, we look for some extension of the third assertion in Theorem 2.1
to the n-dimensional case:

Theorem 2.2. Let (W;)i>0 be an n-dimensional Brownian motion and
let @ = (a1,02,...,0,) € S"7F (CR™), dce., Y7 af = 1. Then the
(n-dimensional) process (W), defined as

(8) We W, — (/Ot la(Ws)%) o,

is an n-dimensional Brownian motion, where l,(x) = Z;;l a;x; with
x = (x1,22,...,2n). Moreover, for each t > 0, the process (W; s < t)
is independent of 1, (W).

Proof: We only need to complete « into an orthonormal basis
{a,B1,...,PBn-1} of R". Then (lo(W¢),ls,(Wy),...,ls, ,(Wi))i>0 is an
n-dimensional Brownian motion, and

ds

o (W) = 1 (W3) — /0 (W) 2,

whereas: for all §1La,
lp(W) := lg(Wh),
which proves the first assertion. The second assertion follows directly

from E[W - 1,(W;)] =0 for all ¢t > 0 and for all s <. O

Remark 2.1. The second assertion of this theorem can be seen as an
extension of Theorem 1.1 in [13].
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Remark 2.2. We look at the special case: n = 2. Using the third asser-
tion of Theorem 2.1 we already knew that each component of W¢ is a
Brownian motion, since

la(W) = VoWw® 4 /1T —ow®),

for some v € [0,1]. It is also not difficult to check the independence of
each component of W¢.

Proposition 2.1. The processes Y+ defined by

- tf1—u - — 2
v ::Wt—/ ( "W+ YT w ) ds,
0 S

S

are Brownian motions; each of them is independent of the corresponding
process (X5 as defined in (6).

Proof: If we exchange the roles of W and W in the processes X+, we
obtain that the resulting processes are still Brownian motions. Thus, we
see that the processes Y+ are Brownian motions. It remains to check
E[X'Y] = E[X}Y,T] = 0 for all s < t, and the same for X~ and Y.
This follows from direct computation. O

Now, we discuss questions concerning random predictable integrands
n(s,W) € {—1,+1}, where W is a one-dimensional Brownian motion.
We consider the process

W=, —/Otn(s,W) (/Osn(u,W) qu) %

This process (W,);>¢ may be thought of as the Girsanov transform of the
original Brownian motion W when one changes the original probability

with the “density”
t
D;=h (t,/ n(u, W) qu> ,
0

h(t,z) = % exp (“;—i) . (t>0).

Note that h(t,z) is space-time harmonic, hence (Dy)¢~o is a positive
local martingale. However, E[D;] = oo, for every ¢t > 0, so that our
“application” of Girsanov theorem can only be formal (for another in-
teresting formal Girsanov transformation, see the appendix in [1], and

where
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also [14]). Nonetheless, in the case n(u, W) = 1, this formal transform
indeed yields the Brownian motion

t
e [
0

More generally, for any deterministic Borel function 7(s) taking values
only in {—1,+1}, the process (W,");>¢ is a Brownian motion. Indeed,
with our previous notation, we find

s aws = ([ osyaw,)
0 0 t

Hence, the left-hand side is a Brownian motion, and so is (W,");>o.
Now, we ask whether, when 7(s, W) is a random predictable integrand
taking values in {—1,+1}, W7 is still a Brownian motion. The previous
arguments, in case 7 is deterministic, do not apply, since we should
expect a priori that the filtration of W7 is strictly smaller than that
of W. Indeed, we also ask whether, for a fixed ¢, F}' = o{WQ, s < t}
is independent of the variable fot 1(s, W)dW,. The answers to both
questions are “no” in general.

Concerning the first question, remark that, if W7 were a Brownian
motion, then we would obtain

9) E {n(s,W)/ n(u, W) qu] =0, ds-as.
0
However, this condition cannot be satisfied for

77(57 W) = I(SSto)(s) + Sign(Wto)I(to,OO} (S)’

for ¢y € (0,00), since, for this process 7, the left-hand side of (9) con-
verges, as s | to, towards:

E[Sign(Wto)Wto] = EHWto” >0

We have also considered the case where n(s, W) = sign(W;) := o,. In
this case, we write (W) for this W7, and we have

t
_ C,
Wt:Wt*/ 7d5,
o S

where Cy = W, — osLs with L, the local time at 0 of W,. And we have
remarked that assumlng E[(W;)?] =t is equivalent to:
oy |> dv} :
—v

o i () -2 o
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with @, the distribution function of |[N|, where N ~ A(0,1). In fact,
with the help of the auxiliary variable N2, now assumed to be indepen-
dent of the pair (Wi, L1), (10) is equivalent to

