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A SHORT PROOF OF A THEOREM OF BRODSKĬI

James Howie

Abstract
A short proof, using graphs and groupoids, is given of Brodskĭı’s
theorem that torsion-free one-relator groups are locally indicable.

1. Introduction

In 1980, Sergei Brodskĭı announced [2] the result, previously conjec-
tured by Gilbert Baumslag [1], that every torsion-free one-relator group
is locally indicable, that is, every nontrivial, finitely generated subgroup
has an infinite cyclic homomorphic image. His algebraic proof was pub-
lished in full in 1984 [3]. Around the same time, I independently obtained
Brodskĭı’s theorem, and published a slightly more general version in [7],
with a topological proof: a one-relator quotient of a free product of lo-
cally indicable groups is locally indicable, provided the relator is neither
a proper power nor conjugate to an element of one of the free factors.
A further version of the theorem was later proved by John Hempel [5]:
the quotient of a surface group by a single relator that is not a proper
power is locally indicable.

This paper arose as a response to requests from colleagues —notably
Warren Dicks— for a proof of Brodskĭı’s theorem more accessible than
those in [3], [7]. In particular the topology used in [7] seemed to cause
some difficulty. Here I present a straightforward proof of the theorem,
using groupoids. It is essentially my proof from [7], restricted to the
original case of a torsion-free one-relator group, with as much of the
topology as possible translated into algebra. The only remaining topol-
ogy is the notion of an infinite cyclic cover of a graph or groupoid. For
more detailed background material on graphs and groupoids, the best
reference is [6], but for completeness I have included some elementary
definitions in §2 below, and a description of the construction of infinite
cyclic covers in §3.
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2. Preliminaries

A graph Γ consists of a set V = V (Γ) of vertices and a set E = E(Γ)
of edges, together with a map i : E → V (the initial vertex map), and
a fixed-point-free involution e �→ e−1 : E → E. The terminal vertex
map t : E → V is defined by t(e) = i(e−1). A path in Γ from the
vertex u to the vertex v is a sequence e1, . . . , en of edges, with i(e1) = u,
i(ej) = t(ej−1) for 2 ≤ j ≤ n, and t(en) = v. (We also call u the
initial vertex, and v the terminal vertex of P .) The path P is reduced
if ej �= e−1

j−1 for all 2 ≤ j ≤ n, and closed if u = v. A reduced closed
path is cyclically reduced if, in addition, en �= e−1

1 . A closed path is a
proper power if it is obtained by repeating a closed path two or more
times. A graph is connected if any two vertices are joined by a path.
The set of all reduced paths forms a groupoid F (Γ) under juxtaposition
(followed by cancellation of any resulting inverse pairs of consecutive
edges), called the free groupoid on Γ (see [6] for details). The set of all
reduced closed paths at a vertex v forms a group π(Γ, v), called the path
group, or fundamental group, of Γ (based at v). It is equal to the vertex
group at v of the groupoid F (Γ). It is a free group, and every free group
arises in this way.

A presentation 〈Γ | R〉 of a groupoid G consists of:

1) a graph Γ; and
2) a set R of cyclically reduced closed paths in Γ,

such that G = F (Γ)/N(R), where N(R) denotes the smallest normal
subgroupoid containing R. The presentation is staggered if there are
linear orderings on the sets R and E = E(Γ) which are compatible in
the sense that, if α, β ∈ R with α < β, then max(α) < max(β) and
min(α) < min(β), where max and min denote the greatest and least
edges occurring in a path (under the given linear ordering on E).

A group G is indicable if it admits an infinite cyclic homomorphic im-
age. It is locally indicable if every non-trivial, finitely generated subgroup
is indicable.
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3. The main result

Theorem 3.1. Let G be a groupoid given by a staggered presenta-
tion 〈Γ | R〉 in which no element of R is a proper power. Then every
vertex group of G is locally indicable.

Brodskĭı’s theorem is the special case of Theorem 3.1 in which V (Γ)
and R are singleton sets (and E(Γ) has an arbitrary ordering).

Corollary 3.2. Any torsion-free subgroup of a one-relator group is lo-
cally indicable.

