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SINGULAR INTEGRALS AND RECTIFIABILITY

Pertti Mattila

Abstract
We shall discuss singular integrals on lower dimensional subsets
of Rn. A survey of this topic was given in [M4]. The first part of
this paper gives a quick review of some results discussed in [M4]
and a survey on some newer results and open problems. In the
second part we prove some results on the Riesz kernels in Rn. As
far I know, they have not been explicitly stated and proved, but
they are very closely related to some earlier results and methods.

1. A survey

Not much has happened in this topic after [M4] except for the Cauchy
kernel. For surveys on the development related to the Cauchy kernel,
see [D2], [M5] and [V2], and for a recent fundamental contribution [T3].
One of the main goals of this survey is to emphasize the huge gap in our
knowledge between the Cauchy kernel and almost any other kernel, in
particular, the higher dimensional Riesz kernels. We shall mainly con-
centrate on general kernels and give some comments on the Cauchy ker-
nel. Our setting consists of an m-dimensional Radon measure µ in Rn,
where 0 < m < n is an integer, of an m-dimensional Calderón-Zygmund
kernel K, and the related singular integral operator T = Tµ,K . We shall
assume that µ is Ahlfors-David (AD) regular. This means that there is
0 < C < ∞ such that

rm/C ≤ µ
(
B(x, r)

)
≤ Crm for x ∈ S, 0 < r < diam(S),(1.1)

where S = spt µ is the support of µ. Then µ is equivalent to the restric-
tion Hm | S of the m-dimensional Hausdorff measure Hm to S. Thus
we could as well start with a closed set S and assume that µ = Hm | S
satisfies (1.1). In various places (1.1) could be relaxed, for example,
to requirements concerning the positivity and/or finiteness of the lower
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and/or upper limits of r−mµ
(
B(x, r)

)
, but we stick to (1.1) to simplify

the exposition.
Also we shall not try to cover the most general class of kernels, but

we shall restrict to smooth homogeneous odd kernels. Thus we assume
that K is of the form

K(x) = |x|−mΩ(x/|x|) for x ∈ Rn \ {0},(1.2)

where Ω is a smooth function on the unit sphere Sn−1 satisfying Ω(−v) =
−Ω(v).

The singular integral operator T is formally given by

T g(x) =
∫

K(x − y) g(y) dµy,

but of course this does not usually exist for x ∈ S. There are several
well-known ways to go around this to define T , but since all our questions
reduce to the behaviour of the truncated operators Tε, ε > 0;

Tε g(x) =
∫

Rn\B(x,ε)
K(x − y) g(y) dµy,

we shall not try to define T itself.

Examples. 1) An AD-regular curve Γ ⊂ Rn;

H1
(
Γ ∩ B(x, r)

)
≤ Cr for x ∈ Rn, r > 0,

is an AD-regular set. The lower bound in (1.1) is automatic for
curves.

2) The product C = C1 ×C1 ⊂ R2 of the 1/2-dimensional symmetric
Cantor set C1 in R with itself is a 1-dimensional AD-regular set.
That is, C1 is constructed so that at each step the mid-half of the
construction intervals is deleted.

3) The Cauchy kernel 1/z = |z|−1Ω(z), z ∈ C, with Ω(z) = z/|z|,
is the most important 1-dimensional kernel. Other nice 1-dimen-
sional kernels to play with are z2k−1/|z|2k, k = 2, 3, 4, . . . .

4) Natural m-dimensional analogs of the Cauchy kernel are the vector-
valued Riesz kernels |x|−m−1x, x ∈ Rn.

Basic properties studied. We shall be interested in relations between
three properties: rectifiability, L2-boundedness and existence of principal
values.
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Rectifiability. µ is said to be m-rectifiable if there are m-dimensional C1

surfaces M1, M2, . . . such that

µ

(
Rn \

∞⋃

i=1

Mi

)
= 0.

