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THE M-COMPONENTS OF LEVEL SETS OF
CONTINUOUS FUNCTIONS IN WBV

Coloma Ballester and Vicent Caselles

Abstract
We prove that the topographic map structure of upper semicon-
tinuous functions, defined in terms of classical connected compo-
nents of its level sets, and of functions of bounded variation (or a
generalization, the WBV functions), defined in terms of M -con-
nected components of its level sets, coincides when the function
is a continuous function in WBV . Both function spaces are fre-

quently used as models for images. Thus, if the domain Ω of the
image is Jordan domain, a rectangle, for instance, and the im-

age u ∈ C(Ω)∩WBV (Ω) (being constant near ∂Ω), we prove that
for almost all levels λ of u, the classical connected components
of positive measure of [u ≥ λ] coincide with the M -components
of [u ≥ λ]. Thus the notion of M -component can be seen as a
relaxation of the classical notion of connected component when

going from C(Ω) to WBV (Ω).

1. Introduction

An image can be realistically modelled as a real function u(x) where x
represents an arbitrary point of R

N (N = 2 for usual snapshots, 3 for
medical images or movies) and u(x) denotes the grey level at x. We shall
assume that the image domain is finite (a hyperrectangle). Tipically
u(x) represents the photonic flux over a wide band of wavelengths and
we have a proper grey level image. Now, u(x) may also represent a colour
intensity, when the photonic flux is subjected to a colour selective filter.
In the following, we always consider scalar images, that is, images with
a single channel, be it colour or grey level.

According to Mathematical Morphology, an image u is a representa-
tive of an equivalence class of images v obtained from u via a contrast
change, i.e., v = g(u) where g, for simplicity, will be a continuous strictly
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increasing function [40], [19]. The contrast of an image depends on the
sensor’s properties, on the lightning conditions, on the objects’ reflection
properties, etc., and these conditions are unknown. This led the physi-
cist and gestaltist M. Wertheimer [47] to state as a principle that the
grey level is not an observable. Images are observed up to an arbitrary
and unknown contrast change. Mathematical Morphology recognized
contrast invariance as a basic invariance requirement and proposed that
image analysis operations should take into account this invariance princi-
ple, [40]. Under this assumption, an image is characterized by its upper
(or lower) level sets Xλ = {x : u(x) ≥ λ} (resp. X ′

λ = {x : u(x) ≤ λ}).
Moreover, the image can be recovered from its level sets by the recon-
struction formula

u(x) = sup{λ : x ∈ Xλ}.
As it is easily seen, the family of level sets (upper or lower) of u is in-
variant under continuous strictly increasing contrast changes. An image
operator T is contrast invariant if

T (g(u)) = g(T (u)),

for any continuous strictly increasing contrast change g and any image u.
In particular, many efficient denoising operators respect this principle.
For a classification of contrast invariant image multiscale smoothing op-
erators we refer to [1], [19], [35].

Level sets are therefore basic objects for image processing and analy-
sis. In order to have a more local description of the basic objects of
an image, several authors [40], [7] proposed to consider the connected
components of (upper or lower) level sets as the basic objects of the im-
age. They argue that contrast changes are local and depend upon the
reflectance properties of objects. Thus, not only global contrast, but
also local contrast is irrelevant. In [7], a notion of local contrast change
is defined and it is proved that only connected components of level sets
are invariant under such contrast changes. This led to the introduc-
tion of topographic maps, the family of connected components of upper
(or lower) level sets [u ≥ λ] (resp. [u ≤ λ]). More generally, we can con-
sider the family of sets generated by connected components of sections
of u, i.e., sets of the form [λ ≤ u ≤ µ], and their countable unions and
intersections. This was at the basis of [6] where the authors compare
different satellite images of the same landscape, taken at different times
(or in different channels) and at the basis of the approach in [29] to
image registration, one of the most basic tools in multiimage processing.
Image registration based on connected components of level sets is shown
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to work efficiently where classical correlation techniques fail: when both
registered images do not correspond to almost simultaneous snapshots.

The mathematical description of the topographic map requires a func-
tional model for images. Mainly, two models for images are frequently
used: the image modelled as an upper semicontinuous function [40],
[19], or as a function of bounded variation, the so-called, BV -model
[36], [2]. The Mathematical Morphology school models functions as
upper semicontinuous functions and the filters map such functions into
such functions [40], [39]. This model has also recently been used to
develop an algorithm to merge both the connected components of upper
and lower level sets [30], [31]. Indeed, to be able to merge these trees
into a single tree, P. Monasse [30] defines a shape by filling-in the holes
of a connected component of an upper or lower level set. The tree of
upper shapes can be merged with the tree of lower shapes into a single
tree. This tree gives acces in a fast way to the shapes of the image and
appears to be useful for many applications: a fast implemementation of
grain filters [30], [31], and a registration algorithm [30], [29], to name
a few of them. In a different direction, we carried [4] an analysis of the
topographic map to compute the changes of topology of the system of
level lines of an upper semicontinuous function, and we proved that af-
ter applying L. Vincent filters the changes of topology happen at a finite
number of levels. The union of both previous analysis gives a sort of
Morse theory for this class of functions [5]. The other basic model is the
so-called BV -model, introduced for the purpose of image denoising by
L. I. Rudin, S. Osher and E. Fatemi in [36], in which images are func-
tions of bounded variation. The BV -model is a sound model for images
which have discontinuities and has become a popular model for image
restoration [36], [9], [12], [46] and edge detection [10]. Since, the class of
BV functions is not invariant under contrast changes, in [2], the authors
introduced the WBV -model in which images are functions whose level
sets are sets of finite perimeter (modulo a null set of levels). This class
of functions contains the functions of bounded variation and is invariant
under contrast changes. Indeed, it coincides with the set of functions u
such that g(u) is a function of bounded variation for a suitable bounded
continuous strictly increasing contrast change g. In this model, and with
a suitable notion of connectedness, called M -conectedness in [2], [26],
the M -connected components of upper (or lower) level sets are rectifi-
able and can be described in terms of their boundaries by means of a
generalized Jordan curve theorem. Indeed, in R

2, the boundary of an
M -connected set is described by a family, countable, at most, of Jordan
curves, and it can be reconstructed from them. This mathematical model
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is also a sound foundation for a geometric description of the shapes of
the image and as a function space to define connected filters [42], [39],
[2], [26], i.e., filters that simplify the topographic map of the image.

Our purpose in this paper is to prove that both models and de-
scriptions are the same when the image is a continuous one in the
WBV model. Indeed, if the domain of the image is Jordan domain
(see the text for definitions), a rectangle, for instance, and the im-
age u ∈ C(Ω) ∩ WBV (Ω) (being constant near ∂Ω), we prove that for
almost all levels λ of u, the classical connected components (of posi-
tive measure) of [u ≥ λ] coincide with the M -components of [u ≥ λ].
Thus the notion of M -component [2] can be seen as a relaxation of
the classical notion of connected component when going from C(Ω) to
WBV (Ω). To prove the above result, our strategy will be: we take λ
such that [u ≥ λ] is a set of finite perimeter in R

N , if a classical con-
nected component X of [u ≥ λ] is notM -connected, then the same thing
happens for a simplification of u with the help of L. Vincent filters, i.e.,
for wε = ISεSIεu, ε ∈ {1/n : n ≥ 1} (see the text for definitions). Then
we observe that the topology of the level sets of wε changes at λ. We
prove that this may happen only a finite number of times for wε. Since
ε ∈ {1/n : n ≥ 1}, this discards countably many levels. These levels
together with the levels for which [u ≥ λ], or [ISεSIεu ≥ λ], is not a
set of finite perimeter is a null set of levels. Thus, for the other levels λ,
the classical connected components of [u ≥ λ] (of positive measure) are
also M -connected sets. Moreover, we prove (under some conditions that
hold for almost all level set of u) that a suitable representative of an
M -connected set is connected. This is essentially the proof contained in
this paper. For future reference, we shall also develop in some detail the
properties of L. Vincent filters ISε, SIε (see Section 3).

After completing this work, we became aware of the work [21] on
functions of two variables. In this paper the author gives a Morse theory
for continuous functions of two variables and, in particular, he describes
the singularities of level sets of continuous functions of two variables.
What he calls level sets are sets of the form {x ∈ D : F (x) = t}, where
t ∈ R and F is a continuous function defined in a domain D of the plane.
For N = 2, the result described in last paragraph could be deduced from
the results in Kronrod’s paper [21].

This paper is organized as follows. Section 2 introduces the notion
of maximal monotone section, the largest sections of the topographic
map where no change of topology occurs for the level sets of the upper
topographic map. Section 3 proves some basic facts about some filters
of L. Vincent type on continuous functions. Section 4 is devoted to
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prove that these L. Vincent filters produce an effective simplification
of the topographic map, indeed the filtered continuous images have a
finite number of maximal monotone sections, a mathematical translation
of the idea that there is a finite number of topological changes in the
upper topographic map. We start Section 5 by recalling the basic facts
and results proved in [2] about connected components of sets of finite
perimeter and the WBV model. Then we prove that if u ∈ C(Ω) ∩
WBV (Ω) (being constant near ∂Ω), for almost all levels λ of u, the
classical connected components (of positive measure) of [u ≥ λ] coincide
with the M -components of [u ≥ λ].

2. Monotone sections of the topographic map

Let D be a subset of R
N . Given a function u : D → R, we call upper

(lower) level set of u any set of the form [u ≥ λ] := {x ∈ D : u(x) ≥ λ}
or [u > λ] := {x ∈ D : u(x) > λ} ([u ≤ λ] := {x ∈ D : u(x) ≤ λ} or
[u < λ] := {x ∈ D : u(x) < λ}) where λ ∈ R. The (upper) topographic
map of a function u is the family of the connected components of the
level sets of u, [u ≥ λ], λ ∈ R, the connected components being un-
derstood in the relative topology of D. It was proved in [7] that the
topographic map is the structure of the image which is invariant un-
der local contrast changes, a notion also defined in [7]. We shall study
the structure of the topographic map for continuous functions (a similar
study can be done for bounded upper semicontinuous functions). We
shall define a notion of nonsingular region of the topographic map try-
ing to express the fact that the level lines of the topographic map in a
nonsingular region are homotopic, as it happens for smooth functions
where singularities are understood in the usual way [28]. A first version
of this notion appeared in [8].

Let u : D → R be a function. For each λ, µ ∈ R, λ ≤ µ we define

Uλ,µ = {x ∈ D : λ ≤ u(x) ≤ µ}.

Definition 1. Let u : D → R be a continuous function. A monotone
section of the topographic map of u is a set of the form

Xλ,µ = cc(Uλ,µ),(1)

for some λ, µ ∈ R with λ ≤ µ, such that for any λ′, µ′ ∈ [λ, µ], λ′ ≤ µ′
the set

{x ∈ Xλ,µ : λ′ ≤ u(x) ≤ µ′}
is a connected component of Uλ′,µ′ .
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Our next result permits us to define a monotone section which is
maximal with respect to inclusion. Those sets are the non singular sets
we mentioned above.

Proposition 1. Assume that u : D → R is a continuous function such
that for each λ, µ ∈ R with λ ≤ µ the set Uλ,µ has a finite number of
connected components. Let λ1, λ2, µ1, µ2 ∈ R. Then, if Xλ1,λ2 , Xµ1,µ2

are monotone sections such that Xλ1,λ2∩Xµ1,µ2 �= ∅, then Xλ1,λ2∪Xµ1,µ2

is also a monotone section. In other words, the union of intersecting
monotone sections is a monotone section.

Proof: We observe that [λ1, λ2]∩ [µ1, µ2] �= ∅ since Xλ1,λ2 ∩Xµ1,µ2 �= ∅.
Let β1 = min(λ1, µ1), β2 = max(λ2, µ2). It is easy to see that Xλ1,λ2 ∪
Xµ1,µ2 is a connected component of Uβ1,β2 . Indeed, if β1 = λ1 and
β2 = λ2 then Xµ1,µ2 ⊆ Xλ1,λ2 and the conclusion follows. Without loss
of generality, we may assume that β1 = λ1 and β2 = µ2, i.e., λ1 ≤ µ1 ≤
λ2 ≤ µ2. Let Vλ1,µ2 be the connected component of Uλ1,µ2 containing
Xλ1,λ2 ∪Xµ1,µ2 . Observe that Xλ1,λ2 , Xµ1,µ2 are closed sets in D. Let
Zλ1,λ2 , Zµ1,µ2 be finite unions of connected components of Uλ1,λ2 , Uµ1,µ2 ,
respectively, such that Uλ1,λ2 = Xλ1,λ2∪Zλ1,λ2 , Uµ1,µ2 = Xµ1,µ2∪Zµ1,µ2 ,
Xλ1,λ2 ∩ Zλ1,λ2 = ∅, Xµ1,µ2 ∩ Zµ1,µ2 = ∅. Since Zλ1,λ2 is a closed
set in Uλ1,λ2 and this set is closed in D, Zλ1,λ2 is also a closed set
in D. Similarly, Zµ1,µ2 is a closed set in D. Then the sets Yλ1,λ2 =
Vλ1,µ2 ∩ Zλ1,λ2 and Yµ1,µ2 = Vλ1,µ2 ∩ Zµ1,µ2 are closed sets in Vλ1,µ2 .
Now, observe that (Xλ1,λ2 ∪ Xµ1,µ2) ∩ (Yλ1,λ2 ∪ Yµ1,µ2) = ∅. Let us
check that Yµ1,µ2 ∩Xλ1,λ2 = ∅. Indeed Xλ1,λ2 ∩Xµ1,µ2 ⊆ {z ∈ Xλ1,λ2 :
µ1 ≤ u(x) ≤ µ2} = {z ∈ Xλ1,λ2 : µ1 ≤ u(x) ≤ λ2} the last set being
a connected component Q of Uµ1,λ2 . In particular, we observe that
Xµ1,µ2 ∩ Q �= ∅ and we conclude that Q ⊆ Xµ1,µ2 . Now, observe that
Yµ1,µ2 ∩ Xλ1,λ2 ⊆ Q. Indeed, if p ∈ Yµ1,µ2 ∩ Xλ1,λ2 , then p ∈ {z ∈
Xλ1,λ2 : µ1 ≤ u(x) ≤ µ2} = Q. Since Q ⊆ Xµ1,µ2 , and Yµ1,µ2 ⊆ Zµ1,µ2 ,
this implies that Yµ1,µ2 ∩ Xλ1,λ2 = ∅. Similarly, Yλ1,λ2 ∩ Xµ1,µ2 = ∅.
Since

Vλ1,µ2 = (Xλ1,λ2 ∪Xµ1,µ2) ∪ (Yλ1,λ2 ∪ Yµ1,µ2)

and Vλ1,µ2 is connected then Yλ1,λ2 = ∅, Yµ1,µ2 = ∅. It follows that

Vλ1,µ2 = Xλ1,λ2 ∪Xµ1,µ2 .

The proof that for any λ, µ ∈ [β1, β2], λ ≤ µ the set

{x ∈ Vβ1,β2 : λ ≤ u(x) ≤ µ}
is a connected component of Uλ,µ follows along the same lines of argu-
ment as the previous one.
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Let x ∈ D and λ = u(x). For each η ≥ λ, let Xλ,η = cc(Uλ,η, x). We
define

η+(x, λ) = sup{η : η ≥ λ s. t. Xλ,η is a monotone section}.

Similarly, we define

η−(x, λ) = inf{η : η ≤ λ s. t. Xη,λ is a monotone section}.

Note that both numbers are well defined since Xλ,λ is always a monotone
section. Note that, by definition, η−(x, λ) ≤ η+(x, λ). By Proposi-
tion 1, we may define the (open, closed, half-open, half-closed) inter-
val I(x, λ) containing λ whose end-points are η−(x, λ), η+(x, λ) and
which determines a monotone section containing x maximal with re-
spect to inclusion, which we denote by XI(x,λ). Note that λ ∈ I(x, λ)
for all λ ∈ (−∞, supD u(x)]. Both functions, η+(x, λ), η−(x, λ), are non-
decresing functions of λ and have some precise behavior. We shall not
give here a detailed description of them. Our purpose will be to prove
that, if D is measurable and there exist some δ > 0 such that for any
λ ∈ [a, b], a = inf u, b = supu, and any X = cc(Ua,λ) or X = cc(Uλ,b) we
have that meas(X) ≥ δ, then there is only a finite number of maximal
monotone sections in the topographic map of u.

3. Vincent-Serra filters

Let D be a measurable subset of R
N . Let u : D → R be a measurable

function. Let us define two morphological operators, the Vincent-Serra
operators, simplifying the topographic map of u by eliminating the small
connected components of its upper and lower level sets. Let ε > 0. Then,
for each x ∈ D, we define

Fε(u, x) = {X = cc([u ≥ λ], x) : |X| ≥ ε},
Fε(u, x) = {X = cc([u < λ], x) : |X| > ε}.