Proof: Let G = 〈X | rm〉 be a one-relator group, where m ≥ 2 and r is
not a proper power. Let Ḡ = 〈X | r〉 be the corresponding torsion-free
one-relator group. Then there is a short exact sequence

1 → F → G → Ḡ → 1

in which F is a free product of cyclic groups [4]. If H is a torsion-free
subgroup of G, then H ∩ F is free, so locally indicable. Hence H is an
extension of a locally indicable group by a locally indicable group, so is
locally indicable.

Proof of Theorem 3.1: Suppose the theorem were false. Then for some
G = 〈Γ | R〉 as in the theorem, and some vertex v ∈ V (Γ), there would
be a finitely generated, non-indicable subgroup H �= {1} of the ver-
tex group Gv of G at v. Suppose H is generated by reduced closed
paths γ1, . . . , γn at v. Since H is non-indicable, it has finite abelian-
isation, and so there are n words W1, . . . ,Wn in the free group on n
generators x1, . . . , xn, such that:

1) the abstract group 〈x1, . . . , xn | W1, . . . ,Wn〉 has finite abelianisa-
tion; and

2) each path Wj(γ1, . . . , γn) (1 ≤ j ≤ n) belongs to N(R).
Because of 2) there is an identity:

Wj(γ1, . . . , γn) = (δj,1αj,1δ
−1
j,1 ) · · · (δj,m(j)αj,m(j)δ

−1
j,m(j))(1)

for each j, where each αj,k is an element of R or its inverse, and each δj,k

is a path in Γ from v to the initial (and terminal) vertex of αj,k. We will
refer to the collection of paths γj , words Wj and identities (1) as a datum,
∆ say. There is nothing in the definition of a datum which enforces the
nontriviality of the subgroup H generated by the γj , so data exist for
the trivial subgroup also. In fact, we will prove the theorem by showing
that, for any datum as above, the corresponding subgroup H vanishes.
We will do this by induction on L(∆) −M(∆), where L(∆) is the sum
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of the lengths of all the paths δj,k and αj,k, and M(∆) is the number
of distinct vertices visited by these paths. Clearly M(∆) ≤ L(∆), so
induction on L(∆) −M(∆) makes sense.

The first step is to replace Γ by the smallest subgraph Γ0 containing all
the paths δj,k and αj,k (and hence all the γj), and R by the subset R0 =
{αj,k | 1 ≤ j ≤ n, 1 ≤ k ≤ m(j)}. Note that Γ0 is a finite graph, and
R0 is a finite set. This gives a new (finite) presentation 〈Γ0 | R0〉 of a
groupoid G0; the paths γj generate a subgroup H0 of G0; the inclusion
of Γ0 in Γ induces a natural homomorphism G0 → G which maps H0

onto H; and the presentation of G0 is staggered under the restriction of
the orders on E(Γ) and R to E(Γ0) and R0 respectively. In particular,
if we prove that H0 = {1}, then it follows that H = {1}, as desired.

From now on, we assume that G = G0, etc.

Case 1: Assume that the vertex group Gv of G at v is indicable.

Choose an epimorphism Gv → Z of groups and extend it to an epi-
morphism θ : G → Z of groupoids. Corresponding to θ we construct
infinite cyclic coverings Γ′ of Γ and G′ of G as follows. Firstly we de-
fine V (Γ′) := V (Γ) × Z; E(Γ′) := E(Γ) × Z; i(e, n) := (i(e), n) and
(e, n)−1 := (e−1, n + θ(e)) to get a graph Γ′. The projections onto the
first coordinates determine a graph homomorphism π : Γ′ → Γ, called a
covering projection. This satisfies the (easily verified) path lifting prop-
erty : given any path P in Γ, beginning at a vertex v, say, and any
integer n, there is a unique path Pn in Γ′, beginning at (v, n), with
π(Pn) = P . (We call Pn the lift of P beginning at (v, n).) If P ends at
a vertex u, then Pn ends at (u, n+ θ(P )). In particular, for each r ∈ R,
each rn is a closed path, since r is closed and θ(r) = 0. Let R′ be the
set {rn | r ∈ R, n ∈ Z} of closed paths in Γ′, and define G′ to be the
groupoid 〈Γ′ | R′〉.

Since H is non-indicable, we must have θ(H) = 0. Hence each path γj

lifts to a closed path γ′
j at v′ := (v, 0). If δ′j,k is the lift of δj,k that begins

at v′, and α′
j,k is the lift of αj,k that begins at the terminal vertex of

δj,k, then we have identities

Wj(γ′
1, . . . , γ

′
n) = (δ′j,1α

′
j,1(δ

′
j,1)

−1) · · · (δ′j,m(j)α
′
j,m(j)(δ

′
j,m(j))

−1)(2)

for each 1 ≤ j ≤ n.

