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ON THE HODGE THEORY OF THE SYMMETRIC
POWERS OF A CURVE

Sebastian del Baño

Abstract
We describe the polarised Hodge structure on the symmetric pow-
ers of a smooth projective curve.

Introduction

Let X be a topological space. The n-fold symmetric power of X is the
quotient of X× n· · ·×X by the natural action of the symmetric group Sn.
We will denote it by X(n).

If C is a smooth projective curve over the complex numbers C(n) is a
compact complex manifold. If is of fundamental importance in the study
of the jacobian variety of C and other aspects of the geometry of C. In [6]
I. G. MacDonald computed the Betti numbers of the symmetric powers
of a compact polyhedron. In the case of a smooth projective curve of
genus g, C, the result is that the i-th Betti number is

bi =
∑

a+b+c=n, b+2c=i
a,b,c∈N∪{0}

(
b

2g

)
.

In [1] (see also [2]) we have extended this result to the theory of
motives. We prove that the Chow motive of the variety C(n) is given by

h(C(n)) �
⊕

a+b+c=n
a,b,c∈N∪{0}

1l⊗a ⊗ ∧bh1(C) ⊗ L⊗c

(see loc. cit. for notations). In particular, we have an isomorphism of
Hodge structures H(C(n),Q) � ⊕

a+b+c=n
a,b,c∈N∪{0}

∧bH1(C,Q)(−c).
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The purpose of this note is to extend this to an isomorphism of po-
larised Hodge structures. This can be of aid in computing the polarisa-
tion of the Hodge structure of the moduli space of stable vector bundles
of rank two and fixed determinant of degree one. This would contain,
in particular, the volume of the moduli space, found by Witten to be

1
2g−222g−2(22g−2 − 2)|B2g−2| where Bi is the i-th Bernoulli number.

1. Preliminaries

1.1. Polarization of symmetric powers. When a complex compact
variety X is given a polarization, i.e. an ample line bundle L ∈ Pic(X),
the symmetric power X(n) inherits in a natural way a polarization, L(n).
To see this consider the line bundle on Xn defined by Ln = p∗1L⊗ · · · ⊗
p∗nL, where pi : Xn −→ X are the projections. The action of Sn on Xn

lifts to Ln and the stabilizer Sn,x of any point x ∈ Xn acts trivially on
the fibre Ln

x . By Kempf’s descent lemma ([4, Théorème 2.3]) the line
bundle Ln is pullback via the quotient map Xn −→ Xn/Sn = X(n) of
a line bundle L(n). In order to see this line bundle is ample if L is so,
proceed as follows: it is quite trivial to see that Ln is ample; ampleness
of L(n) is then a consequence of [5, Exercise III.5.7].

In the case of a smooth projective curve, C, any point gives an ample
line bundle on C and by the previous paragraph an ample line bundle
on C(n). The cohomology class of this polarization is independent of
the chosen point; it can be seen that it coincides with the class η ∈
H2(C(n),Z) defined in [7] (see Subsection 1.3).

1.2. Polarized Hodge structures.

Definition ([3, 2.1.15]). A polarized rational pure Hodge structure is
a rational pure Hodge structure M (say of weight n) together with a
morphism of Hodge structures

(·, ·) : M ⊗Q M −→ Q(−n)
such that on MR, (2πi)n(x,Cy) defines a symmetric positive definite
bilinear form where C notes the Weil operator.

Examples. 1. If M and N are polarized rational Hodge structures
then so are M ⊕N , M ⊗N .

A polarization on a Hodge structure M also induces a polar-
ization on ∧iM , this is defined by (v1 ∧ · · · ∧ vi, w1 ∧ · · · ∧ wi) =
det (vk, wl).

2. The Tate Hodge structures Q(i) are trivially polarized.
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3. If C is a smooth projective curve then H1(C,Q) is a polarized
rational pure Hodge structure of weight 1, the polarization is given
by the cup product H1(C,Q) ⊗Q H

1(C,Q) −→ Q(−1).
4. More generally if X is a compact Kähler manifold with Kähler

class L ∈ H2(X,Q) then the rational Hodge structure Hi(X,Q) is
naturally polarized. Assume i ≤ dimX for simplicity, the Lefschetz
decomposition states that Hi(X,Q) = Hi

0(X,Q)⊕LHi−2
0 (X,Q)⊕

· · · , whereH∗
0 (X,Q) is the primitive cohomology. The polarization

is defined so that this is an orthogonal decomposition, if α, β ∈
Hi−2s

0 (X,Q) then set (Lsα,Lsβ) = (−1)
i(i−1)

2 +s
∫

X
α∧β∧Ln−i+2s.