Let us define the following Vincent-Serra operators

SIεu(x) = sup
B∈Fε(u,x)

inf
y∈B

u(y),

ISεu(x) = inf
B∈Fε(u,x)

sup
y∈B

u(y),

where we understand that supB∈Fε(u,x) infy∈B u(y)=−∞ if Fε(u, x)=∅
and infB∈Fε(u,x) supy∈B u(y) = +∞ if Fε(u, x) = ∅.
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Both operators can be described in terms of basis of structuring el-
ements independent of u. Indeed, let Bε = {B : B is connected, 0 ∈B,
|B| ≥ ε}, Bε = {B : B is connected, 0 ∈ B, |B| > ε}. Then

SIεu(x) = sup
B∈x+Bε

inf
y∈B

u(y),(2)

ISεu(x) = inf
B∈x+Bε

sup
y∈B

u(y).(3)

Let us denote, for the time being, the right hand side of (2) and (3)
by SIε,∗u(x), respectively, ISε,∗u(x). Obviously, from the definition
we have that SIεu(x) ≤ SIε,∗u(x) and ISεu(x) ≥ ISε,∗u(x). Now,
if SIε,∗u(x) < ∞, given δ > 0, let B ∈ x + Bε be such that iB :=
infy∈B u(y) ≥ SIε,∗u(x) − δ. Then B ⊆ [u ≥ iB ] and, therefore, B ⊆
X := cc([u ≥ iB ], x). Hence X ∈ Fε(u, x) and

SIε,∗u(x) − δ ≤ iB ≤ inf
y∈X

u(y) ≤ SIεu(x).

In a similar way, we prove that SIεu(x) = ∞ if SIε,∗u(x) = ∞. We have
checked formula (2). In a similar way we prove the identity (3).

Proposition 2. Assume that u, v : D → R are measurable functions.
Then

i) ISεu ≥ u and SIεu ≤ u.
ii) If u ≤ v, then ISεu ≤ ISεv and SIεu ≤ SIεv.
iii) ISε(α) = SIε(α) = α for all α ∈ R.
iv) ISε(u + α) = ISεu + α for all α ∈ R. A similar statement holds

for SIε.

Proof: i) Let x ∈ D. If Fε(u, x) = ∅, then ISεu(x) = ∞ and we are
done. If B ∈ Fε(u, x), then x ∈ B, and supy∈B u(y) ≥ u(x). Thus
ISεu(x) ≥ u(x). In the same way we prove that SIεu(x) ≤ u(x).

The proof of ii) follows immediately from the identities (2) and (3).
The proof of assertions iii) and iv) is immediate and we shall omit it.

Proposition 3. If X = cc([ISεu < λ], x) �= ∅, then |X| > ε. If X =
cc([SIεu ≥ λ], x) �= ∅, then |X| ≥ ε. If | cc([u ≥ λ], x)| ≥ ε (resp.
| cc([u < λ], x)| ≥ ε) then | cc([ISεu ≥ λ], x)| ≥ ε (resp. | cc([SIεu <
λ], x)| ≥ ε).

Remark 1. Thus, by filtering the small connected components of the up-
per and lower level sets with the Vincent-Serra operators we can guar-
antee that the assumption of Proposition 1 is satisfied (see Section 4).



The M-Components of Level Sets 485

Proof: Let X = cc([ISεu < λ], x) (�= ∅). Since x ∈ X, by definition of
ISεu there is a set B1 ∈ Fε(u, x) such that

sup
y∈B1

u(y) < λ.

Let z ∈ B1. Observe that B1 ∈ Fε(u, z). Then

ISεu(z) = inf
B∈Fε(u,z)

sup
y∈B

u(y) ≤ sup
y∈B1

u(y) < λ.

Hence B1 ⊆ [ISεu < λ] and, as a consequence, B1 ⊆ cc([ISεu < λ], x).
It follows that

| cc([ISεu < λ], x)| ≥ |B1| > ε.
Now, since ISεu ≥ u we have that cc([u ≥ λ], x) ⊆ cc([ISεu ≥ λ], x).
Thus, if | cc([u ≥ λ], x)| ≥ ε then | cc([ISεu ≥ λ], x)| ≥ ε. The corre-
sponding statements for SIε are proved in a similar way.

Definition 2. Let X be a measurable subset of R
N . Define

TεX = ∪{Y : Y ∈ CC(X), |Y | ≥ ε}
and

T ′
εX = ∪{Y : Y ∈ CC(X), |Y | > ε}.

The components of X are closed subsets (in the relative topology)
of X, hence measurable. Hence TεX, T ′

εX are both measurable.
The following proposition is an easy consequence of last definition.

Proposition 4. Both operators Tε and T ′
ε are nondecreasing on mea-

surable subsets of R
N .

Proposition 5. i) Tε is upper continuous on compact sets, i.e., if
Xρ is a non-increasing family of compact sets and X = ∩ρ>0Xρ,
then TεX = ∩ρ>0TεXρ.

ii) Suppose that D is a measurable subset of R
N which is locally com-

pact and locally connected when endowed with the relative topology
of R

N . We suppose that the measure of the relative open sets of D
is strictly positive. Then T ′

ε is lower continuous on open sets, i.e.,
if Oρ is a non-decreasing family of relative open subsets of D and
O = ∪ρ>0Oρ, then

T ′
εO = ∪ρ>0T

′
εOρ.(4)

Proof: i) From the monotonicity of Tε it follows that TεX ⊆ ∩ρ>0TεXρ.
Now, let p ∈ TεXρ for all ρ > 0. Let Yρ = cc(Xρ, p) be such that |Yρ| ≥ ε.
Let Y = ∩ρ>0Yρ. Then Y = cc(X, p). Indeed, p ∈ Y ⊆ X. Since Y
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is an intersection of continua, i.e., compact connected sets, then Y is
connected. Hence Y ⊆ cc(X, p). On the other hand, cc(X, p) ⊆ cc(Xρ, p)
for all ρ > 0. Thus cc(X, p) ⊆ ∩ρ>0Yρ = Y and we have the equality
of both sets. In particular, |Y | = limρ→0 |Yρ| ≥ ε and we deduce that
p ∈ Y ⊆ TεX. We have proved that TεX = ∩ρ>0TεXρ.

ii) Again, from the monotonicity of T ′
ε we deduce that ∪ρ>0T

′
εOρ ⊆

T ′
εO. Now, let p ∈ T ′

εO. Then Y = cc(O, p) is such that |Y | > ε. Let
Yρ = cc(Oρ, p). Now we prove that

Y = ∪ρ>0Yρ.(5)

Since Oρ ⊆ O for all ρ > 0, it follows that ∪ρ>0Yρ ⊆ Y . Since D is
locally connected, the components of open sets are open. In particular
Y is open in D. Now, since D is locally compact and locally connected
then Y is also locally compact and locally connected, and, obviously
connected. Then any two points can be connected by a locally connected
continuum ([33, Theorem. 9.3, p. 92]). In particular, given q ∈ Y , there
is a continuum Kp,q ⊆ Y containing p and q. Then, for ρ > 0 small
enough, Kp,q ⊆ Oρ. Then also Kp,q ⊆ cc(Oρ, p) = Yρ. Thus q ∈ Yρ. We
have proved (5). Then limρ→0 |Yρ| = |Y | > ε. Hence |Yρ| > ε for ρ > 0
small enough. We conclude that p ∈ Yρ ⊆ T ′

εOρ and, therefore, we have
proved the identity (4).

Lemma 1. Let u : D → R be a measurable function, D being a measur-
able subset of R

N . Then

i) For all λ ∈ R we have [SIεu > λ] ⊆ Tε[u ≥ λ] ⊆ [SIεu ≥ λ]. In
particular, for all λ ∈ R (hence a.e.) such that |[SIεu = λ]| = 0
we have that Tε[u ≥ λ] = [SIεu ≥ λ] a.e.

ii) For all λ ∈ R we have [ISεu < λ] ⊆ T ′
ε [u < λ] ⊆ [ISεu ≤ λ]. In

particular, for all λ ∈ R (hence a.e.) such that |[ISεu = λ]| = 0
we have that T ′

ε [u < λ] = [ISεu < λ] a.e.

Proof: i) Let λ ∈ R and C+, (resp. C−) denote the family of compo-
nents X of [u ≥ λ] such that |X| ≥ ε (resp. |X| < ε). Since SIεu ≤ u
we have

[SIεu > λ] = [SIεu > λ] ∩ [u ≥ λ]
= ∪X∈C+ [SIεu > λ] ∩X ∪ ∪X∈C− [SIεu > λ] ∩X.

Now, we observe that [SIεu > λ] ∩ X = ∅ for all X ∈ C−. Otherwise,
there is some p ∈ [SIεu > λ] ∩X. Hence, infy∈B u(y) ≥ λ for some B ∈
Fε(u, p). Thus, p ∈ B ⊆ [u ≥ λ] and, therefore, B ⊆ cc([u ≥ λ], p) = X.
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It follows that |X| ≥ |B| ≥ ε, a contradiction. Our claim follows. Hence

[SIεu > λ] = ∪X∈C+ [SIεu > λ] ∩X ⊆ ∪X∈C+X = Tε[u ≥ λ].

To prove the other inclusion we observe that X ∈ Fε(u, p) for all X ∈ C+

and all p ∈ X. Hence, SIεu(p) ≥ λ for all p ∈ X and all X ∈ C+. We
conclude that Tε[u ≥ λ] ⊆ [SIεu ≥ λ].

ii) Let λ ∈ R and C+, (resp. C−) denote the family of components X
of [u < λ] such that |X| > ε (resp. |X| ≤ ε). Since ISεu ≥ u we have

[ISεu < λ] = [ISεu < λ] ∩ [u < λ]

= ∪X∈C+ [ISεu < λ] ∩X ∪ ∪X∈C− [ISεu < λ] ∩X.

Now, we observe that [ISεu < λ] ∩ X = ∅ for all X ∈ C−. Otherwise,
there is some p ∈ [ISεu < λ]∩X. Hence, supy∈B u(y) < λ for some B ∈
Fε(u, p). Thus, p ∈ B ⊆ [u < λ] and, therefore, B ⊆ cc([u < λ], p) = X.
It follows that |X| ≥ |B| > ε, a contradiction. Our claim follows. Hence

[ISεu < λ] = ∪X∈C+ [ISεu < λ] ∩X ⊆ ∪X∈C+X = T ′
ε [u < λ].

To prove the other inclusion we observe that X ∈ Fε(u, p) for all X ∈ C+

and all p ∈ X. Hence, ISεu(p) ≤ λ for all p ∈ X and all X ∈ C+. We
conclude that T ′

ε [u < λ] ⊆ [ISεu ≤ λ].

As a consequence of the above lemma we obtain

Proposition 6. Let u : D → R be a measurable function. Then

SIεu(x) = sup{λ ∈ R : x ∈ Tε[u ≥ λ]},
and

ISεu(x) = inf{λ ∈ R : x ∈ T ′
ε [u < λ]}.

Proposition 7. Let u : D → R be a measurable function.
i) Suppose that [u ≥ λ] are compact for all λ > inf u. Then

[SIεu ≥ λ] = Tε[u ≥ λ](6)

for all λ ∈ R.
ii) Suppose that D is locally compact, locally connected and the mea-

sure of its open sets is > 0. Suppose that [u < λ] is open in D for
all λ ∈ R, or in other words, u is upper semicontinuous. Then

[ISεu < λ] = T ′
ε [u < λ](7)

for all λ ∈ R.
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Proof: From Proposition 5 we know that {Tε[u ≥ λ] : λ > inf u} is
upper continuous and {T ′

ε [u < λ] : λ ∈ R} is lower continuous. From
this it easily follows that (6) holds for all λ > inf u and (7) holds for all
λ ∈ R. But (6) also holds for all λ ≤ inf u since in this case both sets
are equal to D.

Lemma 2. Let u : D → R be measurable.
i) Then inf SIεu = inf u.
ii) We always have inf u ≤ inf ISεu. If we suppose that the sets [u < λ]

contain a neighborhood of infinity in R
N , for any λ > inf u, then

inf ISεu = inf u.

Proof: i) From the definition of SIεu it is clear that inf SIεu ≥ inf u.
On the other hand, since SIεu ≤ u, we have also inf SIεu ≤ inf u, hence
the equality.

ii) Since u ≤ ISεu, we have that inf u ≤ inf ISεu. If [u < λ] contains
a neighborhood of infinity in R

N for any λ > inf u, then it is easy to see
from the definition of ISεu that inf ISεu = inf u.

Proposition 8. Let u : D → R be an upper semicontinuous function.
i) Suppose that D is locally compact, locally connected and the mea-

sure of its open sets is > 0. Then ISεu is upper semicontinuous.
ii) Suppose that D contains at most a finite number of connected com-

ponents of area ≥ ε, and [u ≥ λ] is compact for all λ > inf u.
Then SIεu is upper semicontinuous. Moreover, the upper level
sets [SIεu ≥ λ] are compact in the following cases:
a) for all λ ∈ R if [u ≥ λ] are compact for all λ ∈ R,
b) for all λ > inf u. In this case, if [u = inf u] is a neighborhood

of infinity, then [SIεu = inf SIεu] is also a neighborhood of
infinity.

Proof: i) According to Proposition 7, ii), [ISεu < λ] = T ′
ε [u < λ] =

∪X∈CC([u<λ]), |X|>εX. Since the last union is a union of open sets, the
set [ISεu < λ] is open for every λ ∈ R. Hence ISεu is upper semicontin-
uous.

ii) According to Proposition 7, i), [SIεu ≥ λ] = Tε[u ≥ λ] =
∪X∈CC([u≥λ]), |X|≥εX for every λ ∈ R. If λ > inf u, the last union
is a finite union of sets closed in D, and the set [SIεu ≥ λ] is also
closed in D. If λ ≤ inf u, then [u ≥ λ] = D and, by our assumption
on D, TεD is closed in D. Hence SIεu is upper semicontinuous. The
above formula also proves that the sets [SIεu ≥ λ] are compact for any
λ ∈ R such that [u ≥ λ] is compact. This proves assertion a). In
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particular, they are compact for any λ > inf u. To prove the last as-
sertion of b), observe that, from the inequality SIεu ≤ u it follows that
[u = inf u] ⊆ [SIεu = inf u]. Hence, if [u = inf u] is a neighborhood of
infinity, also is [SIεu = inf SIεu].

Proposition 9. Suppose that D is locally compact, locally connected
and the measure of its open sets is > 0. Assume also that D con-
tains at most a finite number of connected components of area ≥ ε. Let
u : D → R be an upper semicontinuous function such [u ≥ λ] is compact
for all λ > inf u. Then ISεSIεu is upper semicontinuous.

Remark 2. It will be clear from next proposition that, if D is compact
or D is closed and contains a neighborhood of infinity, then the upper
level sets of ISεu are compact for all λ > inf u. Therefore, SIεISεu is
also upper semicontinuous.

Proposition 10. Suppose that D is closed, locally connected and the
measure of its open sets is > 0. We also suppose that either D is compact
or it contains a neighborhood of infinity. Let u : D → R be a continuous
function such that [u ≥ λ] is compact for all λ > inf u. Then ISεu is
continuous. The upper level sets [ISεu ≥ λ] are compact for all λ >
inf u. In case D is not compact, we have inf ISεu = inf u. Moreover, if
[u = inf u] is either empty or contains a neighborhood of infinity, then
[ISεu = inf ISεu] is also empty or it contains neighborhood of infinity,
in consonance with the property for u.

Remark 3. Being closed, the lower level sets [ISεu ≤ λ] are compact
for all λ ∈ R in case D is compact. Note, that, by assumption, the
complement of an open bounded set in D is either compact or it contains
a neighborhood of infinity.

Proof: We already know that ISεu is upper semicontinuous. Let us
prove that the sets [ISεu ≤ λ] are closed for all λ ∈ R. Since [ISεu ≤
inf ISεu] = ∩ρ>0[ISεu ≤ inf ISεu+ρ], it is enough to prove that [ISεu ≤
λ] are closed for all λ > inf ISεu. Thus, let λ ∈ R. Now, we observe that

[ISεu ≤ λ] = ∩ρ>0[ISεu < λ+ ρ]

= ∩ρ>0T
′
ε [u < λ+ ρ]

= ∩ρ>0 ∪ {X : X ∈ CC([u < λ+ ρ]), |X| > ε}.
We claim that

(8) ∩ρ>0 ∪{X : X ∈ CC([u < λ+ ρ]), |X| > ε}
= ∪{Y : Y ∈ CC([u ≤ λ]), |Y | ≥ ε}.
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Let Y ∈ CC([u ≤ λ]) be such that |Y | ≥ ε. Let Yρ = cc([u < λ+ ρ], Y ),
ρ > 0. Since u is continuous, Y is closed and, using that D is locally
connected, Yρ is an open set, being the connected component of an open
set. Since Y ⊆ Yρ and using that the measure of the open sets of D
is > 0, we have that ε ≤ |Y | < |Yρ|. Thus Y ⊆ ∩ρYρ where Yρ ∈ {X :
X ∈ CC([u < λ+ ρ]), |X| > ε}. Hence

∪ {Y : Y ∈ CC([u ≤ λ]), |Y | ≥ ε}
⊆ ∩ρ>0 ∪ {X : X ∈ CC([u < λ+ ρ]), |X| > ε}.