(Wi [* Ly WLt
10’ Eleo—| =E |5 |.
(10 [WerN2 Wi+ N2

Since the density function of (|Wy|, L1) is \/2/7(z+y) exp(—(x+y)?/2),
we need only to check whether

2y —y?) @ty z
/ / N 2 ep( 5 dedy =0

holds, but F. Petit obtained that the left-hand side is equal to /% (2 —
3log2), hence not equal to 0. This implies that the process (W;);>o is
not a Brownian motion.

Now, concerning the second question, let us consider the particular
case: n(s,W) = z,4,, where g5 := sup{u < s : W, = 0} and (zy)s>0
is predictable, valued in {—1,+1}. Then the balayage formula (see, for
example, [11]) yields

n(s, W)W, :/ n(u, W) dW,,
0
so that, in this case:

t
d
:Wt—/ w, 2 = wy.
0 S

If the independence were true, we could get
E[W (n(t, W)Wy)] = 0,

from which we deduce, by differentiating

(1) Ely(t, W) = & Bln(t, W)W7].

Now, using 7(s, W) = z,, and conditioning on Fy,, we obtain, from (11)
Bleg) = 5 Blzg (¢~ 90)].

But, this certainly cannot hold in this generality (i.e. for all z predictable,
z€{—1,41}), since it would imply the absurd result that 2(1—(g:/t)) =1.
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3. An orthogonal decomposition of Brownian filtrations

3.1. The basic example of an orthogonal decomposition.

Let (By)i>0 be a standard Brownian motion. In [6] and Chapter 1
of [13] it has been shown that the natural filtration generated by (By):>0
can be decomposed into the direct sum of two independent o-algebras

(12) FP =G @ o(By)
for all ¢ > 0, where the o-algebra G; is given by

qu
th:U(Bu—/ —dv;uft).
0 7_}

Define an operator T' (acting on Brownian trajectories) by
‘B

0 U
It has been established that the process (T'(B):):>0 is a Brownian mo-
tion; see [3] and Chapter 1 in [13]. For the sake of convenience, we
write T°(B) = B and T"(B) := T(T" '(B)) for n > 1. Consequently,
for any non-negative integer n, the process T"(B) is a Brownian motion
relative to its natural filtration. Using this notation we can rewrite the
decomposition (12) as

FP = 0(B) ®o(T(B)u; u<t) = o(By) & FL P,
Using the same argument as above iteratively, we can get an orthogonal

decomposition of the o-algebra F in the following form:

(14) FE = o(B) @ o(T(B)) & & o(T(B)) @ FL P,

Given the independence of By, T(B)¢,...,T™(B); and of the o-field
]_-T"‘*'l(B) T"t1(B) .
+ , and also that F; decreases, as n — 00, to the triv-

ial o-field, (see [6]), one can conclude from (14) that
(15) FE =T (B)).
n=0
These remarks have already been made in [6].
Remark 3.1. Since (t~2T™(B);)nen is an orthonormal system in L2(P),

we conclude that for fixed ¢ > 0, the sequence (T™(B)¢)n>0 is not
strongly L2?-convergent, but converges weakly to 0 in L2.

Remark 3.2. In the following, we shall use again the sequence {T™} of
the iterates of T', but this time with respect to two Brownian motions.
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3.2. Construction of orthogonal decompositions of Brownian
filtrations.

Let W, W be two independent Wiener processes. Consider the pro-
cess X satisfying the stochastic differential equation

(16) dX, = dWy + (f(OW, + g(t) X,) dt,

where f and g are continuously differentiable functions on (0,1). In
Corollary 5.2 in [4] we saw that the solution of (16) cannot be a Brownian
motion, provided that f and g satisfy

(17) /t uf?(u)du < oo and /t ug®(u) du < 0o
0 0

for all ¢ < 1. However, if we release condition (17) to f,g € A(0,1), we
get the following result.

Proposition 3.1. For any constant ¢ such that 0<|c| <1 the process X
satisfying the stochastic differential equation

th — 32X,
18 dX; =dW, + —————dt
(18) L= T Ty

with Xo=0, is a Brownian motion with respect to its own filtration (F;¥).