We introduce linear orderings on E(Γ′) and R′ by:

(e, n) < (f,m) if e < f or if e = f and n < m;
rn < sm if r < s or if r = s and n < m.
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It is clear that these are compatible, and hence that 〈Γ′ | R′〉 is a stag-
gered presentation.

Let H ′ be the subgroup of G′ generated by the paths γ′
j (1 ≤ j ≤ n),

and let ∆′ be the datum consisting of the γ′
j , Wj and identities (2). Then

H ′ is non-indicable, by the identities (2), and H ′ is mapped onto H by
π. We show that the inductive hypothesis applies to H ′. It follows that
H ′, and hence H, vanishes.

Clearly L(∆′) = L(∆). Let Γ1 be the smallest subgraph of Γ′ con-
taining all the paths δ′j,k and α′

j,k. Then M(∆′) = |V (Γ1)| and M(∆) =
|V (Γ)|. Moreover, Γ1 is mapped surjectively onto Γ by π, and it suf-
fices to show that this surjection is proper on vertices. If not, then by
construction the restriction of π to Γ1 must be bijective both on edges
and on vertices, so a graph isomorphism Γ1 → Γ. But there is at least
one closed path β in Γ at v with θ(β) = 1. Under the graph isomor-
phism π−1 : Γ → Γ1, β is mapped onto the unique path β′ beginning at
v′ = (v, 0) such that π(β′) = β. But by definition β′ ends at (v, θ(β)) =
(v, 1) �= (v, 0). Hence (v, 0), (v, 1) ∈ V (Γ1) with π(v, 0) = π(v, 1) = v,
contradicting the assumption that π : V (Γ1) → V (Γ) is injective.

This contradiction completes the proof in Case 1.

Case 2: Now assume that Gv is not indicable.

Note that the argument in Case 1 shows that this must include the
initial case of the induction.

The proof in this case is a second induction, this time on the number
of elements in the relation set R. If R = ∅, then G = F (Γ) is a free
groupoid, so Gv is a free group. But Gv is also non-indicable, so Gv =
{1} and hence H = {1}.

If R = {r} is a singleton set, then Gv is a one-relator group. Since
Gv is non-indicable, it must be finite cyclic, and so π(Γ, v) is cyclic.
In other words, Γ has first Betti number 1, and so contains a single
nontrivial cycle. Since r is cyclically reduced and not a proper power,
r is this cycle (traversed in one of the two possible directions), so again
H = Gv = {1}. Moreover, note that each edge in r occurs precisely once
in r.

For the general case, we take the slightly stronger property noted
above to be the inductive hypothesis: namely that Gv = {1} and every
edge occurring in any relation r ∈ R occurs precisely once in r.
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Now suppose that rmax is the greatest relation in R (with respect to
the given linear ordering). Let e = max(rmax). Suppose first that Γ′′ =
Γ\{e} is connected. Then G′′ = 〈Γ′′ | R\{rmax}〉 cannot have indicable
vertex groups, for then so would G. By induction each vertex group
of G′′ is trivial, and each edge occurring in each relator occurs precisely
once in that relator. In particular f = min(rmin) occurs precisely once in
rmin, where rmin is the least relator in R\{rmax} (and hence in R). Thus
G2 = 〈Γ\{f} | R\{rmin}〉 is isomorphic to G, so has nonindicable vertex
groups. By inductive hypothesis the vertex groups of G2 are trivial, and
each edge occurring in any of its relators occurs precisely once in that
relator. Hence the same is true for G, and we are done.

A similar argument works if we suppose that G′′ has two compo-
nents Γ3 and Γ4, say. For each relator other than rmax must be a path
in one of Γ3, Γ4, so R \ {rmax} splits as a disjoint union R3 ∪ R4, and
we have two groupoids G3 = 〈Γ3 | R3〉 and G4 = 〈Γ4 | R4〉. Since G
has nonindicable vertex groups, so does at least one of G3, G4 (say G3).
Now R3 cannot be empty, for then Γ3 would be a tree, and no cyclically
reduced closed path could contain e = max(rmax), a contradiction. Now
apply the same argument as above, taking rmin to be the least relator in
R3.

This completes the proof.
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