Now, let p ∈ ∩ρ>0 ∪ {X : X ∈ CC([u < λ + ρ]), |X| > ε}. Then for
each ρ > 0, there is X(p, ρ) = cc([u < λ+ ρ], p) such that |X(p, ρ)| > ε.
Observe that X(p, ρ) is nondecreasing with ρ. Let Yp = ∩ρ>0 cc([u <
λ+ ρ], p). We have

cc([u ≤ λ], p) ⊆ ∩ρ>0 cc([u < λ+ ρ], p)

⊆ ∩ρ>0 cc([u ≤ λ+ ρ], p) ⊆ [u ≤ λ].(9)

Let λ > inf u. Since [u ≥ η] is compact for all η > inf u, [u > η] is open
in D and bounded for all η > inf u. Since the complement of an open
bounded set is either compact, in case D is, or a neighborhood of infinity,
in case D contains a neighborhood of infinity, we know that [u ≤ λ+ ρ]
is either compact or it contains a neighborhood of infinity for any ρ > 0.
Hence cc([u ≤ λ + ρ], p) is also compact or contains a neighborhood of
infinity. In case cc([u ≤ λ+ ρ], p) are compact, we have

cc([u ≤ λ], p) = ∩ρ>0 cc([u ≤ λ+ ρ], p).

In case cc([u ≤ λ + ρ], p) contain a neighborhood of infinity (note that
it is equivalent to state this for all ρ > 0 or for some sequence ρn ↓ 0),
since [u ≥ λ] is compact (here we used that λ > inf u), we have that
[u ≤ λ] is a neighborhood of infinity. Let Q be the connected component
of [u ≤ λ] which is a neighborhood of infinity. Then Q is contained in
cc([u ≤ λ+ρ], p) for all ρ > 0. Let RN be the one-point compactification
of R

N . Let cc
RN ([u ≤ λ+ ρ], p) be the component of [u ≤ λ+ ρ] in RN

which contains p. Since [u ≤ λ + ρ] is closed in R
N , then cc

RN ([u ≤
λ+ ρ], p) is compact in RN and contains Q. Then

∩ρ>0 cc
RN ([u ≤ λ+ ρ], p)

is connected, and also

∩ρ>0 cc([u ≤ λ+ ρ], p) = ∩ρ>0 cc
RN ([u ≤ λ+ ρ], p) \ {∞}
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is connected. From (9), it follows that cc([u ≤ λ], p) = ∩ρ>0 cc([u ≤
λ+ ρ], p). Hence, from the previuos discussion we know that

| cc([u ≤ λ], p)| = lim
ρ→0

| cc([u ≤ λ+ ρ], p)| ≥ ε.

Thus, p ∈ ∪{Y : Y ∈ CC([u ≤ λ]), |Y | ≥ ε}. We have proved that

∩ρ>0 ∪{X : X ∈ CC([u < λ+ ρ]), |X| > ε}
⊆ ∪{Y : Y ∈ CC([u ≤ λ]), |Y | ≥ ε}.

Together with the opposite inclusion, this gives (8). Observe that, under
any of our assumptions on D, the right hand side of (8) is a finite union
of closed sets in R

N , hence [ISεu ≤ λ] is also a closed set in R
N . In

particular, we deduce that ISεu is continuous.
If D is compact, then all level sets of ISεu, lower or upper, are com-

pact. If D is not compact, then we deduce that all sets [u < λ] contain
a neighborhood of infinity for all λ > inf u, and from Lemma 2 we have
inf ISεu = inf u. If [u < λ] contains a neighborhood of infinity, then
[ISεu < λ] = T ′

ε [u < λ] = ∪{X : X ∈ CC([u < λ]), |X| > ε} is also
a neighborhood of infinity and, therefore, [ISεu ≥ λ] is compact. Note
that this holds for all λ > inf u.

Finally, since u ≤ ISεu, we have that [u = inf u] ⊆ [ISεu ≥ inf u].
We deduce that, if [u = inf u] contains a neighborhood of infinity, then
[ISεu = inf u] contains a neighborhood of infinity. Now, if [u = inf u] =
∅, then ∪λ>inf u[u ≥ λ] = D, and, since ISεu ≥ u, also ∪λ>inf u[ISεu ≥
λ] = D. We have that [ISεu = inf u] = ∅.

Proposition 11. Suppose that D is locally compact, locally connected
and the measure of its open sets is > 0. Assume also that D contains at
most a finite number of connected components of area ≥ ε. Let u : D → R

be a continuous function. Suppose that [u ≥ λ] are compact for any
λ > inf u. Then SIεu is continuous. The upper level sets [SIεu ≥ λ ]
are compact for any λ > inf u. Moreover, if [u = inf u] contains a
neighborhood of infinity, the same can be said for [SIεu = inf u].

Remark 4. IfD is compact or lim
|x|→∞

u(x) = −∞, then [u ≥ λ] is compact

for all λ ∈ R.

Proof: We have proved in Proposition 8 that SIεu is upper semicontin-
uous. As in last proposition, to prove that SIεu is lower semicontinuous
it is sufficient to prove that [SIεu ≤ λ] are closed sets for all λ > inf u.
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Let λ > inf u. Then, by Proposition 7, i), we have

[SIεu ≤ λ] = ∩δ>0[SIεu < λ+ δ]

= ∩δ>0(RN \ [SIεu ≥ λ+ δ])

= ∩δ>0(RN \ Tε[u ≥ λ+ δ])

= R
N \ ∪δ>0 ∪ {X : X ∈ CC([u ≥ λ+ δ]), |X| ≥ ε}.

We claim that

(10) ∪δ>0 ∪{X : X ∈ CC([u ≥ λ+ δ]), |X| ≥ ε}
= ∪{Y : Y ∈ CC([u > λ]), |Y | > ε}.

Let X ∈ CC([u ≥ λ + δ]) be such that |X| ≥ ε for some δ > 0. Let
Y = cc([u > λ], X). Since Y and X are, respectively, open and closed
in D, we have that |Y | > |X| ≥ ε. This proves that

(11) ∪δ>0 ∪{X : X ∈ CC([u ≥ λ+ δ]), |X| ≥ ε}
⊆ ∪{Y : Y ∈ CC([u > λ]), |Y | > ε}.

Now, let Y ∈ CC([u > λ]) be such that |Y | > ε. Let p ∈ Y so that
Y = cc([u > λ], p). As in Proposition 5, ii), we prove that

cc([u > λ], p) = ∪δ>0 cc([u ≥ λ+ δ], p).

Thus, ε < |Y | ≤ limδ→0 | cc([u ≥ λ + δ], p)|. We conclude that there is
some δ > 0 such that, if X = cc([u ≥ λ + δ], p) then |X| ≥ ε. We have
proved that

∪ {Y : Y ∈ CC([u > λ]), |Y | > ε}
⊆ ∪δ>0 ∪ {X : X ∈ CC([u ≥ λ+ δ]), |X| ≥ ε}.

The identity in (10) is proved. Since the right hand side of this identity
is an open set in D, whose complement in D is [SIεu ≤ λ] we deduce
that the last set is closed in D. We have proved that SIεu is continuous.

Since [SIεu ≥ λ] = Tε[u ≥ λ] we deduce that the sets [SIεu ≥ λ]
are compact for any λ > inf u. The rest of the statement follows from
Proposition 8.

Combining Propositions 10 and 11 we obtain

Proposition 12. Suppose that D is closed, locally connected and the
measure of its open sets is > 0. We also suppose that D is either compact
or it contains a neighborhood of infinity. Let u : D → R be a continuous
function such that [u ≥ λ] is compact for any λ > inf u. Then ISεSIεu
and SIεISεu are continuous.
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Remark 5. Motivated by the study of a family of filters by reconstruc-
tion ([23], [24], [37], [43], [44]), J. Serra and P. Salembier ([42], [39])
introduced the notion of connected operators. Such operators simplify
the topographic map of the image. These filters have become very popu-
lar because, on an experimental basis, they have been claimed to simplify
the image while preserving contours. This property has made them very
attractive for a large number of applications such as noise cancellation
or segmentation ([27], [45]). More recently, they have become the basis
of a morphological approach to image and video compression (see [38]
and references therein, and more recently [16]).

4. Structure of the simplified topographic map

Assuming that the connected components of the upper and lower level
sets are of certain size, then there is only a finite number of maximal
monotone sections in the topographic map of u. The idea being that
given two of them there exists a set of area ≥ δ contained between them.

Let Ω be a Jordan domain in R
N , i.e., the closure of the bounded con-

nected component of the complement of a subset of R
N homeomorphic

to SN−1, the sphere of R
N . Let Ω be the interior of Ω. Note that, in

particular, Ω is compact, locally connected and the measure of its open
sets is > 0.

A word of caution: when we say that, if X is a connected component
of an upper or lower level set, then |X| ≥ δ, we mean X = cc([u ≥ λ], p)
or X = cc([u < λ], p) for some λ ∈ R, p ∈ Ω.

Our purpose is to prove the following results.

Theorem 1. Let u : Ω → R be a continuous function. Assume that
there is some δ > 0 such that, if X is a connected component of an
upper or lower level set, then |X| ≥ δ. Then there is a finite number of
maximal monotone sections in the topographic map of u.

To prove this theorem we shall first prove:

Proposition 13. Let u : Ω → R be a continuous function. Assume that
there is some δ > 0 such that, if X is a connected component of an upper
or lower level set, then |X| ≥ δ. Then, for each λ, µ ∈ R with λ ≤ µ,
the set Uλ,µ has a finite number of connected components.

According to Section 2 the main implication of this proposition is that
we may define the maximal monotone sections containing a given point.
On the other hand, if u is continuous, then by the results of Section 3,
the function u = ISδSI

δu is also continuous and Proposition 3 holds,
namely, ifX is a connected component of an upper or lower level set, then
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|X| ≥ δ. One can also take u = SIδISδu. In any case, if a continuous
function u does not satisfy the assumption of Proposition 13, then by
filtering the connected components of size less than δ, these assumption
are satisfied. To prove Proposition 13 let us recall some topological facts.

4.1. Some topological preliminaries.

Definition 3. Let A ⊆ Ω. We call holes of A in Ω the components of
Ω \ A. Given a hole T of A in Ω, we call saturation of A with respect
to T the set Ω \ T and denote it by sat(A, T ). We shall refer to T as
the external hole of A and the other holes of A as the internal holes
of A. If p ∈ Ω \ A, and T is the hole of A containing p, we define
sat(A, p) = sat(A, T ). Note that sat(A, T ) is the union of A and its
internal holes. We call saturated sets associated to A the family of
saturations of A with respect to its holes.

If no confusion arises, we shall write sat(A) instead of sat(A, T ). Thus
sat(A) denotes a saturated set containing A chosen from the family of
all saturations of A. We shall also speak of holes of A instead of holes
of A in Ω. Let A be a bounded subset of R

N . If we choose as external
hole of A in R

N the unbounded component of R
N \A, then the internal

holes of A are the bounded connected components of R
N \A.

Definition 4. A sequence A1, . . . , Ap of subsets of Ω is called a chain
if each Ai is contained in a hole of Ai−1, i = 2, . . . , p.

Definition 5 ([22, vol. II, p. 104]). A topological space Z is said to be
unicoherent if it is connected and for any two closed connected sets A,
B in Z such that Z = A ∪B we have that A ∩B is connected.

Lemma 3. Let A ⊆ Ω. If A is open (resp. closed) in Ω, then its satu-
rated sets are open (resp. closed) in Ω.

Proof: If A is open in Ω, Ω \ sat(A), being a connected component of a
closed set in Ω, it is also closed in Ω. Thus sat(A) is open in Ω. If A is
closed in Ω, Ω \ sat(A), being a connected component of an open set in
Ω, it is also open in Ω. Thus sat(A) is closed in Ω.

Lemma 4. i) The saturation is a monotonous operation, i.e., if A ⊆
B and p ∈ Ω \B, then sat(A, p) ⊆ sat(B, p).

ii) Let Kn be a decreasing sequence of continua, K = ∩nKn, and
p �∈ K. Then sat(K, p) = ∩n sat(Kn, p).
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Proof: The proof of i) is immediate and we shall skip it. Let us prove ii).
Obviously, for n large enough, p �∈ Kn. By the monotonicity of the
saturation, sat(K, p) ⊆ ∩n sat(Kn, p). Let q �∈ sat(K, p), q �= p, and
let γ be an arc joining p to q such that Im(γ) ∩ sat(K, p) = ∅. Then,
for n large enough, we have Im(γ) ∩ Kn = ∅. Hence, both p and q
are in the same hole of Kn. Hence, Im(γ) ∩ sat(Kn, p) = ∅, and, in
particular, q �∈ sat(Kn, p), for n large enough. Thus, q �∈ ∩n sat(Kn, p).
We conclude that ∩n sat(Kn, p) ⊆ sat(K, p).

Lemma 5. Let u ∈ C(Ω). We assume that there is some δ > 0 such
that, if K is a connected component of an upper or lower level set, then
|K| ≥ δ. Then for each λ ∈ R there is a finite number of connected
components of [u ≥ λ] and each component has a finite number of holes.

Proof: Let λ ∈ R. Since each connected component of [u ≥ λ] has
area ≥ δ, there must be a finite number of them. Let Y be a component
of [u ≥ λ] and let H be a hole of Y . Since H is open, H cannot be
covered by components of [u ≥ λ]. Hence H ∩ [u < λ] �= ∅. We conclude
that each hole of Y contains a component of [u < λ]. Hence there may
be only a finite number of them.

Lemma 6. Let u ∈ C(Ω). Let X be a connected component of [λ ≤ u ≤
µ], λ < µ, and let L be a hole of X. Assume that ∂L ⊆ ∂[u < λ]. Then
∂L ⊆ ∂(L ∩ [u < λ]).

Proof: Let p ∈ ∂L. Since B(p, r)∩ (Ω\L) �= ∅ for all r > 0, we also have
that B(p, r)∩ (Ω \ (L∩ [u < λ])) �= ∅ for all r > 0. Since p ∈ ∂L ⊆ ∂[u <
λ], we know that B(p, r) ∩ L �= ∅, B(p, r) ∩ [u < λ] �= ∅ for all r > 0.
Let us prove that B(p, r) ∩ L ∩ [u < λ] �= ∅ for all r > 0. Let r > 0 and
suppose that B(p, r) ∩ L ⊆ [u ≥ λ]. Since λ < µ, by taking r smaller, if
necessary, we may assume that B(p, r)∩L ⊆ [λ ≤ u ≤ µ]. Let Ai, i ∈ I,
be the family of (open) connected components of B(p, r) ∩ L. Since Ω
is locally connected, then ∂Ai ⊆ ∂(B(p, r) ∩ L) ([22, vol. II, p. 169, 3]).
Hence, ∂Ai ⊆ (∂B(p, r) ∩ L) ∪ ∂L. If ∂Ai ∩ ∂L �= ∅, then Ai ∩ X �= ∅
because ∂L ⊆ X. Since Ai is connected and contained in [λ ≤ u ≤ µ],
then Ai ⊆ X, a contradiction. Thus, ∂Ai∩∂L = ∅, and, therefore, ∂Ai ⊆
∂B(p, r). We may assume this to be true for all i ∈ I. It follows that
∂(B(p, r) ∩ L) = ∂(∪iAi) ⊆ ∪i∂Ai ⊆ ∂B(p, r) ([22, vol. II, p. 169, 1]).
Since p ∈ ∂L, we have that p ∈ ∂(B(p, r) ∩ L), and we would have that
p ∈ ∂B(p, r). This contradiction proves that B(p, r) ∩ L ∩ [u < λ] �= ∅
for all r > 0. We conclude that p ∈ ∂(L ∩ [u < λ]).
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Proposition 14. Let u ∈ C(Ω). Assume that there is some δ > 0 such
that, if K is a connected component of an upper or lower level set of u,
then |K| ≥ δ. Let X be a connected component of [λ ≤ u ≤ µ], λ ≤ µ,
and let L be a hole of X. Then there is some η > 0 such that either

i) sat(X,L) = sat(cc([u ≥ λ], X), L), and u < λ on Lη := {p ∈ L :
d(p,X) < η}, or

ii) sat(X,L) = sat(cc([u ≤ µ], X), L), and u > µ on Lη := {p ∈ L :
d(p,X) < η}.