Proof: For the case ¢ = 0, it is clear, since X = W is a Brownian motion.
If ¢ # 0, the solution to (18) is given by

w e [ () [ (2))

with the constant a defined by

2

T 1o

Applying (19) we get E[X X;] = s for s < t. This ensures that the
Gaussian process X is a standard Brownian motion with respect to its
own filtration. |

(20) a:

In the following discussion of (18), we will always exclude the trivial
case ¢ = 0.

Now, we want to construct a new Brownian motion from W and W
which is independent of X. Our first attempt is a Brownian motion,
say Y, of the form
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We can easily check that for any given ¢ the variables X, and Y; are
independent. But the processes X and Y are not independent. Hence
we have to look for other Brownian motions which might be independent
of X. The following proposition gives us one example.

Proposition 3.2. The process Y satisfying the stochastic differential

equation

Wy — (1— 02)V~Vt - %Y,
(1—e2)t

is a standard Brownian motion independent of X .

(21) dY, = dW, + dt,

Proof: The solution to (21) is given by

e = [ v [ (G- (5)) am

For s < t, it can be shown that E[Y,Y;] = s. It means that ¥ is a
Brownian motion. Furthermore, we have E[X,Y;] = E[X;Y,] = 0, for
all s <t. This implies that X and Y are independent. O

Remark 3.3. At the beginning of Section 3.1 we saw that if W is a
Brownian motion, the process (T'(W):):>0 is a Brownian motion and

its natural filtration (ftT (W)) is strictly smaller than (.7-"tW ). Using this

notation, (21) can be written in the form

Wi — Y,
(1—2c2)t

Since W and W are independent, the processes T (W) and W are

therefore also independent. In the same way, we know that the process
(T(W);)¢>0 is a Brownian motion independent of W as well as T'(W),

dY, = dT(W), + dt.

and that }"tT W) ; FV. Using again the same argument as in Proposi-
tion 3.2, we know that the process X satisfying
(W), — X,
(1—e2)t
is a Brownian motion independent of Y. Looking at the processes X
and X, we see that the equations (23) and (18) have the same form.
Ounly the o-algebras generated by the driving Brownian motions T (W)
and T(W) are strictly smaller than those generated by W and W, re-
spectively. Hence, we get also .7-}5( - .7:tX . Furthermore, we deduce
E[X,X,] =0, for all s < t. This implies that the variable X, is indepen-
dent from FX, hence that FX c F~.

(23) dX; = dT(W), + dt,
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Iterating this procedure, we define

(24) x™ .= /Ot (%)a AT (W) + % /Ot (1 - (%)) AT (W),

and

(25) v = i/ot (1- (%)) dT"(W)qu/Ot (%) AT (),

for n > 0 and 0 < |¢| < 1. In other words, the processes X (™ and Y (™)
satisfy the stochastic differential equations

T (W), — cht(")

2 dx™ — qrm dt
( 6) t (W)t+ (1 —02)t )
and

~ n 2 (n)
(27) Ay = arr (i), + L W) =¥

(1—2c2)t
The next proposition gives us more information about these two se-
quences of stochastic processes.

Proposition 3.3. Forn >0 andt > 0, we have

Xt(n+1) — T(X(n))t and Y;(n+1) — T(y(n))t
Proof: From (24), (25), the definition of T(X (™), T(Y () and the sto-
chastic Fubini Theorem, we get the desired results. ([

Due to this proposition we can rewrite (26) and (27) as

tC (11, u*CQ n u
Tn(X)t:Tn(W)t+/0 a (W()l_c2)z: S du,

and
e (W)y — T™(Y)
o (-

Corollary 3.1. For f,g € C(0,1) N .A(0,1), the expectations

E X(”“) (/ flu)dX (">+/1 (u)dYu(”)ﬂ
r 1 1
(n+1) (n) (n)
B ( [ waxe+ [t a] )}

are equal to 0 for all t < 1 if and only if f and g are constant.

Tn(Y)t = Tn+1(W)t + du.

and
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Proof: Without loss of generality, we may assume n = 0. From

E {T(X)t/olf(u)qu} /Otf(u)du/oti/ou £(v) dv du,

we see that this expectation is equal to 0 if and only if f is a constant.
In the same way, we get

1
E {T(Y)t/ g(u) dYu} =0 if and only if g is constant,
0

and this completes the proof. O

From Section 3.1 we know that the processes (T™(X)¢)n>0 and
(T™(Y)¢)n>0 do not converge strongly in L?, but converges weakly to 0
in L2. For each n > 0 the processes X (™) and Y™ are Brownian motions
and

> x (0) x (1) x (n)
Fo=F 2K 2 F

... ...
= Z )
Y y (0) y (1) y (n)
F=r 2o 2F 2
Explicitly, the orthogonal decompositions of the filtrations generated by

(X1)i>0 and by (Y;)>o0, respectively, are given by:

FX=F" =@Pox{) and F =F"" =P,
n=0 n=0
for all t > 0. In addition, the processes X (™ and Y ("), V(") and X (+1

are mutually independent. Now, we look at some more relations between
the natural filtrations of X, Y™ T7(W) and T™(W).