µ is purely m-unrectifiable if µ(M) = 0 for every m-dimensional C1

surface M .

Here any reasonable definition of a surface will do, and C1 could be
replaced by Lipschitz. For the theory of rectifiability, see for exam-
ple [M3].

There is a quantitative notion of rectifiability of David and Semmes,
called uniform rectifiability, see [DS]. We don’t give the somewhat com-
plicated general definition, but the 1-dimensional case is simple: µ, or
S = spt µ, is uniformly 1-rectifiable if there is an AD-regular curve such
that S ⊂ Γ.

L2-boundedness. T = Tk,µ is bounded in L2(µ), if there is C < ∞ such
that ∫

|Tεg|2 dµ ≤ C

∫
|g|2 dµ for g ∈ L2(µ) and for ε > 0.

This means that the operators Tε, ε > 0, are bounded in L2(µ) uniformly,
and it agrees with any other reasonable definition.

Existence of principal values. The principal values exist µ almost every-
where for T = Tµ,k if there exists

Tµ(x) = lim
ε→0

∫

Rn\B(x,ε)
K(x − y) dµy

for µ almost all x ∈ Rn.

Three questions. The main questions we are interested in are
Q1) Does L2-boundedness imply uniform rectifiability?
Q2) Does a.e. existence of pricipal values imply rectifiability?
Q3) Does L2-boundedness imply a.e. existence of principal values?
The converse questions have positive answers. Recall our basic assump-
tions (1.1) and (1.2). Uniform rectifiability implies L2-boundedness by
the results of David and Semmes, [DS]. That rectifiability implies
a.e. existence of principal values was proved by Melnikov and myself
in [MM] for 1-dimensional sets and the Cauchy kernel. A different proof
of Verdera [V1] easily generalizes to our more general setting, cf. [M3,
Theorem 20.28].
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Of course the converse of Q3 cannot quite be true, but the method
of Nazarov, Treil and Volberg [NTV] gives that the a.e. existence of
principal values yields the L2-boundedness of T on a subset of S with
large µ measure. For this it is even enough to assume that

T ∗
µ(x) = sup

ε>0
|Tµ,ε1(x)| < ∞ for µ almost all x.(1.3)

In fact, this finiteness of the maximal function is probably more natural
assumption than the existence of principal values, but sometimes we can
use the latter and not the former.

The question Q3 is amusing because one is so used to that in classical
situations the answer is yes. But that is so because we can easily check it
for smooth functions, which are dense in L2(µ). For general AD-regular
measures the existence of principal values is not automatic for any func-
tion. There are cases, discussed below, where the positive answer to Q2
is known but not to Q1. The hope is that Q3 could be used as a link.

Some answers. Very little is known about these three questions for
general kernels. For the Cauchy kernel the answer to all three questions
is yes, even with much less stringent conditions on µ than (1.1). The
reason is the identity discovered by Melnikov in [Me]:

∑

σ

1
(zσ(1) − zσ(3)(zσ(2) − zσ(3)))

= c(z1, z2, z3)2;(1.4)

here the sum is over all six permutations of {1, 2, 3} and c(z1, z2, z3) is
the so-called Menger curvature of the triple {z1, z2, z3} ⊂ C, which, by
definition, equals 1/R where R is the radius of the circle passing through
z1, z2 and z3 (R = ∞ if and only if z1, z2, z3 are collinear). The main
thing about the sum in (1.4) is not its very geometric interpretation, but
that it is non-negative. This seems to be very peculiar to the Cauchy
kernel and to some very closely related kernels, such as Re(1/z).