1.3. The cohomology algebra of C(n). In this subsection we briefly
recall the main results of [7].

Let C be a smooth projective algebraic curve over C, let α1, . . . , α2g

be a basis of H1(C,Z) and β a positive basis of H2(C,Z) such that
αiαi+g = β and αiαj = 0 if |i− j| 
= g.

Then define ξi = (αi ⊗ 1 ⊗ · · · ⊗ 1) + · · · + (1 ⊗ · · · ⊗ 1 ⊗ αi) and
η = (β ⊗ 1 ⊗ · · · ⊗ 1) + · · · + (1 ⊗ · · · ⊗ 1 ⊗ β). These are Sn-invari-
ant elements in H∗(Cn,Q), therefore in H∗(C(n),Q). For i ∈ {1, . . . , g}
define ξ′i = ξi+g and α′

i = αi+g.
The cohomology algebra H∗(C(n),Q) is described by the following

theorem.

Theorem 1 ([7, 6.3]). The cohomology algebra H∗(C(n),Q) is gener-
ated by ξ1, . . . , ξg, ξ′1, . . . , ξ

′
g ∈ H1(C(n),Q) and η ∈ H2(C(n),Q) subject

to the relations

ξi1 · · · ξia
· ξ′j1 · · · ξ

′
jb
· (ξk1ξ

′
k1

− η) · · · (ξkc
ξ′kc

− η) · ηq = 0(1)

whenever {i1, . . . , ia}, {j1, . . . , jb} and {k1, . . . , kc} are disjoint subsets
of {1, . . . , g} and a+ b+ 2c+ q = n+ 1.

As in [7] we shall use the following notation: for a subset A of
{1, . . . , g}, if A = {i1, . . . , ia} with i1 < · · · < ia we put ξA =

∏a
k=1 ξik

,
ξ′A =

∏a
k=1 ξ

′
ik

and σA =
∏a

k=1

(
ξik
ξ′ik

− η
)
. We shall use upper case

letters for subsets of {1, . . . , g} and the corresponding lowercase letters
for the cardinality of the sets. Then (1) can be expressed in the following
way: ξAξ′BσCη

q = 0 for any disjoint subsets of {1, . . . , g} A, B and C
with a+ b+ 2c+ q = n+ 1.

We shall also need a basis ofH∗(C(n),Q), this is given by the following
result of MacDonald:
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Theorem 2 ([7, 3.2]). A basis of Hi(C(n),Q) is{
ξi1 · · · ξip

ηq | 0 < i1 < · · · < ip ≤ 2g, p+ 2q = i
}

(2)

with the further restriction p ≤ 2n− i if i > n.

2. The polarization on the cohomology of C(n)

Give H∗(C(n),Q) the polarization induced by the Kähler class η and
∧iH1(C,Q) the polarization induced by that of H1(C,Q) then we have:

Theorem 3. There is a canonical isomorphism of polarized rational
Hodge structures

ϕ : H∗(C(n),Q) −→
⊕

a+b+c=n

H0(C,Q)⊗a ⊗ ∧bH1(C,Q) ⊗H2(C,Q)⊗c.

Proof: We first claim that the primitive cohomology, Hi
0(C,Q), has basis{

ξAξ
′
BσC

∣∣∣∣ A, B and C disjoint subsets of {1, . . . , g}
a+ b+ 2c = i

}
.(3)

To see this note first that these are indeed primitive classes for
ξAξ

′
BσCη

n−i+1 = 0 by (1) as a + b + 2c + n − i + 1 = n + 1. To
prove linear independence of (3) we write them in terms of the basis (2).
If C = (i1, . . . , ic) then

ξAξ
′
BσC = ξAξ′B

(
ξi1ξ

′
i1 − η

)
· · ·

(
ξicξ

′
ic
− η

)
= (−1)cξAξ

′
Bη

c + (−1)c−1ξAξ
′
B

(
ξi1ξ

′
i1 + · · · + ξicξ

′
ic

)
ηc−1

+ · · · + ξAξ′Bξi1ξ′i1 · · · ξicξ
′
ic
.