Proposition 3.4. (i) The filtration generated by X™ and Y™ is

strictly smaller than that generated by T™(W) and T™(W), i.e.,
foralln >0 andt > 0,
X e ry " CFT M e 5T,

Moreover, we have

n n n n+1
]__tX< +1) @fty( ) ;Cé }.tT (W) e9‘7__3“ (W).
(ii) For all 0 < n < m, the o-algebra ftX(n) & fty(n) is not contained

n ]-'tTm(W) @ .7-"tTm(W), The same negative result is also true for

the o-algebras ]—'tX("H) o }‘ty(") and }-tTm(W) @ }-tTm“(W)'
(iii) For|c| <1 andt >0,

]_‘t)(-‘rCY — ]_‘tW-‘rCW .
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Proof: Here we show only the case
}_txm @fty(o) c W 69]__tT(W)'

The general case can be proved by a similar method. We can easily check
the inclusion

o r cFV o FI™,
due to the definitions of (Xt(l)) and (Y;(O)). Suppose the o-algebras
ftXU) @]__ty(rn and F}V EB]:tT(W) coincide. Then we know from the above
proposition that the random variable Xt(o) is independent of .7-}X @ S5

FY” Tt is therefore also independent of FYV & F ). But it is easy

to compute
EXOTW)] = (1 - A,
which obviously contradicts the above assumption. The second assertion

follows by the same argument and the property E [Xt(n)T’”_l(W)t] #0
for all m > n. The last statement follows directly from the relation:

X; + Yy = Wy + W,
forallt > 0. |

In Chapter 1 in [13] it has been shown that

o= [ (e (1)) a5

for a sequence of orthonormal polynomials (L, (u)) for the measure e du
in RT. In the following we want to find an analogical argument for our
two new sequences of Brownian motions X (™ and Y("). We will show a
representation of them as stochastic integrals with respect to W and W
and get that the corresponding integrands are no more orthonormal.
Nonetheless, they have some interesting properties.

Proposition 3.5. The processes X™ and Y") can be represented as

n ‘ t I t\ s
(28) Xt( ) :/ p™ <log—> aw, + —/ g™ (log —) dW,,
0 u cJo u

1 [t t t t -
29) v = —/ ™ (log —) dWw, +/ pn (log —) AWy,
¢ Jo u 0 u

where the functions p™ (u) and ¢™ (u) satisfy the recurrence relation

A @) =1~ [ ) do,
0
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with initial conditions p® (u) = e~ and ¢©(u) = 1 — e~**. More
explicitly, p™ (u) and g™ (u) can be represented in the following form:

n—1 —u k a n
B = G () e
k=0
and
(31) ¢™ (u) = Lo (u) = p'™(u),

where the sequence (1]) satisfies the recurrence relation:

1 n
rg+1:r6’+(a+ ) , VYn>0,
a

(32) T 1, Vn>1,
it = VO0<k<n,
=0, forp <g,
and (L, (v))n>0 is the sequence of Laguerre polynomials given by
~ (n) (—uw)*
(33) Law) =3 ( k) o
k=0

which is an orthonormal basis of polynomials for the measure e~ du
in RT.

Proof: Let p(®(u) = e and ¢¥(u) = 1 — 7. From (24) and the
stochastic Fubini Theorem (see, e.g., [10]) we have

t 1 rt -
X = [0 (1og E) AT (Wt [ 4 (bg 3) 4 (),
0 Y ¢Jo v
t 1 [t -
[ (log i) AT Wk [ g0 (log 3) A" (W),
0 u ¢Jo u

L (100 L o (100 b ari
= p log— | dW,+- [ ¢q log — | dW,,
0 u cJo u
t t ‘1 t
SAUARY <log —) =4® <log—> —/ —y® (10g—> dv,
U U w U v

for v*) = p*) or ¢(¥) and for all k > 0. Applying a change of variable,
we obtain