Remark 6. i) The assertions concerning the saturations in the above
statement are true without the assumption that the connected
components of upper or lower level sets have area ≥ δ, and it
can be proved by approximation of u by ISεSIεu.

ii) The set Lη will be called a band around X. If a hole is an external
hole, we call Lη the external band around X. If a hole L is an
internal hole, we call Lη an internal band around X.

Proof: Let H be any hole of X. Since Ω is unicoherent, sat(X,H), H
are closed connected sets, and sat(X,H) ∪H = Ω, we have that ∂H =
sat(X,H)∩H is connected. We observe that ∂H ⊆ ∂[u < λ]∪ ∂[u > µ].
Indeed, since Ω is locally connected, ∂X ⊆ ∂[λ ≤ u ≤ µ] ([22, vol. II,
p. 169]) and

∂H ⊆ ∂X ⊆ ∂[λ ≤ u ≤ µ]
= ∂([u < λ] ∪ [u > µ])

= ∂[u < λ] ∪ ∂[u > µ].

Moreover, if λ < µ, ∂[u < λ] ∩ ∂[u > µ] = ∅ and, being ∂H a connected
set, we have either ∂H ⊆ ∂[u < λ] or ∂H ⊆ ∂[u > µ]. Suppose first that
λ < µ. Without loss of generality, we may assume that ∂L ⊆ ∂[u < λ].
Our purpose is to prove that L is also a hole of cc([u ≥ λ], X), hence
sat(X,L) = sat(cc([u ≥ λ], X), L). For that, we shall prove that, for
some η > 0, u < λ on {p ∈ L : d(p,X) < η}.

The result is obviously true if L = ∅ or L ⊆ [u < λ]. Thus we may
assume that L ∩ [u ≥ λ] �= ∅. By Lemma 5, there is a finite number of
connected components of [u ≥ λ] intersecting L, and each of them has,
at most, a finite number of holes. Let Y be a component of [u ≥ λ]
intersecting L. Observe that, by last lemma, [u < λ] �= ∅. Hence Y �= Ω
and it has some hole. If all holes of Y are contained in sat(X,L), then
L ⊆ Y . In that case, ∅ �= L ∩ [u < λ] ⊆ Y ∩ [u < λ] = ∅, and we obtain
a contradiction. Thus, there are holes of Y intersecting L.



The M-Components of Level Sets 497

LetW be a hole of Y such thatW∩L �= ∅. We claim that ∂W∩∂L = ∅.
Indeed, let p ∈ Y ∩L, q ∈W ∩L. Let γ be an arc joining p and q whose
image is contained in L. Then γ intersects ∂W at some point x ∈ L. As
in the above proof, ∂W is a connected set contained in [u = λ]. Hence,
if ∂W ∩ ∂L �= ∅, since ∂L ⊆ X, then X would contain ∂W , hence, also
x ∈ ∂W ∩ L, a contradiction. Our claim follows.

We claim that ∂Y ∩∂L = ∅. Suppose, by contradiction that ∂Y ∩∂L �=
∅. Since ∂L ⊆ [u = λ], then ∂L ⊆ Y . Since Y ∩W = ∅, we also have
that ∂L ∩ W = ∅. Therefore ∂L ∩ W = ∅. Let Wi, i = 1, . . . , p,
be the family of holes of Y intersecting L. We have just proved that
dist(∂L,Wi) ≥ η > 0 for some η > 0 and all i = 1, . . . , p. Let p ∈ ∂L
and let r < η be such that B(p, r) ∩Wi = ∅, i = 1, . . . , p. Under these
circumstances, it is immediate to see that

B(p, r) ∩ L = B(p, r) ∩ L ∩ Y.

Then

∅ �= B(p, r) ∩ L ∩ [u < λ] = B(p, r) ∩ L ∩ Y ∩ [u < λ] = ∅,

the left hand side being nonempty because p ∈ ∂(L ∩ [u < λ]). This
contradiction proves that ∂Y ∩ ∂L = ∅.

Thus, there is some r > 0 such that either ∂L+B(0, r) ⊆ Y , or (∂L+
B(0, r)) ∩ Y = ∅. In the first case, we conclude that, by choosing r > 0
small enough, ∂L+B(0, r) ⊆ [λ ≤ u ≤ µ], hence, also ∂L+B(0, r) ⊆ X,
a contradiction. Thus, we may assume that (∂L + B(0, r)) ∩ Y = ∅ for
all connected components Y of [u ≥ λ] intersecting L. Then, dist([u ≥
λ] ∩ L, ∂L) > 0, and, therefore, for some η > 0, u < λ on {p ∈ L :
d(p,X) < η}. This implies that L is a hole of cc([u ≥ λ], X), and
sat(X,L) = sat(cc([u ≥ λ], X), L).

Let us consider the case λ = µ. Let X be a connected component
of [u = λ] and y ∈ X. Then X = ∩nXn where Xn = cc([λ ≤ u ≤
λ + 1

n ], y). Let p ∈ L. Then, by Lemma 4, we know that sat(X, p) =
∩n sat(Xn, p). Without loss of generality, we may assume that p �∈ Xn

for all n ≥ 1. But, according to the first part of the proof, we have that
either sat(Xn, p) = sat(cc([u ≥ λ], y), p), or sat(Xn, p) = sat(cc([u ≤
λ+ 1

n ], y), p). In the first case, we conclude that sat(X, p) = sat(cc([u ≥
λ], y), p). In the second case, using again Lemma 4, ii), we have that
∩n sat(cc([u ≤ λ + 1

n ], y), p) = sat(cc([u ≤ λ], y), p). Hence, sat(X, p) =
sat(cc([u ≤ λ], y), p).
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When sat(X, p) = sat(cc([u ≥ λ], y), p), L is a hole of cc([u ≥ λ], y).
Hence ∂L ⊆ ∂[u < λ] and the argument above proves that there is
some η > 0 such that u < λ on Lη = {p ∈ L : d(p,X) < η}. When
sat(X, p) = sat(cc([u ≤ λ], y), p), L is a hole of cc([u ≤ λ], y). Then
∂L ⊆ ∂[u > λ] and again the previous argument proves that there is
some η > 0 such that u > λ on Lη = {p ∈ L : d(p,X) < η}.

4.2. The number of components of Uλ,µ is finite.

Lemma 7. Let u ∈ C(Ω). Assume that there is some δ > 0 such that, if
K is a connected component of an upper or lower level set, then |K| ≥ δ.
Let λ ≤ µ.

i) Let X be a connected component of Uλ,µ. Then | sat(X)| ≥ δ.
ii) Let X, Y be two connected components of Uλ,µ with X contained

in a hole of Y . Suppose that both satisfy the same alternative in
Proposition 14. Then | sat(Y ) \ sat(X)| ≥ δ.

Proof: i) is a consequence of Proposition 14. To prove ii), to fix ideas,
let us assume that there is some η > 0 such that u < λ on {p ∈ LX :
d(p,X) < η} and on {p ∈ LY : d(p, Y ) < η}, where LX and LY are
the external holes of X, Y , respectively. Then, there is a connected
component of [u ≥ λ] contained in sat(Y ) \ sat(X), and, therefore,
| sat(Y ) \ sat(X)| ≥ δ.

Lemma 8. Let u ∈ C(Ω). Assume that there is some δ > 0 such that
if X is a component of an upper or lower level set, then |X| ≥ δ. Let
J ⊆ N. Let Kj, j ∈ J , be a connected component of Uαj ,βj

, αj ≤ βj,
such that Ki ∩Kj = ∅ for all i �= j, i, j ∈ J .

i) For each j ∈ J let T ji , i = 1, . . . , hj, be the holes Kj containing
some Ki, i ∈ J . Then

| ∪hj

i=1 T
j
i | ≥ hjδ.

In particular

sup
j
hj ≤

|Ω|
δ
.

ii) Suppose that J is countable. Then there is an infinite chain formed
by sets of the family Kj.

Proof: i) Suppose that T ji contains Knj
i
. Then, it contains also a sat-

uration of Knj
i
. Thus, by Lemma 7, | sat(Knj

i
)| ≥ δ. This implies the

statement of the present lemma.
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ii) Let j ∈ J . Observe that the number of Ki in the holes (i.e., the
components of its complement) of Kj is infinite. By i), there is a hole
of Kj which contains an infinite number of Ki. Let T 1 be this hole.
Suppose that there is an infinity of Ki, Kir , in T 1 such that sat(Kir )
are two by two disjoint. Using Lemma 7, i), we obtain that

|T 1| ≥ kδ

for all k ≥ 1. Thus there is only a finite system of components Ki such
that sat(Ki) are two by two disjoint. Then one of them, say Ki1 , con-
tains an infinity of K ′

is in his system of holes. Again, by the previous
argument, there is a hole of Ki1 , say T 2, containing an infinite num-
ber of Ki. Repeating the same argument we find a subsequence Kin ,
n = 1, 2, . . . , such that Kin+1 is contained in a hole of Kin .

Proof of Proposition 13: Suppose that Uλ,µ contains a countable family
of connected components Kn. By Lemma 8, ii), there is an infinite chain
formed by sets of the family Kj . By extracting a subsequence of Kj , if
necessary, we may assume that they satisfy the same alternative given in
Proposition 14. Now, using Lemma 7, ii), we obtain an infinite area in
this chain. This contradiction proves that there is only a finite number
of connected components of Uλ,µ.

4.3. The number of maximal monotone sections is finite.

Theorem 2. Let u ∈ C(Ω). Assume that there is some δ > 0 such
that, if X is a connected component of an upper or lower level set then,
|X| ≥ δ. Then there is a finite number of maximal monotone sections
in the topographic map of u.

To proceed with the proof, assume that there is a sequence {Si}∞i=1 of
maximal monotone sections, each one associated with an interval (open,
closed, halfopen or halfclosed) which will be denoted by Ii = {ai, bi},
ai ≤ bi. Let zi = ai+bi

2 . Since u is bounded, passing to a subsequence,
if necessary, we may assume that zi → z as i → ∞. Then, modulo a
subsequence, we may assume that the intervals Ii intersect each other or
they are two by two disjoint. Indeed, if the number of indexes i ∈ N such
that ai = bi is infinite we have a sequence of intervals Ii which intersect
each other (in case ai = bi = z) or which are two by two disjoint. Thus
we may assume that ai < bi, for all i ≥ 1. Again, taking a subsequence
if necessary, we may assume that ai, bi are monotone sequences. Let
a = limi ai, b = limi bi. Note that z = a+b

2 . The following cases are
possible:
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i) ai ↘, bi ↘: If a < z, then also z < b and (ai, z] ⊆ {ai, bi}. The
intervals Ii intersect each other (even have a common intersection
point). If a = z, then also b = z, and there are two possibilities:
(p1) either ai = z for all i, or (p2) modulo a subsequence, we have
z < ai for all i. In the first case, Ii = {z, bi} and these intervals
intersect each other. In the second case, by taking a subsequence,
if necessary, we may assume that bi+1 < ai < bi.

ii) ai ↗, bi ↘: The intervals Ii form a decreasing sequence, thus,
intersecting each other.

iii) ai ↘, bi ↗: The sequence of intervals Ii is monotone increasing,
thus, having a common intersection.

iv) ai ↗, bi ↗: If a < z, then for i large enough a < bi and (a, bi) ⊆ Ii.
Modulo a subsequence, the intervals Ii have a common intersection
point. If a = z, then also b = z, and there are two possibilities:
(p3) either bi = z for all i, or, (p4) modulo a subsequence, bi < z
for all i. In the first case the sequence Ii = {ai, z}, with ai ↗, and
we conclude that any finite system of intervals has a nonempty
intersection. In the second case, modulo a subsequence, we may
assume that ai < bi < ai+1 for all i, i.e., the intervals Ii are two
by two disjoint.

By Proposition 1, we have that Si ∩ Sj = ∅ for all i �= j. Let S′
i be a

connected component of Uαi,βi
contained in Si, with [αi, βi] ⊆ Ii. Then,

by Lemma 8, there is an infinite chain made of sets S′
i. Thus we may

assume that S′
i form a chain. In this case also Si forms a chain. We are

going to exclude this case. First, we consider the case: Ii ∩ Ij �= ∅ for all
i, j ∈ N.

Lemma 9. Let u ∈ C(Ω) be such that each section Uα,β has a finite
number of connected components. Suppose that [a, b] ∩ [c, d] �= ∅. Let
Qa,b, Qc,d be connected components of Ua,b, Uc,d, respectively. Suppose
that Ta,b, Tc,d are holes of Qa,b, Qc,d, respectively, and sat(Qc,d) is con-
tained in Ta,b. Then | sat(Qa,b) \ Tc,d| ≥ δ.

Proof: Let W0, W1 (resp. W2, W3) be external and internal bands of
Qa,b (resp. Qc,d) such thatW3 ⊆ Tc,d,W2,W1 ⊆ Ta,b withW2 ⊆ sat(W1)
which exist by Proposition 14. To simplify our discussion we shall say
that W is higher than k ∈ R (resp. lower than k ∈ R) if u(z) > k
(u(z) < k) for all z ∈ W , where W denotes any of the bands Wi,
i = 0, 1, 2, 3. Note that, by Lemma 14, W0 and W1 are either higher
than b or lower than a, and W2, W3 are higher than d or lower than c.
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Case a ≤ c. Since u(z) ≥ a for all z ∈ Qa,b ∪ Qc,d, if W1 is lower
than a, then there is a connected component of [u < a] in Ta,b\sat(Qc,d).
Suppose that W1 is higher than b. If W0 is higher than b, then there is
a connected component of [u ≤ b] contained in Qa,b. Assume that W0 is
lower than a. If W2, W3 are higher than d, with a similar argument we
have that there is a connected component of [u ≤ d] contained in Qc,d.
If W2 is higher than d and W3 lower than c, then there is a connected
component of [u > d] in sat(Qa,b) \ Tc,d. If W2 is lower than c, since
u ≥ c on Qc,d, then there is a connected component of [u < c] contained
in Ta,b \ sat(Qc,d).

Case c ≤ a. Suppose that W1 is lower than a. Since u(z) ≥ a for all
z ∈ Qa,b and u(z) ≥ c for all z ∈ Qc,d, if W2 is higher than d, then there
is a connected component of [u < a] in Ta,b \ sat(Qc,d). If W2 is lower
than c, then there is a connected component of [u < c] in Ta,b \sat(Qc,d).
If W1 is higher than b we argue as in the previous case.

Lemma 10. Let {Si}∞i=1 be a sequence of different maximal monotone
sections, each one associated with an interval Ii. Suppose Ii ∩ Ij �= ∅ for
all i, j ∈ J , i �= j. Then, there is no infinite chain formed with this sets.

Proof: Modulo a subsequence, we may assume that Si is an infinite
chain. By Proposition 1, we know that Si∩Sj = ∅ for all i �= j. From the
assumption, it follows that given N ≥ 1, there are closed subintervals
I∗i ⊆ Ii, 1 ≤ i ≤ N , such that I∗i ∩ I∗j �= ∅ for all i, j ∈ {1, . . . , N},
i �= j. Let S∗

i ⊆ Si be a connected component associated with the
closed interval I∗i , i ≤ N . To fix ideas, since the union of S∗

i does not
cover Ω, we may choose a point p ∈ Ω \ ∪N

i=1S
∗
i and always consider the

component of Ω\S∗
i containing p as the external component of S∗

i . Let k
be the number disjoint saturations of the sets S∗

i . Then there is a chain
of length at least

[
N
k

]
where [λ] denotes the integer part of λ. Then, we

have | ∪N
i=1 sat(S∗

i )| ≥ kδ and, by last lemma, | ∪N
i=1 sat(S∗

i )| ≥ 1
2

[
N
k

]
δ.

Observe that either k or N
k goes to infinity with N . In any case, Ω would

have unbounded measure.

At several places we shall use inversions in R
N with respect to some

point p ∈ R
N . We call inversion in R

N with respect to p any map
ϕp(x) = R2 x−p

|x−p|2 , R > 0. It maps B(p,R) bijectively into R
N \B(p,R)

and it keeps the sphere or radius R around p fixed.