(4)

Consider the vector space V = Hi(C(n),Q)/ηHi−2(C(n),Q). It is
clear from (2) that a basis for this quotient vector space is obtained by
taking the classes of

{ξj1 · · · ξji | 0 < j1 < · · · < ji ≤ 2g}.
But by (4) the vectors (3) map to this basis of V . This proves

the claim on the linear independence of (3) and it also proves that
dimHi

0(C
(n),Q) = dimV coincides with the number of elements in (3)

hence it constitutes a basis for Hi
0(C

(n),Q) as claimed.
Set αA and α′

A to stand for products of the {αi} or {α′
i} in the same

manner as for ξA and ξ′A. Define ϕ on the primitive cohomology by

ϕ(ξAξ′BσC) = αA ∧ α′
B ∧ αi1 ∧ α′

i1 ∧ · · · ∧ αic ∧ α′
ic
,

and extend it to all the cohomology by putting ϕ(ξAξ′BσCη
q) =

ϕ(ξAξ′BσC) ⊗ βq where β is the basis of H2(C,Q) defined above. Then
ϕ is an isomorphism of rational Hodge structures.
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We shall see that ϕ preserves the polarization. It is enough to do so
for primitive classes on which the polarization is given by

〈
ξAξ

′
BσC , ξAξ

′
B
σC

〉
= (−1)

i(i−1)
2

∫
C(n)

ξAξ
′
BσCξAξ

′
B
σCη

n−i.(5)

In order to evaluate (5) first note that if A∩A 
= ∅ or B∩B 
= ∅ then
clearly this product is zero, hence assume A ∩A = B ∩B = ∅.

If A ∩ C 
= ∅, B ∩ C 
= ∅, A ∩ C 
= ∅ or B ∩ C 
= ∅ the pairing (5) is
zero: for example if j ∈ A ∩ C then

ξAξ
′
BσC(ξjξ′j − η)ηn−i = −ξAξ′BσCη

n−i+1

which is zero by (1) for a + b + 2c + n − i + 1 = n + 1. Henceforth we
shall assume A ∩ C = B ∩ C = A ∩ C = B ∩ C = ∅.

If A 
= B take j ∈ B−A (or if B−A = ∅ take j ∈ A−B and proceed
in the same manner), then ξAξ′BξjσCη

n−i = 0 for A,B ∪ {j} and C are
disjoint and a+ b+ 1 + 2c+ n− i = n+ 1. This way we see that if the
pairing (5) is nonzero then A = B and B = A which we shall assume to
be the case from now on.

Similarly if C 
= C the pairing is zero, for if we take j ∈ C − C then
ξAξ

′
BσC(ξjξ′j − η)ηn−i = 0 for a+ b+ 2c+ 2 + n− i = n+ 2.
We conclude that the only nontrivial pairings are those of the form

〈ξAξ′BσC , ξBξ
′
AσC〉 =

∫
C(n)

(−1)
i(i−1)

2 ξAξ
′
BξBξ

′
A(σC)2ηn−i

=
∫

C(n)
(−1)

i(i−1)
2 ξAξ

′
Aξ

′
BξB(σC)2ηn−i.

(6)

Let A = {i1, . . . , ia} and B = {j1, . . . , jb}. Note that

ξAξ
′
A = (−1)

a(a−1)
2 ξi1ξ

′
i1 · · · ξia

ξ′ia
.

Thus we have

(−1)
i(i−1)

2 ξAξ
′
Aξ

′
BξB

= (−1)
i(i−1)+a(a−1)+b(b−1)

2 +bξi1ξ
′
i1 · · · ξiaξ

′
ia
ξj1ξ

′
j1 · · · ξjb

ξ′jb
,
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call this S. If C = (k1, . . . , kc) our pairing is the integral over C(n) of

Sσ2
Cη

n−i = S(ξk1ξ
′
k1

− η)2 · · · (ξkcξ
′
kc

− η)2ηn−i

= S(η − 2ξk1ξ
′
k1

) · · · (η − 2ξkc
ξ′kc

)ηn−i+c

=
c∑

l=1

S(−2)lσl(ξk1ξ
′
k1
, . . . , ξkc

ξ′kc
)η2c−l+n−i

where σl(ξk1ξ
′
k1
, . . . , ξkcξ

′
kc

) is the l-th symmetric function on the com-
muting variables ξk1ξ

′
k1
, . . . , ξkc

ξ′kc
.

By the next lemma

〈ξAξ′BσC , ξBξ
′
AσC〉 = (−1)

i(i−1)+a(a−1)+b(b−1)
2 +b

c∑
l=1

(−2)l

(
j

c

)

= (−1)
a2+b2+4c2+2ab+4ac+4bc−a−b−2c+a2−a+b2+b+2c

2

= (−1)ab+b.