(34)

where

A @) =4O~ [ ) do,
0



252 C.-T. Wu, M. Yor

The relations (30) and (31) follow directly by induction. O

Remark 3.4. We can write the recurrence relation (32) as

. n—1 i1—1 Im—1—1 4, —1 a+1 Tm41
= 2 2 2 :

i1:m i2:m—1 /L'”L:]. im+1:0

for n > m, with initial conditions _; =1 and rf = a(“1)" —a.
Proposition 3.6. Let m, n be nonnegative integers, then the sequences
of functions (p™ (u))n>0 and (¢ (u)),>0 possess the following proper-
ties:

oo 1— 2 —
(a) / P (u)e " du = { ¢, n=0,
0

0, n > 1.
[e%e) 2
=0
b W (e tdu=4 " " ’
o) [ aw {0, .
00 2m 1— 2
(c) /0 P (w)p™ ™ (u)e ™ du = %C;), for allm > 0.
2 4
0 1 +CCQ7 m =0,
@ [ e e du=
0 02(m+1)(1 _ 62) .
B T ———— > 1.
14 ¢2 =
2 1— 2
< : i + cg )’ ™ =0,
e (1) (1) g™ (u)e ™ du =
(e) p q
0 ch(l _ 02) > 1
1+¢2 =t
2 1— 2
> : i + cS )’ ™ =0,
O [ p" ™ e du =
0 62(m+1)(1 _ 02)
S G0 S
1+ c2
(@ [ o e du
0
1 [ 1, m=0
2T o e (e gy = 4 )
a2 ) 9 (u)g (we " du 0. m£0
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Proof: Due to (34) and Lemma 3.5 we get the desired results. O

3.3. Some related decompositions.

Let us look at some further properties of the process X. Consider the
process (Z;)¢>o defined by

<1
Ztizt/ —qu
U

From Chapter 1 in [13] we see that this process Z is a Brownian motion.
Furthermore, it is easy to check that X; and Z; are independent for
any t, but that the processes X and Z are not. In this section we want
to give a representation of Z in terms of W and W, and to compare it
with the representation of X.

Lemma 3.1. The process X defined via (18) satisfies

*dX, .
(35) Zy = t/ = V(W) + (W),
t

where

[e%e} t
VW) = (1 —c2)t/ % - c2t*a/ u® dW,,
t 0

- t o0 u -
VA(W) = — / w2 / v®* dW,, du.
t

2
1-¢ 0

Proof: Tt follows from It6’s formula and (19) that

t s t u
tfafl/ u® qufsfafl/ u® dVVu:/ d (ual/ v® dWU>
0 0 s 0

t u
(36) :/ <(a +1)u*2 / v dW, du +u~t qu>

0

1 [tdw, 1 [tdX, 1 [t o
:J/ Wy ot / _at /u*H/ v® dW,, du.
afs u a Js w c Js 0

There exists a standard Brownian motion I'" such that

t
t_a_l/ uaqu:t_(a+1)Pﬁt2a+1.
0

Applying the law of large numbers we get

lim ti(%r+6)rtr =0

3
t—o0



254 C.-T. Wu, M. Yor
for any € > 0, hence

t
lim t—a—l/ u*dW, = 0.
0

t—o0

Letting ¢ go to 0o, it follows that (36) can be written in the form (35). O

From the decomposition in the previous lemma, we can derive another
representation for (35) and we will see that Z; has the same form as X;.

Proposition 3.7. If the process X satisfies (18), then

o e [T [ ) e [ (- () e

where B and B are two independent Brownian motions given by

t oo t oo 1Y,
aw, ~ ~ dw,
Bt = —Wt +/ / du and Bt = —Wt +/ / du.
0 Ju v 0 Ju v

Proof: The covariance function of (V,}(W));>0 is given by

BV NV V) = (155 ) s e

This is exactly the covariance function of the process ( fot ($)*dBy)i>0
for some standard Brownian motion B. Similarly, we have

2
BV =5 - (15 ) s,
which coincides with the covariance function of (2 fot(l —($)") dBu)>0
for some standard Brownian motion B. Since the processes (V;!(W)) and
(V2(W)) are independent and generate the same filtration respectively
as B and B, B and B are therefore independent. Hence, we get the
representation (37). Furthermore, from

t a [e%e] t
/ (3) By = V(W) = (1—62)t/ AW —c%*a/ u® dW,,
o \t u 0

t

and

%/Ot (1_ (%)a> dBu=Vt2(W): lftCQ /toou_“_2/0uv“dWUdU,

we get the representations of B and B in terms of W and W, respecti-
vely. O
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