The usefulness of (1.4) becomes apparent when one integrates it with
respect to an AD-regular measure µ. Then by Fubini’s theorem and easy
estimates (assuming µ has compact support)

∫ ∣∣∣∣∣

∫

C\B(z,ε)

1
ζ − z

dµζ

∣∣∣∣∣

2

dµz

=
1
6

∫∫∫
c(z1, z2, z3)2 dµz1, dµz2, dµz3 + O(ε).
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This was used by Melnikov and Verdera in [MV] to give another proof of
the boundedness of the Cauchy integral operator on Lipschitz graphs and
by Melnikov, Verdera and myself in [MMV] to prove that the answer to
Q1 is yes for the Cauchy kernel. That the answer to Q2 is yes was proved
in [M2] (without the use of the identity (1.4)), and the yes-answer to
Q3 follows from that of Q1 and the converse of Q2. So all is settled for
the Cauchy kernel and AD-regular measures, but this goes much beyond
them. In Q2 (1.1) can be relaxed to

0 < lim sup
r→0

r−1µ
(
B(x, r)

)
< ∞ for µ almost all x ∈ C,

which is essentially the same thing as to study measures µ = H1 | E
where E is a Borel set with H1(E) < ∞. This is due to the results of
Léger [L] and Tolsa [T2]. By Tolsa’s results in [T1] Q3 has positive
answer for the Cauchy kernel and for any Radon measure µ. But this is
not an abstract argument, it goes through rectifiability: The L2-bound-
edness implies, by a result of David, that µ

(
B(z, r)

)
≤ Cr for all z ∈ C,

r > 0. The set where

lim sup
r→0

r−1µ
(
B(x, r)

)
> 0(1.5)

has σ-finite H1 measure, and thus it is rectifiable by Léger’s result (this
uses the identity (1.4)). In the rest where (1.5) fails one can use that
µ
(
B(x, r)

)
is small for small r.

For other kernels much less is known. We assume again (1.1) on µ. We
shall discuss some partial results related to Q1 for the Riesz kernels Km

at the end of this paper. Q2 has answer yes for Km by Preiss and myself,
[MPr]. It has also positive answer for 1-dimensional measures µ in C
and the kernels z2k−1/|z|2k, k = 2, 3 . . . , by Huovinen [H1]. Both Q1 and
Q2 have negative answers for example for the kernel Re(z/|z|2−z3/|z|4)
by Huovinen’s result in [H2]. By a modification of this kernel Huovi-
nen (unpublished) has found a homogeneous kernel yielding a negative
answer to Q3. Earlier David has used the Cantor set in Example 2 to
construct non-homogeneous kernels giving similar counter-examples as
Huovinen.

Returning to Huovinen’s kernel Re(z/|z|2−z3/|z|4), we observe that it
vanishes both on real and imaginary axis. This is helpful in constructing
the measure µ which gives the counter-example. But the situation is
somewhat delicate: Re(1/z) vanishes on the imaginary axis, but the
same results hold for it as for the Cauchy kernel 1/z, since it satisfies
exactly the same identity (1.4).



204 P. Mattila

Farag [F2] has shown for the kernel

x |x|−2
p , |x|p =

(
n∑

i=1

|xi|p
)1/p

, x ∈ Rn,

where 1 ≤ p < ∞, that the sum of the permutations is comparable
with that of the Cauchy kernel and hence leads to the same results. On
the other hand he has also shown in [F1] that when m ≥ 2 practically
any reasonable modification of such sums of permutations for the Riesz
kernel Km, and any of the kernels x |x|−m−1

p , p ≥ 1, takes both positive
and negative values and hence seems to be useless. This is the main
reason for the huge gap between the results for the Cauchy kernel and
for the Riesz kernels Km for m ≥ 2.

2. Partial results on the Riesz kernels

The investigations discussed above for the Cauchy kernel are closely
related to the removable sets of bounded analytic functions, see, e.g.,
[M3, Section 19], and [D1] for the best result so far. Similarly, the Riesz
kernel Kn−1 in Rn is related to the removable singularities of Lipschitz
harmonic functions, see [MP]. Some results obtained in the study of
such removable singularities in [M1] (see also [M3, Theorem 19.17])
and in [MP], and also the results and methods of [Vi] indicate that the
Theorems 2.1 and 2.2 below should be true. First we need the definition
of tangent measures.