Now we turn to the evaluation of

(7)
〈
ϕ(ξAξ′BσC), ϕ(ξAξ

′
B
σC)

〉

=

〈
αi1 · · ·αiaα

′
j1

· · ·α′
jb

αk1α
′
k1

· · ·αkcα
′
kc

,α
i1

· · ·α
ia

α′
j1

· · ·α′
j

b

α
k1

α′
k1

· · ·α
kc

α′
kc

〉
.

As before, it can be seen that the only nontrivial pairings are those
where A = B, B = A and C = C, then (7) is the determinant of the
matrix 



0 − Idb×b

Ida×a 0
0 −1
1 0

. . .
0 −1
1 0




where Id denotes the identity matrix and the symplectic matrix
(

0 −1
1 0

)
is

repeated c times. It is easy to see that this determinant is (−1)ab+b.

Lemma 4. If 0 < i1 < · · · < ia ≤ g then ξi1ξ
′
i1
· · · ξiaξ

′
ia
ηn−a = ηn. We

also have
∫

C(n) η
n = 1.
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Proof: The first assertion is easily proved by induction on a. It is trivial
for a = 0. By (1) (ξi1ξ

′
i1
− η)ξi2ξ′i2 · · · ξia

ξ′ia
ηn−a = 0 therefore

ξi1ξ
′
i1 · · · ξiaξ

′
ia
ηn−a = ξi2ξ

′
i2 · · · ξiaξ

′
ia
ηn−a+1

which equals ηn by the induction hypothesis.
For the second statement, note that the definition of η (see Subsec-

tion 1.3) gives ηn = n! · β ⊗ n· · · ⊗ β. Here, as in Subsection 1.3, we
identify H∗(C(n),Z) with π∗H∗(C(n),Z) ⊂ H∗(Cn,Z), so more pre-
cisely we would write π∗ηn = n! · β ⊗ n· · · ⊗ β (recall π is the quotient
map Cn −→ C(n)).

As π is a finite morphism of degree n! π∗π∗ is multiplication by n!, in
particular ηn = π∗ (β ⊗ · · · ⊗ β), therefore

∫
C(n)

ηn =
∫

Cn

β ⊗ · · · ⊗ β =
(∫

C

β

)n

= 1

as claimed.

Our next result concerns the hard Lefschetz theorem. This is associ-
ated to a polarized variety X of dimension d. If L notes multiplication
by the Chern class of the polarization, then the hard Lefschetz theorem
states that

Ln−i : Hi(X,Q) −→ H2d−i(X,Q)

is an isomorphism. The same statement for cohomology with coefficients
in Z is false: take for example a hypersurface X ⊂ Pd+1 of degree n >
1, then (c1OX(1))d = n and Ld : H0(X,Z) −→ H2d(X,Z) is not an
isomorphism. In contrast, for the varieties C(n) we have the following.

Corollary 5 (to proof of Theorem 3). The hard Lefschetz theorem for
C(n) with its natural polarization η holds with integer coefficients, that
is

ηn−i ∧ · : Hi(C(n),Z) −→ H2n−i(C(n),Z)

is an isomorphism.

Proof: Note, as remarked at the end of Subsection 1.1, that η is the
Chern class of a line bundle, hence η is integral. To prove that ξ1, . . . , ξ2g

are also integral, let p be a point on C and consider the map

ι : C −→ C(n)

x �→ x+ (n− 1)p
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where we consider a point of C(n) as an effective divisor of degree n.
By [7, 12.2] ι induces an isomorphism

ι∗ : H1(C(n),Z) −→ H1(C,Z)

and ι∗ξi = αi, this shows that the classes ξi are integral.
Let i ≤ n and let V be the integral lattice generated by the following

basis of Hi(C(n),Q)

{ηqξAξ
′
BσC | 2q + a+ b+ 2c = i}(8)

(notation as in proof of Theorem 3). Also consider the lattice, V ′, gen-
erated by {

ηn−i+qξAξ
′
BσC | 2q + a+ b+ 2c = i

}
.(9)

By the previous V, V ′ ⊂ H∗(C(n),Z).
Recall that Poincaré duality defines a unimodular pairing

Hi(C(n),Z) ⊗H2n−i(C(n),Z) −→ Z.(10)

In the proof of Theorem 3 we have seen that for each element in (8) there
is a unique element of (9) such that the pairing (10) is nonzero and in
this case it equals ±1. This means that the pairing (10) restricted to V
and V ′ is still unimodular which readily implies that V = Hi(C(n),Z)
and V ′ = H2n−i(C(n),Z), in particular we get the statement in the
corollary.

An interesting consequence of this corollary is that the isomorphism
in Theorem 3, is in fact an isomorphism of polarized integral Hodge
structures.
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