Lemma 11. Let Si be a sequence of maximal monotone sections as-
sociated with Ii = {ai, bi}, i ∈ N. Assume that ai ≤ bi < ai+1, or
bi+1 < ai ≤ bi for all i. Then there is no infinite chain made of sets Si.
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Proof: Suppose that the sequence Si forms a chain. By eliminating one
of the Si, if necessary, we may assume that the union of the Si does
not cover Ω and fix a point p outside all sets sat(Si) which contain p in
its external component. By Lemma 8, we may assume that there exist
closed monotone sections Qi contained in Si, associated to the intervals
[ci, di] ⊆ {ai, bi}, and forming a chain. Let Ti be the hole ofQi containing
Qi+1. We shall prove that

| sat(Qi) \ Ti+1| ≥ δ,(12)

for all i ≥ 1. It suffices to consider the case ai ≤ bi < ai+1 for all i.
Indeed, in case we have that bi+1 < ai ≤ bi for all i, for each i fixed,
for instance i = 1, we may consider a point q ∈ T2 and make an in-
version ϕ with respect to the point q, to end up with concatenated sets
ϕ(Q2), ϕ(Q1), exterior and interior, respectively, associated with inter-
vals [c2, d2], [c1, d1], satisfying d2 < c1. In what follows we shall prove
that under these assumptions sat(ϕ(Q2)) \ ϕ(Ω \ sat(Q1)) contains an
upper or lower level set of u ◦ϕ. This implies that sat(Q1) \ T2 contains
an upper or lower level set of u and, as a consequence, | sat(Q1)\T2| ≥ δ.

Assume that ai ≤ bi < ai+1 for all i. Take i = 1. Let W0, W1

(resp.W2,W3) be external and internal bands of Q1 (resp. Q2). Suppose
thatW1 is lower than c1. Since u(z) ≥ c1 for all z ∈ Q1 and u(z) ≥ c2 for
all z ∈ Q2, then there is a connected component of [u < c1] contained
in T1 \ sat(Q2). Suppose that W1 is higher that d1. If W0 is higher
than d1 then there is a connected component of [u ≤ d1] contained in
Q1. Suppose that W0 is lower than c1. If W3 is lower than c2, then
there is a connected component of [u ≥ c2] contained in sat(Q1) \ T2. If
W3 and W2 are higher than d2 then there is a connected component of
[u ≤ d2] contained in Q2. Thus it remains to consider the case: (cc) W0

lower than c1, W1 higher than d1, W2 lower than c2, W3 higher than d2.
Suppose that

| sat(Q1) \ T2| < δ.(13)

Let us consider the open set D = T1 \ sat(Q2). Observe that D =
(Ω \ sat(Q2)) ∩ T 1. Since both sets (Ω \ sat(Q2)), T 1 are closed, con-
nected and their union is Ω, then its intersection D is connected. Let
us prove that d1 < u(z) < c2 for all z ∈ D. Suppose that there is
p ∈ D such that u(p) ≤ d1. Since W1 is higher than d1 and u ≥ c2
in Q2 we conclude that there is a connected component of [u ≤ d1] in
T1 \ sat(Q2). Suppose that there is some p ∈ D such that u(p) ≥ c2.
Since W0 is lower than c1 and W2 lower than c2 we conclude that there
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is a connected component of [u ≥ c2] in sat(Q1) \ sat(Q2). In both cases
we contradict (13).

Since D is connected, and u|∂T1 = d1, u|∂ sat(Q2) = c2, we have that
{u(z) : z ∈ D} contains [d1, c2]. In particular, {z ∈ D : λ ≤ u(z) ≤ µ} is
a nonempty set for all [λ, µ] ⊆ [d1, c2].

Let d1 ≤ λ ≤ µ ≤ c2. Let us prove thatXλ,µ :=Uλ,µ∩(sat(Q1)\T2) is a
component of Uλ,µ. The last paragraph proves that this set is nonempty.
Since u(z) < c1 for all z ∈ W0 and u(z) > d2 for all z ∈ W3, the
set Uλ,µ ∩ (sat(Q1) \ T2) is a union of connected components of Uλ,µ.
Suppose that there are at least two of them H1, H2. If the saturation
of one of them, say sat(H1), does not contain T2 then | sat(Q1) \ T2| ≥
| sat(H1)| ≥ δ. Thus, sat(H1), sat(H2) contain T2. We deduce that H1

and H2 form a chain. Since both sets are connected components of the
same section Uλ,µ, by Lemma 9, we have that | sat(H1)\TH2 | ≥ δ where
TH2 is the hole of H2 containing T2. In any case, this configuration
pays δ, and, therefore also | sat(Q1) \ T2| ≥ δ. Since this case has been
excluded by assumption (13), we conclude that Xλ,µ is connected.

Our next claim is that Xd1,c2 is a monotone section. Indeed Xd1,c2 is
the only connected component of Ud1,c2 contained in sat(Q1) \T2. Now,
let [λ̂, µ̂] ⊆ [d1, c2]. Then

{x ∈ Xd1,c2 : λ̂ ≤ u(x) ≤ µ̂}
= {x ∈ sat(Q1) \ T2 : d1 ≤ u(x) ≤ c2, λ̂ ≤ u(x) ≤ µ̂}
= {x ∈ sat(Q1) \ T2 : λ̂ ≤ u(x) ≤ µ̂} = Xλ̂,µ̂.

Since Xλ̂,µ̂ is a connected component of Uλ̂,µ̂, our claim follows.
Let us check that

S1 ∩ S2 �= ∅.(14)

This contradiction will prove that, in case (cc), also holds that | sat(Q1)\
T2| ≥ δ. Thus, the inequality holds in any case. The consequence being
that an infinite chain made of sets Si would imply an infinite area for Ω
and Lemma 11 is proved. We observe that Q1∩Xd1,c2 �= ∅. Indeed, since
W0 is lower than c1 and W1 is higher than d1, there is a point ẑ ∈ Q1

such that u(ẑ) = d1. Thus, ẑ ∈ Q1 ∩Xd1,c2 . Hence

Xd1,c2 ⊆ S1(15)

because S1 is a maximal monotone section containing Q1. Now, since
W2 is lower than c2 and W3 higher than d2, there is a point y ∈ Q2 such



504 C. Ballester, V. Caselles

that u(y) = c2. Hence

Xd1,c2 ∩Q2 �= ∅.(16)

From (16) it follows that

Xd1,c2 ⊆ S2(17)

because S2 is a maximal monotone section containing Q2. From (15)
and (17) we obtain (14) and the proof of Lemma 11 is completed.

5. M-components versus classical components

As argued in [7], the connected components of the level sets of the im-
age contain the information which is invariant by local contrast changes.
The geometric description of these basic sets requires a functional model
for images. One of the basic models is the so-called BV -model, intro-
duced for the purpose of image denoising by L. I. Rudin, S. Osher and
E. Fatemi in [36], in which images are functions of bounded variation.
The BV -model is a sound model for images which have discontinuities
and has become a popular model for image restoration [36], [9], [12], [46]
and edge detection [10]. In [2], the authors introduced the WBV -model
in which images are functions whose level sets are sets of finite perimeter
(modulo a null set of levels). This class of functions contains the func-
tions of bounded variation and is invariant under contrast changes. The
notion of connected components can be adapted to sets of finite perime-
ter in R

N , the so-called M -components introduced in [2], and a more
precise description of theseM -components in terms of Jordan curves was
given for N = 2 [2]. This permited the study of grain filters acting on
WBV , in particular, the Vincent-Serra operators SIε, ISε described in
Section 3 ([43], [44], [39], [42]). Grain filters are operators which sim-
plify the structure of connected components of upper and/or lower level
sets. S. Masnou ([26], [2]) studied them as operators in BV (Ω) prov-
ing that they commute with real continuous increasing contrast changes
and they decrease total variation. Thus, the WBV -model appears as
a suitable functional framework for many problems in image process-
ing. Our purpose now is to prove that for functions in WBV (Ω)∩C(Ω)
the M -components (of positive measure) of almost all its level sets co-
incide with classical connected components. Thus, in some sense, the
M -components are a relaxation of the classical connected components
when going from continuous functions to functions in WBV . Let us
recall these notions. We shall follow the presentation and the results
in [2].
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5.1. Preliminaries.

We consider a N -dimensional euclidean space R
N , with N ≥ 2. The

Lebesgue measure of a Lebesgue measurable set E ⊆ R
N will be denoted

by |E|. For a Lebesgue measurable subset E ⊆ R
N and a point x ∈ R

N ,
the upper and lower densities of E at x are respectively defined by

D(x,E) := lim sup
r→0+

|E ∩B(x, r)|
|B(x, r)| , D(x,E) := lim inf

r→0+

|E ∩B(x, r)|
|B(x, r)| .

If the upper and lower densities are equal, their common value will be
called the density of x at E and it will be denoted by D(x,E). We shall
use the word measurable to mean Lebesgue measurable.

Using densities we can define the essential interior hM (E), the essen-
tial closure E

M
and the essential boundary ∂ME of a measurable set E

as follows:

hM (E) := {x : D(x,E) = 1} , E
M

:=
{
x : D(x,E) > 0

}
(18)

∂ME := E
M ∩ RN \ EM

=
{
x : D(x,E) > 0, D(x,RN \ E) > 0

}
.(19)

Notice also that by the Lebesgue differentiation theorem the symmetric
difference hM (E)∆E is Lebesgue negligible, hence the measure theoretic
interior of hM (E) is hM (E) (in this sense hM (E) is essentially open),
and also that

∂ME = R
N \

(
hM (E) ∪ hM (RN \ E)

)
.

Here and in what follows we shall denote by Hα the Hausdorff measure
of dimension α in R

N . In particular, HN−1 denotes the (N − 1)-di-
mensional Hausdorff measure and HN , the N -dimensional Hausdorff
measure, coincides with the (outer) Lebesgue measure in R

N . Given
E1, E2 ⊆ R

N , we shall write E1 = E2 (modHα) if Hα(E1∆E2) = 0,
where E1∆E2 = (E1 \ E2) ∪ (E2 \ E1) is the symmetric difference of
E1 and E2. We will use an analogous notation for the inclusion and in
some cases, in order to simplify the notation, the equivalence or inclusion
modHN will be tacitly understood.

We say that a measurable set E ⊆ R
N has finite perimeter in R

N

if there exist a positive finite measure µ in R
N and a Borel function

νE : R
N → SN−1 (called generalized inner normal to E) such that the

following generalized Gauss-Green formula holds∫
E

div φdx = −
∫

RN

〈νE , φ〉 dµ ∀φ ∈ C1
c (R

N ,RN ).
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Hence the measure νEµ is the distributional derivative of χE , which will
be denoted by DχE , while µ = |DχE | is its total variation; the perimeter
P (E,B) of E in a Borel set B ⊆ R

N is defined by |DχE |(B), and we
use the notation P (E) in the case B = R

N . For further information on
sets of finite perimeter we refer to [3], [13], [15], [17], [48].

Definition 6. Let Ω be an open subset of R
N . We say that a Borel

function u : Ω → [−∞,+∞] has weakly bounded variation in Ω if

P ({u > t},Ω) <∞ for a.e. t ∈ R.

The space of such functions will be denoted by WBV (Ω). We call total
variation of u and denote by |Du| the measure defined on every Borel
subset B ⊂ Ω as

|Du|(B) :=
∫ +∞

−∞
P ({u > t}, B) dt.

Remark 7. i) It follows from the properties of the perimeter that
|Du| is a σ-additive measure on the Borel sets of Ω. Let BV (Ω)
denote the space of functions of bounded variation in Ω (see for
instance [3], [13], [15], [17], [48]). Remark that by Lemma 1
in [2], BV (Ω) ⊂ WBV (Ω). Furthermore, if Ω is bounded with
Lipschitz boundary, u ∈ WBV (Ω) and |Du|(Ω) < +∞ then, by [2],
u ∈ BV (Ω) and, by the coarea formula, |Du| coincides with the
total variation of u.

ii) It must be emphasized that WBV is not a vector space. Take
indeed the two functions u(x) = 1/x and v(x) = 1/x − sin(1/x)
defined on (−1, 1). Then, clearly, u, v ∈ WBV (−1, 1) whereas
u− v �∈ WBV (−1, 1) since sin(1/x) assumes infinitely many times
any value t ∈ [−1, 1]. However, a strong motivation for the intro-
duction of WBV (Ω) is the following result, showing that WBV (Ω)
is the smallest space containing BV (Ω) and invariant under any
contrast change; note that by Volpert’s chain rule for distributional
derivatives, BV (Ω) is stable only under Lipschitz contrast changes.

Theorem 3 ([2]). For any u ∈ WBV (Ω) there exists a bounded, con-
tinuous and strictly increasing function φ : [−∞,+∞] → R such that
φ ◦ u ∈ BV (Ω).

5.2. M-connected components of sets of finite perimeter.

Let E ⊆ R
N be a set with finite perimeter. We say that E is decompos-

able if there exists a partition (A,B) of E such that P (E) = P (A)+P (B)
and both |A| and |B| are strictly positive. We say that E is indecom-
posable if it is not decomposable; notice that the properties of being
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decomposable or indecomposable are invariant modHN and that, ac-
cording to our definition, any Lebesgue negligible set is indecomposable.

In this section we want to recall the following decomposition theo-
rem; a similar decomposition result for integer currents is stated in 4.2.25
of [15]. This result has also been used in G. Dolzmann and S. Müller [11]
and B. Kirchheim [20] to prove Liouville type theorems for partial dif-
ferential inclusions with multiple wells; the second paper contains also
an explicit proof of the decomposition theorem, based on Lyapunov con-
vexity theorem. The proof given in [2] was based on a simple variational
argument.

Theorem 4 (Decomposition theorem). Let E be a set with finite peri-
meter in R

N . Then there exists a unique finite or countable family of
pairwise disjoint indecomposable sets {Ei}i∈I such that |Ei| > 0 and
P (E) =

∑
i P (Ei). Such that ∂ME = ∪i∂

MEi (modHN−1),

HN−1

(
hM (E) \

⋃
i∈I
hM (Ei)

)
= 0(20)

and the Ei’s are maximal indecomposable sets, i.e. any indecomposable
set F ⊆ E is contained modHN in some set Ei.

Definition 7 (M -connected components). In view of the previous the-
orem, we call the sets Ei the M -connected components of E and denote
this family by CCM (E); we always choose the index set I as an interval
of N, with 0 ∈ I.

Notice that CCM (E) = ∅ whenever E is Lebesgue negligible and that
Theorem 4 gives

∂MF ⊂ ∂ME modHN−1 for any F ∈ CCM (E).(21)

By (20), for HN−1-a.e. x ∈ hM (E) it also makes sense to talk about
the M -connected component of E containing x, namely the unique set
F ∈ CCM (E) such that x ∈ hM (F ).

Definition 8 (Holes, saturation). Let E be an indecomposable set. We
call M -hole of E any M -connected component of R

N \ E with finite
measure. We define the saturation of E, denoted by Sat(E), as the
union of E and of its M -holes. In the general case when E has finite
perimeter, we define

Sat(E) :=
⋃
i∈I

Sat(Ei) where CCM (E) = {Ei}i∈I .
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The M -holes of E, denoted by HM (E), is the family of M -holes of its
M -connected components Ei.

Proposition 15. Let E,F ⊆ R
N be two indecomposable sets. If |E ∩

F | = 0, then the sets Sat(E), Sat(F ) are either one a subset of the other,
or they are disjoint (modHN ).

This was also proved in [2, Proposition 6].

Definition 9 (Exterior). If E ⊆ R
N has finite perimeter and |E| <∞,

we call exterior of E the unique (modHN )M -component of R
N \E with

infinite measure. The exterior of E will be denoted by ext(E).

Notice that the notion of exterior makes sense only if |E| < ∞, due
to the fact that R

N \ E has finite measure if P (E) <∞ and |E| = ∞.

Definition 10 (Jordan boundary). Any indecomposable subset of R
N

such that Sat(E) = E will be called simple. We say that a set J is a Jor-
dan boundary if there is a simple set E such that J = ∂ME (modHN−1).

The simple set E associated to a Jordan boundary J is unique ([2,
Proposition 7]). In this sense, J can also be thought as an oriented
set, with the orientation induced by the generalized inner normal to E.
The terminology was motivated by the results concerning sets in the
plane, see in particular [2, Theorem 7]. We shall write int(J) = E and
ext(J) = R

N \ E; notice that ext(J) = ext(E).

Proposition 16. Let E be indecomposable and let {Yi}i∈I be its holes.
Then

E = Sat(E) \
⋃
i∈I
Yi = Sat(E) ∩

⋂
i∈I

ext(Yi)(22)

and

P (E) = P (Sat(E)) +
∑
i∈I
P (Yi).(23)

There is also a converse statement of last result which can be seen
in [2].