Let µ be a Radon measure in Rn. For a ∈ Rn and r > 0, let µa,r be
the blow-up of µ from B(a, r) to B(0, 1):

µa,r(A) = µ(rA + a), A ⊂ Rn.

A Radon measure ν is called a tangent measure of µ at a, denoted
ν ∈ Tan(µ, a), if ν(Rn) > 0 and there are sequences ci > 0 and ri ↓ 0
such that

ci µa,ri → ν.

If µ satisfies (1.1), one can restrict to the sequences (c r−m
i ). Knowing

the measures in Tan(µ, a), we know how µ looks locally. For more on
these, see [P], where they were introduced, or [M3, Section 14].

Theorem 2.1. Let µ be an AD-regular m-dimensional Radon measure
in Rn. If Tµ,Km is bounded in L2(µ), then for µ almost all a ∈ Rn,
Tan(µ, a) contains some measure ν of the form ν = Hm | V , where V is
an affine m-plane.
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In other words, this means that around µ almost all points a at some
(but not necessarily all) arbitrarily small scales S = spt µ is very well
approximable by m-planes. In particular, S cannot be a kind of m-di-
mensional analogue of the Cantor set C in Example 2.

A duality method and some standard estimates, cf. e.g. [M3, Sec-
tion 20], show that there is g ∈ L∞(µ), g += 0, g ≥ 0, such that the
maximal function (recall (1.3)) T ∗

µ,Km
g is bounded. Thus Theorem 3.1

follows from

Theorem 2.2. Let µ be a Radon measure in Rn such that for µ almost
all x ∈ Rn,

0 < lim inf
r→0

r−mµ
(
B(x, r)

)
≤ lim sup

r→0
r−mµ

(
B(x, r)

)
< ∞.

If for µ almost all x ∈ Rn,

sup
0<ε<1

∣∣∣∣∣

∫

B(x,1)\B(x,ε)
|x − y|−m−1(x − y) dµy

∣∣∣∣∣ < ∞,

then for µ almost a ∈ Rn there is ν ∈ Tan(µ, a) of the form ν = cHm | V ,
where c > 0 and V is an m-plane.

Proof: It is not hard to see, cf. Lemmas 14.7 and 19.15 in [M3], that for
µ almost all a ∈ Rn, every ν ∈ Tan(µ, a) is an m-dimensional AD-regular
measure such that

(2.1) sup
0<r<R<∞

∣∣∣∣∣

∫

B(x,R)\B(x,r)
|x − y|−m−1(x − y) dνy

∣∣∣∣∣ < ∞

for x ∈ spt ν.

Since m < n and ν is m-regular, spt ν += Rn. Thus we can find b, c ∈ Rn

and r > 0 such that (IntB(b, r)) ∩ spt ν = ∅ and c ∈
(
∂B(b, r)

)
∩ spt ν.

Let λ ∈ Tan(ν, b). Then 0 ∈ spt λ and sptλ ⊂
{
x ∈ Rn : x · (c − b) ≥

0
}
, as one easily verifies. Also λ satisfies (2.1) in place of ν. This

implies that spt λ is contained in the hyperplane
{
x : x · (c − b) =

0
}
. By [M3, Theorem 14.16], λ ∈ Tan(µ, a) for µ almost all starting

points a. Continuing this dimension deduction argument we arrive at
an m-dimensional AD-regular σ ∈ Tan(µ, a) whose support is contained
in an m-plane V . By the AD-regularity, σ is absolutely continuous with
respect to Hm | V ; σ = h Hm | V , h ∈ L∞(Hm | V ). Taking one more
tangent measure at a point z where h(z) += 0 and h is approximately
continuous, we find the required tangent measure of µ at a.
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