In order to simplify the following statement we enlarge the class of
Jordan boundaries by introducing a formal Jordan boundary J∞ whose
interior is R

N and a formal Jordan boundary J0 whose interior is empty;
we also set HN−1(J∞) = HN−1(J0) = 0 and denote by S this extended
class of Jordan boundaries. In this way we are able to consider at the
same time sets with finite and infinite measure and we can always as-
sume that the list of components (or holes of the components) is infinite,
possibly adding to it infinitely many int(J0).
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The following theorem describes ∂ME by a collection of “external
Jordan boundaries” J+

i and “internal Jordan boundaries” J−
i satisfying

some inclusion properties; these properties provide an axiomatic char-
acterization of them [2]. However, we emphasize that in general this
description is not invariant under complementation, i.e. the external (in-
ternal) boundaries of a set are not the internal (external) boundaries of
the complement [2]. We shall see below that for almost all level sets λ
of a function u ∈ C(Ω)∩WBV (Ω), the external (internal) boundaries of
[u ≥ λ] are the internal (external) boundaries of the complement [u < λ].

Theorem 5 (Decomposition of ∂ME in Jordan boundaries).Let E⊆R
N

be a set of finite perimeter. Then, there is a unique decomposition of
∂ME into Jordan boundaries

{
J+
i , J

−
k : i, k ∈ N

}
⊆ S, such that

(i) Given int(J+
i ), int(J+

k ), i �= k, they are either disjoint or one is
contained in the other; given int(J−

i ), int(J−
k ), i �= k, they are

either disjoint or one is contained in the other. Each int(J−
i ) is

contained in one of the int(J+
k ).

(ii) P (E) =
∑

iHN−1(J+
i ) +

∑
k HN−1(J−

k ).
(iii) If int(J+

i ) ⊆ int(J+
j ), i �= j, then there is Jordan boundary J−

k

such that int(J+
i ) ⊆ int(J−

k ) ⊆ int(J+
j ). Similarly, if int(J−

i ) ⊆
int(J−

j ), i �= j, then there is some Jordan boundary J+
k such that

int(J−
i ) ⊆ int(J+

k ) ⊆ int(J−
j ).

(iv) Setting Lj = {i : int(J−
i ) ⊆ int(J+

j )}, the sets Yj = int(J+
j ) \

∪i∈Lj int(J−
i ) are pairwise disjoint, indecomposable and E = ∪jYj.

Definition 11. Let E be a set of finite perimeter in R
N . The family

of boundaries J+
i described in last theorem will be called the family of

external boundaries of E and will be denoted by EM (E). The family of
curves J−

i will be called the internal boundaries of E and will be denoted
by IM (E).

Thus the external boundaries of E are the external boundaries of its
M -connected components. The internal boundaries of E are the bound-
aries of the M -holes of its M -connected components. If E is indecom-
posable, then the external boundary of E is unique and coincides with
∂M Sat(E).

It was shown in [2] that the boundary of a simple set in the plane was a
rectifiable Jordan curve. Moreover, theM -components in the plane were
also classically connected by arcs (indeed, a suitable representative).
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5.3. M-components versus classical components.

Let Ω be a Jordan domain in R
N , i.e., the closure of the bounded con-

nected component of the complement of a subset of R
N homeomorphic

to SN−1, the sphere of R
N . Let Ω be the interior of Ω. We assume that

the boundary of Ω is Lipschitz. Let A ⊆ Ω. We write A ⊂⊂ Ω if there
is some ε > 0 such that d (x,RN \ Ω) ≥ ε for almost every x ∈ A. Let
E ⊆ Ω be a set of finite perimeter in Ω such that

E ⊂⊂ Ω or Ω \ E ⊂⊂ Ω.(24)

Note that in this case, the M -holes of E are well defined as its M -holes
as a subset of R

N . Hence, also Sat(E) is well defined. If a set of finite
perimeter E is such that Ω \ E ⊂⊂ Ω then ∂Ω ⊆ ∂ME and we shall
exclude it as a curve of EM (E).

We shall say that two sets A, B contained in a set C ⊆ R
2 are clas-

sically connected inside C if there is a connected set K ⊆ C containing
A and B.

Definition 12. Let u ∈ WBV (Ω) ∩ C(Ω). We say that λ ∈ R is a
critical level of u if there exist Y, Y ′ ∈ CCM ([u ≥ λ]), Y �= Y ′, which are
classically connected inside [u ≥ λ].
Theorem 6. Let u ∈ WBV (Ω) ∩ C(Ω). Suppose that u is constant on
a neighborhood of ∂Ω. Then the set of critical levels is of measure zero.

Theorem 7. Let u ∈ WBV (Ω)∩C(Ω). Suppose that u is constant in a
neighborhood of ∂Ω. Then there is subset Λ of R such that |R \ Λ| = 0,
and, for every λ ∈ Λ, EM ([u ≥ λ]) = IM ([u < λ]) and IM ([u ≥ λ]) =
EM ([u < λ]).

Lemma 12. Let X be a bounded indecomposable set of finite perimeter
in R

N with all points of density 1. Suppose that |∂X| = 0. Then X is
connected.

Proof: Suppose that X is not connected. Let X1 and X2 be two com-
ponents of X. Then there are two closed, disjoint sets H1, H2, whose
union is X such that X1 ⊆ H1 and X2 ⊆ H2 ([33, Theorem 5.5, p. 82]).
Since H1 and H2 are compact and disjoint they are at a positive dis-
tance from each other. Now, observe that both sets X1 and X2 con-
tain points of X, hence points of density 1 in X, therefore, |H1| > 0,
|H2| > 0. Since |∂X| = 0, X is also a set of finite perimeter with
∂MX = ∂MX. It follows that H1 and H2 are also sets of finite perimeter
and Per(X) = Per(H1) + Per(H2). Hence, (H1, H2) is a decomposition
of X. This contradiction proves that X must be connected.
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Lemma 13. Let u ∈ WBV (Ω) ∩C(Ω). Then ISεu, SIεu ∈ WBV (Ω) ∩
C(Ω).

Proof: For any set X ⊆ R
N , let CC(X) be the (classical) connected

components of X. We already know that ISεu, SIεu ∈ C(Ω). Let λ ∈ R

be such that [u ≤ λ] (resp. [u ≥ λ]) is a set of finite perimeter such
that |[u = λ]| = 0, and let X ∈ CC ([u ≤ λ]) (resp. X ∈ CC ([u ≥ λ])).
Since, by Lemma 12, Y is connected if Y ∈ CCM ([u ≤ λ]) (resp. Y ∈ CCM
([u ≥ λ])) is such that all its points are of density 1, then we have that
either Y ⊆ X or X∩Y = ∅ (modHN ). From this it follows that each set
X ∈ CC ([u ≤ λ]) (resp. X ∈ CC ([u ≥ λ])) is a set of finite perimeter
which is a union of M -components of [u ≤ λ] (resp. [u ≥ λ]). Moreover

P ([u ≤ λ],Ω) =
∑

X∈CC([u≤λ]), |X|>0

P (X,Ω)(25)

(resp.

P ([u ≥ λ],Ω) =
∑

X∈CC([u≥λ]), |X|>0

P (X,Ω) ).(26)

Now, recall that by Lemma 1 we have that (modHN )

[ISεu < λ] ⊆ T ′
ε [u ≤ λ] ⊆ [ISεu ≤ λ].

If λ ∈ R is such that |[ISεu = λ]| = 0, then

[ISεu ≤ λ] = T ′
ε [u ≤ λ] = ∪X∈CC([u≤λ]), |X|>εX (modHN ).

Since u ∈ WBV (Ω) and [u ≤ λ] is a set of finite perimeter, we conclude
from last equality and (25) that [ISεu ≤ λ] is a set of finite perimeter.
Hence, the sets [ISεu ≤ λ] are sets of finite perimeter for almost all levels
λ ∈ R. Similarly, we prove that SIεu ∈ WBV (Ω).

Let A be an indecomposable set of finite perimeter in R
N . The

set Sat(A) is defined modulo a null set. Let us define a representa-
tive of it in case that all points of A are of density 1, and |∂A| = 0.
Recall that Sat(A) is equal to A union the M -components of R

N \ A
of finite measure. We define a set Sat∗(A) which coincides with Sat(A)
modulo an HN null set. For that, we take A as a representative of A,
since |∂A| = 0, and observe that R

N \ A is an open set. Since each
connected component of R

N \A is either contained or disjoint to a given
M -component of R

N \A, then eachM -component of R
N \A is the union

of a, at most countable, family of connected components of R
N \A. Let

Bn be the M -components of R
N \ A of finite measure. For each Bn

there is a family of components Bm
n of R

N \ A such that Bn = ∪mB
m
n
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(modHN ). Then, we define Sat∗(A) = A∪∪n,mB
m
n . Since ∂Bn,m ⊆ ∂A,

we have ∂(∪n,mB
m
n ) ⊆ ∪n,m∂Bn,m ⊆ ∂A ([22, vol. II, p. 168]). Hence

∂ Sat∗(A) ⊆ ∂A. Thus |∂ Sat∗(A)| = 0. The assumptions of Lemma 12
are satisfied, therefore, Sat∗(A) is connected. Similarly, let B∞ be the
M -component of R

N \ A of infinite measure and let Bm
∞ be the compo-

nents of R
N \A whose union coincides with B∞ modulo a null set. Then

we define SAT(A) by the identity R
N \SAT(A) = ∪mB

m
∞. Observe that

SAT(A) ⊆ sat(A).

Lemma 14. i) Let A be an indecomposable set of finite perimeter
such that all its points are of density 1 and |∂A| = 0. Then
SAT(A) = Sat∗(A). Thus, SAT(A) is connected.

ii) The set ∪m∂Bm
∞ is connected.

iii) We have that ∂ SAT(A) = ∪m∂Bm
∞.

Proof: i) By definition, we have that Sat∗(A) ⊆ SAT(A). Since SAT(A)
is closed, we have that Sat∗(A) ⊆ SAT(A). To check the opposite inclu-
sion, let p �∈ Sat∗(A). Since A ⊆ Sat∗(A), there is some r > 0 such that
B(p, r) ∩ A = ∅, B(p, r) ∩ (∪n,mB

m
n ) = ∅. Then B(p, r) ⊆ R

N \ (A ∪
∪n,mB

m
n ) = ∪mB

m
∞ = R

N \ SAT(A). Thus, B(p, r) ∩ SAT(A) = ∅, and,
in particular, p �∈ SAT(A). We have proved that SAT(A) = Sat∗(A).

ii) Suppose that ∪m∂Bm
∞ is not connected. Since this set is compact,

there exist two nonempty closed disjoint sets H1, H2 whose union is
∪m∂Bm

∞. Let I1 := {m : ∂Bm
∞ ∩H1 �= ∅}, I2 := {m : ∂Bm

∞ ∩H2 �= ∅}.
Since the sets ∂Bm

∞ are connected, then I1 ∩ I2 = ∅. We have

∪m∈I1∂B
m
∞ ⊆ H1, ∪m∈I2∂B

m
∞ ⊆ H2.

Since

∪m∈N∂Bm
∞ ⊆ ∪m∈I1∂B

m
∞ ∪ ∪m∈I2∂B

m
∞,

if p ∈ H1 and p �∈ ∪m∈I1∂B
m
∞, then p ∈ ∪m∈I2∂B

m
∞ ⊆ H2. Thus

H1 ∩H2 �= ∅. This contradiction proves that

H1 = ∪m∈I1∂B
m
∞, H2 = ∪m∈I2∂B

m
∞.

Since d(H1, H2) > 0, the sets U1 = ∪m∈I1B
m
∞ and U2 = ∪m∈I2B

m
∞

constitute a decomposition of R
N \SAT(A), an indecomposable set. This

contradiction proves the first assertion of the lemma.
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iii) From the identity R
N \ SAT(A) = ∪mB

m
∞, we deduce that

∂ SAT(A) ⊆ ∪m∂Bm
∞. The other inclusion is a consequence of the

following simple fact: if X,O ⊆ R
N , O is open and X ∩ O = ∅,

then also X ∩ O = ∅. Indeed, since Bm
∞ ∩ SAT(A) = ∅, then also

Bm
∞ ∩ int(SAT(A)) = ∅. Hence, Bm

∞ ∩ int(SAT(A)) = ∅. In particular,
we have that ∂Bm

∞∩int(SAT(A)) = ∅. Since this is true for allm, we have
that ∪m∂B

m
∞ ∩ int(SAT(A)) = ∅. Again, by the simple fact mentioned

above, we have ∪m∂Bm
∞ ∩ int(SAT(A)) = ∅. Now, since ∂Bm

∞ ⊆ ∂A for
all m, we have that ∪m∂Bm

∞ ⊆ ∂A ⊆ SAT(A). From both facts, we
deduce that ∪m∂Bm

∞ ⊆ ∂ SAT(A).

Lemma 15. Let A be an indecomposable set of finite perimeter such
that all its points are of density 1 and |∂A| = 0. Let K be a continuum.
Assume that K ∩ SAT(A) �= ∅. Then (K \ int(SAT(A))) ∪ ∂ SAT(A) is
connected.

Proof: Since K ∩ SAT(A) �= ∅, then K ∪ SAT(A) is connected. If
K \ int(SAT(A)) = ∅, then (K \ int(SAT(A))) ∪ ∂ SAT(A) = ∂ SAT(A),
which, by last lemma, is a connected set. Suppose thatK\int(SAT(A)) �=
∅ and the set (K\int(SAT(A)))∪∂ SAT(A) is not connected. LetK1, K2

be two connected components of (K \ int(SAT(A))) ∪ ∂ SAT(A) and let
a ∈ K1, b ∈ K2. Then there are two closed, disjoint sets H1, H2, whose
union is (K \ int(SAT(A))) ∪ ∂ SAT(A) such that a ∈ H1 and b ∈ H2

([33, Theorem 5.5, p. 82]). Then, since K1, K2 are connected, then
K1 ⊆ H1 and K2 ⊆ H2. Without loss of generality, we may assume that
H1∩∂ SAT(A) �= ∅. Since ∂ SAT(A) is connected, then ∂ SAT(A) ⊆ H1,
and, therefore, H2∩∂ SAT(A) = ∅. This implies that the setH2\SAT(A)
is closed. Then a ∈ H1 ∪ SAT(A), b ∈ H2 \ SAT(A) are two nonempty
and disjoint closed subsets of K ∪ SAT(A), a contradiction with the
conectedness of K ∪ SAT(A). This contradiction proves the lemma.

Lemma 16. Let A, B be two indecomposable subsets of R
N of finite

perimeter. Assume that all points of A, B are of density 1 and |∂A| =
|∂B| = 0. Assume that A ∩B = ∅. Then

(i) if Sat(A) ⊆ Sat(B) (modHN ), then SAT(A) ⊆ int(SAT(B)),
(ii) if Sat(B) ⊆ Sat(A) (modHN ), then SAT(B) ⊆ int(SAT(A)),
(iii) if Sat(A) ∩ Sat(B) = ∅ (modHN ), then SAT(A) ∩ SAT(B) = ∅.

Proof: (i) Let p ∈ A. Since D(p,A) = 1, then also D(p,SAT(B)) =
1. We have that p ∈ SAT(B) = SAT(B). Hence A ⊆ SAT(B), and,
therefore, A ⊆ SAT(B). Let Bm

∞ be the connected components of R
N \B

whose union is R
N \ SAT(B). Since R

N \ SAT(B) ⊆ R
N \A and Bm

∞ is
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open and connected, there is a connected component Am
∞ of R

N \A such
that Bm

∞ ⊆ Am
∞. Since ∪mB

m
∞ ⊆ ∪mA

m
∞ and ∪mB

m
∞ is M -connected,

then it is easy to see that ∪mA
m
∞ is also M -connected (and has infinite

measure). Thus

R
N \ SAT(B) = ∪mB

m
∞ ⊆ ∪mA

m
∞ ⊆ R

N \ SAT(A).

We obtain that SAT(A) ⊆ SAT(B). Since ∂ SAT(A) ⊆ ∂A, ∂ SAT(B) ⊆
∂B and A ∩B = ∅, we obtain that SAT(A) ⊆ int(SAT(B).

Since the case (ii) follows from case (i) by symmetry, we consider
case (iii). SinceA∩B = ∅, thenB is contained in a connected component,
say C, of R

N \A, which is an open set. Then C is open andM -connected,
and, thus, contained in the union of open and connected components of
R
N \ A that constitute an M -component D of R

N \ A. If D = R
N \

SAT(A), then B ∩ SAT(A) = ∅. If D ⊆ SAT(A), then B ⊆ SAT(A), a
contradiction with (iii). Thus, we conclude that

B ∩ SAT(A) = ∅.(27)

By symmetry, also

A ∩ SAT(B).(28)

Now, since SAT(A) = A ∪A0 and SAT(B) = B ∪B0, where A0, B0 are
open sets, using (27) and (28), we deduce that

SAT(A) ∩ SAT(B) = A0 ∩B0.

Thus, if SAT(A) and SAT(B) intersect, they do it in an open set, which
is of positive measure. This contradicts our assumption that SAT(A) ∩
SAT(B) = ∅ (modHN ). Therefore, SAT(A) ∩ SAT(B) = ∅.
Lemma 17. Let A, B be two indecomposable subsets of R

N of finite
perimeter. Assume that all points of A, B are of density 1 and |∂A| =
|∂B| = 0. Suppose that Sat(A) ∩ Sat(B) = ∅ (modHN ) and SAT(A) ∩
SAT(B) �= ∅. Then ∂ SAT(A) ∩ ∂ SAT(B) �= ∅.

Under the assumptions of the lemma, the condition SAT(A)∩
SAT(B) �= ∅ is equivalent to A ∩B �= ∅.
Proof: Since Sat(A)∩Sat(B) = ∅ (modHN ) we have that int(SAT(A))∩
int(SAT(B)) = ∅. Now, suppose that ∂ SAT(A) ∩ int(SAT(B)) �= ∅. We
observe that if X = Z then ∂X ⊆ ∂Z. Since SAT(A) = Sat∗(A), if
p ∈ ∂ SAT(A) ∩ int(SAT(B)), then p ∈ ∂ Sat∗(A) ∩ int(SAT(B)). Let
r > 0 be such that B(p, r) ⊆ int(SAT(B)). Then B(p, r) ∩ Sat∗(A) �= ∅.
Recall that Sat∗(A) = A ∪ ∪n,mA

m
n where An are the M -components

R
N \A of finite measure and Am

n are the (open) components de R
N \A
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such that An = ∪mA
m
n (modHN ). Thus either B(p, r) ∩ A �= ∅ or

B(p, r) ∩ Am
n �= ∅ for some n, m. Since all points of A are of density 1,

if B(p, r) ∩ A �= ∅, then |B(p, r) ∩ A| > 0. Hence, |Sat(A) ∩ Sat(B)| ≥
|A ∩ int(SAT(B))| > 0, a contradiction. If B(p, r) ∩ Am

n �= ∅, then
|Sat(A) ∩ Sat(B)| ≥ |Am

n ∩ B(p, r)| > 0. This contradiction proves
that ∂ SAT(A) ∩ int(SAT(B)) = ∅. By symmetry, also int(SAT(A)) ∩
∂ SAT(B) = ∅. Therefore ∂ SAT(A)∩ ∂ SAT(B) = SAT(A)∩ SAT(B) �=
∅.

Let A, B be two indecomposable sets of finite perimeter in R
N such

that all its points are of density 1, |∂A| = |∂B| = 0, and A ∩ B = ∅.
We have the three possibilities described in Lemma 16. If SAT(A) ∩
SAT(B) = ∅ (modHN ), then we define Q(A) = ∂ SAT(A), Q(B) =
∂ SAT(B). If SAT(A) ⊆ SAT(B) (modHN ), then SAT(A) is contained
in a M -hole H of B. Take a point p ∈ H \ SAT(A) and, by an in-
version ϕp with respect to p, we map A, B to some sets ϕp(A), ϕp(B)
such that SAT(ϕp(A)) ∩ SAT(ϕp(B)) = ∅ (modHN ). Then we define
SAT(B,H) = ϕ−1

p (SAT(ϕp(B))), SAT(A,H) = ϕ−1
p (SAT(ϕp(A))) =

SAT(A), and Q(A) = ∂ SAT(A), Q(B) = ∂ SAT(A,H). In a similar
way, we define Q(A) and Q(B) when SAT(B) ⊆ SAT(A).

Lemma 18. Let u ∈ WBV (Ω) ∩ C(Ω). Suppose that u is constant on
a neighborhood of ∂Ω. Let λ ∈ R be such that [u ≥ λ] is a set of finite
perimeter and |[u = λ]| = 0. Suppose that X is a connected component
of [u ≥ λ] which is not M -connected. Then there exist Y, Y ′ ∈ CCM (X),
Y �= Y ′, which are classically connected inside X by a continuum C ⊆
[u = λ] such that C ⊇ Q(Y ) ∪Q(Y ′).

Proof: Using the same argument used in Lemma 13, under the assump-
tions of the present lemma, X is a set of finite perimeter in R

N . Let
Z be any M -component of X with |Z| > 0. We assume that all points
of Z are of density 1 and, since ∂Z ⊆ [u = λ], we have that |∂Z| = 0.
Observe that, if A, B are two such M -components, then A ∩ B = ∅.
Suppose that A ∩ B �= ∅. If Sat(A) ∩ Sat(B) = ∅ (modHN ), then, by
Lemma 17, we have that ∂ SAT(A) ∩ ∂ SAT(B) �= ∅ and we may take
Q(A) = ∂ SAT(A), Q(B) = ∂ SAT(B), C = Q(A) ∪ Q(B). If Sat(A)
is contained in an M -hole H of B, then, by an inversion with respect
to a point p ∈ H \ SAT(A), we may reduce this case to the previous
one. The case where Sat(B) is contained in an M -hole of A is similar
to the previous one. Thus, we may assume that A ∩B = ∅, for any two
M -components A, B of X.
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Let F0 be the M -component of R
N \ X containing the infinity. By

the results of [2, Theorem 6], either i) there exist two M -components
X1, X2 of X such that ∂MXi ∩ ∂MF0 �= ∅, i = 1, 2, or ii) there is only
one of them X1, in which case, there is an M -component F1 of R

N \X
and an M -component X2 of X, X2 �= X1, such that ∂MX1 ∩ ∂MF1 �= ∅,
∂MX2 ∩ ∂MF1 �= ∅. Without loss of generality, we may assume that all
points of X1 and X2 are of density 1. Moreover, since ∂Xi ⊆ [u = λ] we
have that |∂Xi| = 0, i = 1, 2. Let Y , Y ′ be, respectively, the closures
of X1 and X2. By Lemma 12, we know that Y , Y ′ are connected. By
an inversion with respect to a point p ∈ F1, p �∈ Y ∪ Y ′, if necessary, we
may assume that Y , Y ′ are always in the situation described in i). In
particular, we have that

Sat(Y ) ∩ Sat(Y ′) = ∅ (modHN ).(29)

Then, by Lemma 16, we know that SAT(Y ) ∩ SAT(Y ′) = ∅. Since X
is connected, there exists a continuum J ⊆ X such that J ∩ Y �= ∅,
J ∩ Y ′ �= ∅. Let us define J1 = (J \ int(SAT(Y ))) ∪ ∂ SAT(Y ), and
J2 = (J1 \ int(SAT(Y ′))) ∪ ∂ SAT(Y ′). Since J ∩ SAT(Y ) ⊇ J ∩ Y �=
∅, J1 is a continuum, by Lemma 15. Now, using (29), we have that
J1 ∩ SAT(Y ′) ⊇ J ∩ SAT(Y ′) ⊇ J ∩ Y ′ �= ∅ and, therefore, J2 is a
continuum, by Lemma 15. By construction, J2 is disjoint to int(SAT(Y ))
and int(SAT(Y ′)). Let us write K = J2.

Let A be an M -component of X with |A| > 0. Recall that we may
assume that all its points are of density 1 and |∂A| = 0. We are assuming
that A ∩ Y = ∅, A ∩ Y ′ = ∅. Given such an A, by Lemma 16 applied
to A, Y we have that either A ⊆ int(SAT(Y )), or Y ⊆ int(SAT(A)),
or SAT(A) ∩ SAT(Y ) = ∅. Note that the second possibility cannot
happen, since then ∂MY would not intersect ∂MF0. Similar relations
hold between A and Y ′. Thus, the sets

I0 = {A : A is an M component of X, |A| > 0,

A ∩ SAT(Y ) = ∅, A ∩ SAT(Y ′) = ∅},
I1 = {A : A is an M component of X, |A| > 0, A ⊆ int(SAT(Y ))},
I2 = {A : A is an M component of X, |A| > 0, A ⊆ int(SAT(Y ′))},

contain all M -components of X (we assume always that all points of A
are of density 1), other than Y , Y ′.

We observe that, if A ∈ I0, by Lemma 14, the set ∂ SAT(A) is a
continuum, which is contained in [u = λ]. Let {An} be the elements of
I0 such that SAT(An) ∩K �= ∅. We define inductively a sequence Kn.
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Let K0 = K. Suppose that we have defined Ki for i ≤ n− 1. If

SAT(An) ⊆ int(SAT(Ai)) for some i < n,(30)

we define Kn = Kn−1. Thus, by Lemma 16, we may assume that, given
i < n, either SAT(Ai) ⊆ SAT(An) or SAT(An) ∩ SAT(Ai) = ∅. In this
case, we defineKn = (Kn−1\int(SAT(An)))∪∂ SAT(An). In this way, we
may discard all sets An satisfying (30). If SAT(An−1) ⊆ int(SAT(An)),
then SAT(An) ∩ ∂ SAT(An−1) �= ∅, and, thus SAT(An) ∩Kn−1 �= ∅. If
SAT(An)∩SAT(An−1) = ∅, then SAT(An)∩Kn−1 = SAT(An)∩Kn−2∪
SAT(An) ∩ ∂ SAT(An−1) ⊇ SAT(An) ∩ Kn−2. Iteratively, we get that
either SAT(An) ∩Kn−i �= ∅ or SAT(An) ∩Kn−1 ⊇ SAT(An) ∩Kn−i−1.
Since SAT(An) ∩K �= ∅, we conclude that SAT(An) ∩Kn−1 �= ∅ for all
n ≥ 1. Now, by Lemma 15, we obtain that Kn are continua for all n ≥ 1.
Moreover, for all n ≥ 1, Kn contains ∂ SAT(Y ) and ∂ SAT(Y ′). Accord-
ing to Blaschke selection Theorem, Kn has a subsequence converging in
the Hausdorff metric ([14, Theorem 3.16]). Let C be a limit ofKn. Then
C is a continuum joining Y to Y ′ contained inX ([22, vol. II, p. 111], [14,
Theorem 3.18]). Let i ∈ N. Since Kn ∩ int(SAT(Ai)) = ∅ for all n ≥ i,
and Kn ∩ int(SAT(A)) = ∅ for all A ∈ I0 such that SAT(A) ∩ K = ∅,
then C ∩ int(SAT(Ai)) = ∅ and C ∩ int(SAT(A)) = ∅ for all A ∈ I0 such
that SAT(A) ∩K = ∅. Also C ∩ int(SAT(Y )) = C ∩ int(SAT(Y ′)) = ∅.
Since the set

X ∩ [u > λ] ⊆ ∪A∈I0 int(SAT(A)) ∪ int(SAT(Y )) ∪ int(SAT(Y ′)),

we conclude that C ⊆ [u = λ].

Observe that if u ∈ WBV (Ω) ∩ C(Ω) is constant in a neighborhood
of ∂Ω then [u ≥ λ] satisfies (24) for all λ ∈ R. Let D be the set of λ ∈ R

such that [u ≥ λ] is not a set of finite perimeter or |[u = λ]| > 0. Then
D ⊂ R is a set of measure 0. Let λ �∈ D. If λ > supx∈Ω u(x), then
[u < λ] = Ω, [u ≥ λ] = ∅, λ is not a critical level and the assertion of
Theorem 7 holds. If λ ≤ infx∈Ω u(x), then [u < λ] = ∅, [u ≥ λ] = Ω and
again our assertions hold.

Let u ∈ WBV (Ω) ∩ C(Ω). Suppose that u is constant in a neigh-
borhood of ∂Ω. Let R(∂Ω) be the connected region of Ω containing ∂Ω
where u is a constant. Let us observe that, if X ∈ CCM ([u ≤ λ]) or
X ∈ CCM ([u ≥ λ]) and J ∈ EM (X) ∪ IM (X), then J ⊂⊂ Ω. Indeed,
either R(∂Ω) ⊆ X or R(Ω) ∩ X = ∅. Since we have excluded ∂Ω as
an exterior boundary, then in both cases we have that J ⊂⊂ Ω. For
simplicity of notation, let us mention that, when we write ∂MX, for a
set X like above, we exclude ∂Ω as being part of ∂MX.
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Lemma 19. Let u ∈ WBV (Ω) ∩ C(Ω). Suppose that u is constant in
a neighborhood of ∂Ω. Let λ ∈ (infΩ u, supΩ u) be such that [u ≥ λ] is
a set of finite perimeter and |[u = λ]| = 0. Let Y, Y ′ ∈ CCM ([u ≥ λ]),
Y �= Y ′. We assume that Y and Y ′ are the closures of sets with all
points of density 1 and |∂Y | = |∂Y ′| = 0. Suppose that Y , Y ′ are
classically connected inside [u ≥ λ] by a continuum C ⊆ [u = λ] such
that C ⊇ Q(Y ) ∪Q(Y ′). Then

(i) for ε ∈ {1/n : n ≥ 1} small enough, Y, Y ′ ∈ CCM ([SIεu ≥ λ]) and
are classically connected inside [SIεu ≥ λ]. Moreover SIεu = λ
on C.

(ii) Assume that |[ISεu = λ]| = 0 for any ε ∈ {1/n : n ≥ 1}. Then
for ε ∈ {1/n : n ≥ 1} small enough, Y , Y ′ are not M -connected
as subsets (i.e., are contained in different indecomposable subsets)
of [ISεu ≥ λ] but are classically connected there by C. Moreover
ISεu = λ on C.

Proof: (i) Let ε ∈ {1/n : n ≥ 1}, ε < |Y |, |Y ′|. We know that the sets
Y , Y ′ can be considered as closed sets. Since Y and Y ′ are classically
connected inside [u ≥ λ], then there is a connected component X of
[u ≥ λ] containing them. Observe that X ∈ Fε(u, x), for all x ∈ X and,
therefore, SIε(u)(x) ≥ λ for all x ∈ X. In particular, Y and Y ′ are
classically connected inside [SIεu ≥ λ].

Let us prove that Y, Y ′ ∈ CCM ([SIεu ≥ λ]). For that we prove
that ∂MY, ∂MY ′ ⊆ ∂M [SIεu < λ] (modHN−1). The argument in both
cases being similar, we shall only consider the case for Y in detail. For
HN−1-almost all p ∈ ∂MY we have D(p, [u < λ]) = D(p, [u ≤ λ]) > 0,
D(p, Y ) > 0. Since SIεu ≤ u we also have D(p, [SIεu < λ]) > 0 and,
we have D(p,RN \ [SIεu < λ]) ≥ D(p, [SIεu ≥ λ]) ≥ D(p, Y ) > 0. Thus
∂MY ⊆ ∂M [SIεu < λ] (modHN−1).

Observe that, since C ⊆ X, we have that SIε(u)(x) ≥ λ for all x ∈ C.
Now, since SIεu ≤ u and u = λ on C, then SIεu = λ on C.

(ii) As in (i), let X be a connected component of [u ≥ λ] containing
Y and Y ′. Observe that C ⊆ X. Since ISεu ≥ u and X ⊆ [u ≥ λ] we
have

X ⊆ [ISεu ≥ λ].(31)

In particular, Y , Y ′ are classically connected inside [ISεu ≥ λ].
Let us prove that Y , Y ′ are not M -connected in [ISεu ≥ λ]. We

have the three obvious possibilities: either Sat(Y ) ∩ Sat(Y ′) = ∅, or
Sat(Y ) ⊆ Sat(Y ′), or Sat(Y ′) ⊆ Sat(Y ) (modHN ). Suppose that
Sat(Y ) ∩ Sat(Y ′) = ∅. In this case, it is sufficient to prove that
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∂M SAT(Y ) ⊆ ∂M [ISεu ≤ λ] (modHN−1). Let Z ∈ CCM ([u ≤ λ])
be such that ∂MZ ∩ ∂M SAT(Y ) �= ∅ (modHN−1). Assume that ε ∈
{1/n : n ≥ 1} satisfies ε < |Z|. Let Z ′ ∈ CCM ([u ≤ λ]) be such that
∂MZ ′ ∩ ∂M SAT(Y ) �= ∅ (modHN−1). We prove that Z ′ ⊆ [ISεu ≤ λ].
Let λ′ > λ, p ∈ Z ′, and R = cc([u < λ′], p). Let us observe that Z is
classically connected to Z ′ inside [u < λ′]. Indeed, since ∂M SAT(Y ) ⊆
∂ SAT(Y ), then ∂MZ ∩ ∂ SAT(Y ) �= ∅ and ∂MZ ′ ∩ ∂ SAT(Y ) �= ∅. Since
∂ SAT(Y ) ⊆ ∂Y ⊆ [u = λ], then the set Z is classically connected
to Z ′ inside [u < λ′]. Hence Z ⊆ R, and, thus, |R| > ε. We have
that R ∈ Fε(u, p). Thus ISεu(p) ≤ λ′ for all λ′ > λ. We obtain that
ISεu(p) ≤ λ. In other words, Z ′ ⊆ [ISεu ≤ λ] for all Z ′ ∈ CCM ([u ≤ λ])
such that ∂MZ ′ ∩ ∂M SAT(Y ) �= ∅ (modHN−1). This implies that
∂M SAT(Y ) ⊆ ∂M [ISεu ≤ λ]. We conclude that Y and Y ′ are not
M -connected inside [ISεu ≥ λ].

Now we consider the case Sat(Y ) ⊆ Sat(Y ′), the other case being
similar. Let J−(Y ′) be the internal M -boundary of Y ′ containing Y .
Now, to prove that Y and Y ′ are not M -connected inside [ISεu ≥ λ],
it is sufficient to prove that J−(Y ′) ⊆ ∂M [ISεu ≤ λ] (modHN−1). The
proof follows the same lines as the above one with J−(Y ′) in place of
∂M SAT(Y ). Indeed, it can be reduced to it by an inversion in R

N that
sends a point in the hole of Y ′ containing Sat(Y ) to infinity. Just observe
that u = λ on J−(Y ′).

Let us prove that ISεu = λ on C. First, observe that, by Propo-
sition 2, λ = u(p) ≤ ISεu(p), for all p ∈ C. Without loss of gener-
ality, by doing an inversion in R

N if necessary, we may assume that
Sat(Y ) ∩ Sat(Y ′) = ∅ (modHN ). Let p ∈ C. Let Z ∈ CCM ([u ≤ λ]) be
such that ∂MZ ∩ ∂M SAT(Y ) �= ∅ (modHN−1). By Lemma 12, we may
assume that Z is closed and connected. Let ε ∈ {1/n : n ≥ 1}, ε < |Z|.
Let λ′ > λ, R = cc([u < λ′], p). Since ∂M SAT(Y ) ⊆ ∂ SAT(Y ) ⊆ C ⊆
[u = λ], then Z is connected to p inside [u < λ′]. Hence, Z ⊆ R and,
thus, |R| > ε. We have that R ∈ Fε(u, p). We obtain that ISεu(p) ≤ λ′
and this is true for all λ′ > λ. We have then ISεu(p) ≤ λ. Then
ISεu(p) = λ for all p ∈ C.

Remark 8. The argument above can be repeated for a finite number of
M -boundaries of Y and Y ′ but not for all the measure theoretic bound-
ary, because there may be a countable family of sets Z ∈ CCM ([u ≤ λ])
such that ∂MZ ∩ ∂M SAT(Y ) �= ∅ (modHN−1) and ε > 0 cannot work
for all of them. It may be small indecomposable sets of [u ≤ λ] bounding
Y and/or Y ′.
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Lemma 20. Let v ∈ WBV (Ω) ∩ C(Ω). Suppose that v is constant in
a neighborhood of ∂Ω. Let λ ∈ (infΩ v, supΩ v) be such that [v ≥ λ]
is a set of finite perimeter and |[v = λ]| = |[ISεv = λ]| = 0 for any
ε ∈ {1/n : n ≥ 1}. Let Y, Y ′ ∈ CCM ([v ≥ λ]), Y �= Y ′ be classically
connected inside [v ≥ λ]. We assume that Y and Y ′ are the closures
of sets with all points of density 1 and |∂Y | = |∂Y ′| = 0. Suppose
that Y is classically connected to Y ′ inside [v ≥ λ] by a continuum
C ⊆ [v = λ] such that C ⊇ Q(Y ) ∪Q(Y ′). Let w = ISεv, x ∈ C. Then
η+(w, x, λ) = λ for ε ∈ {1/n : n ≥ 1} be small enough.

Proof: Recall that the sets Y , Y ′ are closed and connected and satisfy
∂Y, ∂Y ′ ⊆ [v = λ]. Moreover, by Lemma 19, ii), ISεv = λ on C. Since
|[v = λ]| = 0, we have |Y | = |{z ∈ Y : v(z) > λ}|. Let α > λ be such that
|Y ∩[v ≥ α]| > 0, |Y ′∩[v ≥ α]| > 0 and [v ≥ α] is a set of finite perimeter.
Let Yα, Y ′

α be (classical) components of Y ∩ [v ≥ α], Y ′ ∩ [v ≥ α]
of > 0 measure. Note that Yα, Y ′

α ⊆ Y and Yα = cc([v ≥ α], Yα),
Y ′
α = cc([v ≥ α], Y ′

α). Let ε ∈ {1/n : n ≥ 1} be such that |Yα|, |Y ′
α| > ε.

Let λ < µ ≤ α. Let Yµ = cc([v ≥ µ], Yα), Y ′
µ = cc([v ≥ µ], Y ′

α).
Observe that Yµ ⊆ Y , Y ′

µ ⊆ Y ′. Since µ ≤ v ≤ ISεv on Yµ ∪Y ′
µ, the sets

Y ε
µ := cc([ISεv ≥ µ], Yµ), Y ε,′

µ := cc([ISεv ≥ µ], Y ′
µ) contain Yµ, resp. Y ′

µ,
for every λ < µ ≤ α. Observe that, since Yα ⊆ Yµ, then also Y ε

α ⊆ Y ε
µ .

By symmetry, without loss of generality, we may assume that either
Sat(Y )∩Sat(Y ′) = ∅ or Sat(Y ) ⊆ Sat(Y ′) (modHN ). In any case Y ⊂⊂
Ω. Let x ∈ C. Suppose that η+(w, x, λ) > λ where η+(w, ., .) denotes
the η+, defined in Section 2, corresponding to w. Let λ < µ < µ̂ <
η < η+(w, x, λ). Let Xλ,ε,x = cc({z ∈ Ω : w(z) ∈ [λ, η+(w, x, λ)]∗}, x).
Let Xλ,η = {z ∈ Xλ,ε,x : λ ≤ w(z) ≤ η} (a connected set). Note that
{z ∈ Xλ,ε,x : µ ≤ w(z) ≤ µ̂} is a nonempty set.

Since Yµ ⊆ Y and Y ε
µ = cc([w ≥ µ], Yµ), we have that Y ∩ Y ε

µ �= ∅.
Hence, Y ∪ Y ε

µ is connected. Let p0 ∈ ∂M SAT(Y ), p1 ∈ Y ε
µ , and let K

be a continuum contained in Y ∪ Y ε
µ joining p0 and p1.

Now, we claim that there is a point p ∈ Y ∩Xλ,η such that µ ≤ w(p) ≤
µ̂. Let L0 = {y ∈ K : w(y) < µ}, L1 = {y ∈ K : w(y) > µ̂}. Observe
that both are open sets in K and L0 ⊆ Y . Since w(p0) = λ < µ, and
w(p1) ≥ µ, then p0 ∈ L0, p1 �∈ L0. Then L0 is a neighborhood of p0 inK.
We observe that L0 ⊆ [λ ≤ w ≤ η]. Indeed, since L0 ⊆ K ⊆ Y ∪Y ε

µ , then
w(y) ≥ λ for all y ∈ L0, and, on the other hand, w(y) < µ < η, for all
y ∈ L0. Given k ≥ 1, there is a finite sequence of points pk0 , p

k
1 , . . . , p

k
Nk

in K with pk0 = p0, pkNk
= p1, and d(pki , p

k
i+1) <

1
k . Let jk be the first

index such that pki ∈ L0 and pki+1 �∈ L0. Observe that j ≤ Nk − 1. Since
K is a compact set, we may assume that pkjk

→ p as k → ∞. Then,
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also pkjk+1 → p. Since w(pkjk
) < µ and w(pkjk+1) ≥ µ, we have that

w(p) = µ. On the other hand, p ∈ L0 ⊆ [λ ≤ w ≤ η], and, being limit
of points not in L0, then p �= p0. Let m ≥ 1, and let k0 ≥ m be such
that |pkjk

− p| < 1
m for all k ≥ k0. Recall that pki ∈ L0 for all i ≤ jk and

d(pki , p
k
i+1) ≤ 1

k ≤ 1
m for all i. Let γk be the poligonal joining pki to pki+1

for all 0 ≤ i ≤ jk. Then supp∈γk
d (p, L0) < 1

m . Letting m → ∞, and
taking a subsequence, if necessary, we may assume that γk converges to
some continuum γ ⊆ L0 ⊆ Y joining p0 to p ([14, Theorems 3.16 and
3.18], [22, vol. II, p. 111]). We conclude that p ∈ Y ∩Xλ,η. In a similar
way we obtain that there is some q ∈ Y ′ ∩Xλ,η such that µ ≤ w(q) ≤ µ̂.
Here we work with the M -boundary J(Y ′), being J(Y ′) = ∂M SAT(Y ′),
if Sat(Y )∩ Sat(Y ′) = ∅, or J(Y ′) being the external M -boundary of the
hole of Y ′ containing Y (thus, an internal boundary of Y ′).

Summarizing, we have shown that the sets Y ε
µ,µ̂ := {z ∈ Y ∩ Xλ,η :

µ ≤ w(z) ≤ µ̂}, Y ε,′
µ,µ̂ := {z ∈ Y ′ ∩Xλ,η : µ ≤ w(z) ≤ µ̂} are non empty.

Suppose that Y ε
µ,µ̂ and Y ε,′

µ,µ̂ are classically connected inside Xλ,ε,x ∩
Uµ,µ̂[w]. Let Q be a continuum connecting Y ε

µ,µ̂ to Y ε,′
µ,µ̂ and contained in

Xλ,ε,x ∩ Uµ,µ̂[w]. Observe that w ≥ µ on Q. Thus Q ⊆ {p ∈ Ω : w > λ}
which is an open set in Ω, because ISεv is continuous in Ω. Thus,
Y would be classically connected and also M -connected to Y ′ inside
[ISεv ≥ λ] by an open set. In contradiction with the fact that Y , Y ′

are contained in two different indecomposable sets of [ISεv ≥ λ], a fact
proved in Lemma 19. Thus Y ε

µ,µ̂ and Y ε,′
µ,µ̂ are not connected inside

Xλ,ε,x, a contradiction since this last set is a monotone section of the
topographic map of w.

Proof of Theorem 6: By Lemma 13, we know that SIεu ∈ WBV (Ω) ∩
C(Ω). Moreover, if ε < |R(∂Ω)|, then SIεu = u = constant in R(Ω). Let
λ ∈ (infΩ u, supΩ u) be such that [u ≥ λ], [SIεu ≥ λ] are sets of finite
perimeter, for every ε ∈ {1/n : n ≥ 1}, and |[u = λ]| = |[SIεu = λ]| =
|[ISδSIε = λ]| = 0 for every ε, δ ∈ {1/n : n ≥ 1}. We have thus excluded
a set of levels of measure zero. Assume that λ is a critical level of u.
By Lemma 18 there exist Y, Y ′ ∈ CCM ([u ≥ λ]) which are classically
connected inside [u ≥ λ] by a continuum C ⊇ Q(Y )∪Q(Y ′), C ⊆ [u = λ].
By Lemma 19, i), Y, Y ′ ∈ CCM ([SIεu ≥ λ]) and are classically connected
in [SIεu ≥ λ] by C ⊆ [SIεu = λ]. Thus, for ε small enough, the
assumptions of Lemma 20 are satisfied. Hence η+(ISδSIεu, x, λ) = λ
for x ∈ C and ε, δ ∈ {1/n : n ≥ 1} small enough. Since these levels form
a countable set, the theorem is proved.
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Lemma 21. Let u ∈ WBV (Ω) ∩ C(Ω). Suppose that u is constant in
a neighborhood of ∂Ω. Let λ ∈ (infΩ u, supΩ u] be such that [u ≥ λ] is a
set of finite perimeter and |[u = λ]| = 0.

(i) Let X ∈ CCM ([u ≤ λ]) and let {J} = EM (X) (resp. J ∈ IM (X)).
Suppose that J �∈ IM ([u ≥ λ]) (resp. J �∈ EM ([u ≥ λ])). Then
there exist Y, Y ′ ∈ CCM ([u ≥ λ]), Y �= Y ′, which are classically
connected by a continuum C ⊆ [u = λ].

(ii) Let X ∈ CCM ([u ≥ λ]) and let {J} = EM (X) (resp. J ∈ IM (X)).
Suppose that J �∈ IM ([u ≤ λ]) (resp. J �∈ EM ([u ≤ λ])). Then
there exist Y, Y ′ ∈ CCM ([u ≥ λ]), Y �= Y ′, which are classically
connected by a continuum C ⊆ [u = λ], where Z ∈ CCM ([u ≤ λ]).

Proof: i) Let X ∈ CCM ([u ≤ λ]) and let {J} = EM (X). If J �∈
IM ([u ≥ λ]) then there exist Y, Y ′ ∈ CCM ([u ≥ λ]), Y �= Y ′, such that
HN−1(J ∩ ∂MY ) > 0, HN−1(J ∩ ∂MY ′) > 0. Since J = ∂M SAT(X) ⊆
∂ SAT(X) ⊆ [u = λ] and ∂ SAT(X) is a continuum, then Y and Y ′ are
classically connected inside [u ≥ λ]. If J ∈ IM (X) but J �∈ EM ([u ≥ λ])
the same argument proves the result.

ii) Let X ∈ CCM ([u ≥ λ]) and {J} = EM (X). Suppose that J �∈
IM ([u ≤ λ]). Then there exist Z,Z ′ ∈ CCM ([u ≤ λ]) (not equal)
such that HN−1(J ∩ ∂MZ) > 0, HN−1(J ∩ ∂MZ ′) > 0. Since J =
∂M SAT(X) ⊆ ∂ SAT(X) ⊆ [u = λ] and ∂ SAT(X) is a continuum, then
Z and Z ′ are classically connected inside [u ≤ λ] by ∂ SAT(X) ⊂⊂ Ω. If
J ∈ IM (X) but J �∈ EM ([u ≤ λ]) then we arrive at the same conclusion
with the same argument.

Let J(Z) be the M -boundary of the (external or internal) hole of Z,
J(Z) ∈ EM (Z) ∪ IM (Z) such that HN−1(J ∩ J(Z)) > 0. If J(Z) ⊆ J ,
then J(Z) = J since both are boundaries of simple sets ([2, Proposi-
tion 7]). SinceHN−1(∂MZ ′∩J) > 0 this would imply thatHN−1(∂MZ∩
∂MZ ′) > 0, a contradiction. Hence, J(Z) is not contained in J . Thus
there are M -connected components Y = X and Y ′ of [u ≥ λ] such that
HN−1(J(Z) ∩ ∂MY ′) > 0 (recall that also HN−1(J(Z) ∩ ∂MY ) > 0).
Now, observe that J(Z) = ∂M SAT(Z) if J(Z) ∈ EM (Z), and J(Z) =
∂M SAT(Z,H) if J(Z) ∈ IM (Z) coincides with the external boundary
of anM -hole H of Z, where SAT(Z,H) denotes the saturation of Z with
the hole H taken as unboundedM -component of its complement. In the
first case, we let C = ∂ SAT(Z), in the second case, C = ∂ SAT(Z,H).
Since C is a continuum and J(Z) ⊆ C, then Y can be classically con-
nected to Y ′ by a continuum C ⊆ [u = λ].
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Proof of Proposition 7: Let Λ1 be the set of λ ∈ R such that [u ≥ λ],
[SIεu ≥ λ] are sets of finite perimeter, and |[u = λ]| = |[SIεu = λ]| =
|[ISδSIεu = λ]| = 0, for all ε, δ ∈ {1/n : n ≥ 1}. Observe that |R\Λ1| =
0. Let Φ be the set of λ ∈ Λ1 such that η+(ISδSIεu, x, λ) = λ for some
x ∈ Ω and some ε, δ ∈ {1/n : n ≥ 1}. By Theorem 2, Φ is a countable
set. Thus Λ := Λ1 \ Φ satisfies |R \ Λ| = 0. By Lemma 21, Lemma 19,
and Lemma 20, if λ ∈ Λ, we have EM ([u ≥ λ]) = IM ([u < λ]) and
IM ([u ≥ λ]) = EM ([u < λ]).

Remark 9. Looking for a connected filter which conmutes with contrast
inversion, S. Masnou [26] introduced the notion of grain filter proving
that it is a morphological filter which conmutes with contrast inversion,
i.e., with the map which associates to an image u the image −u, in case of
smooth images (indeed for N -times differentiable images defined on R

N ).
Since the grain filter is stable with respect to the supremum norm (indeed
it satisfies properties ii) and iv) of Proposition 2), by a limit process,
his result immediately implies that the grain filter can be extended to
continuous functions and it commutes with contrast inversion. Such
commutation result could also be deduced Theorem 7 but we shall not
pursue this here. It has also been deduced by P. Monasse [30] in a
different framework, when the filter is defined on continuous functions
using the classical notion of connectedness. By the results of this paper
both definitions of the grain filter coincide for continuous functions.
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