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AN ENDPOINT LITTLEWOOD-PALEY
INEQUALITY FOR BVP ASSOCIATED WITH
THE LAPLACIAN ON LIPSCHITZ DOMAINS

P. Auscher and Ph. Tchamitchian

Abstract

We prove a commutator inequality of Littlewood-Paley type be-
tween partial derivatives and functions of the Laplacian on a Lips-
chitz domain which gives interior energy estimates for some BVP.
It can be seen as an endpoint inequality for a family of energy
estimates.
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1. Introduction

Let Ω be a Lipschitz connected domain in R
n. Consider the heat

equation

∂u

∂t
− ∆u = 0 in Q = Ω × (0,+∞),

u(0) = f on Ω,

where ∆ denotes the Laplacian in Ω with Dirichlet or Neumann boundary
condition and u vanishes as t goes to ∞. That is u satisfies either a
Dirichlet or Neumann boundary condition on the lateral boundary of Q.

Simple integration by parts gives us the following energy estimate∫
Q

|∇xu(X)|2 dX =
1
2

∫
Ω

|f(x)|2 dx =
1
2
‖f‖2

2,

where X = (x, t) ∈ Q. If f happens to be smoother then similar weighted
estimates of Littlewood-Paley type can be obtained via functional cal-
culus ∫

Q

|∇xu(X)|2 dX

η(X)s
≤ cs‖f‖2

s,

where η(X) = t is the distance of X = (x, t) to the bottom boundary
of Q and ‖f‖s = ‖(−∆)s/2f‖2 which is roughly a semi-norm on Hs(Ω).
This holds for 0 ≤ s < 1. A proof will be given later for convenience.

This proof shows that cs blows up as s ↑ 1. In fact, this inequality does
fail for s = 1. The question is whether a suitable correction can be made
on u to obtain an endpoint estimate. In this case, one imposes f to be in
H1(Ω), and at first sight, it seems quite natural to compare ∇xu with ∇f
at least for small time but the integral

∫ 1

0

∫
Ω
|et∆∇f(x) − ∇f(x)|2 dxdt

t
diverges in general. A better correction is to take instead of ∇f the
solution v of the heat equation with initial data ∇f . It turns out as we
will show that∫

Q

|∇xu(X) − v(X)|2 dX

η(X)
≤ c

∫
Ω

|∇f(x)|2 dx.

Using semigroup notations, we have forX=(x, t) ∈ Q, u(X) = (et∆f)(x)
and v(X) = (et∆∇f)(x). This inequality amounts to the commutator
inequality

(1)
∫ ∞

0

∫
Ω

|[∇, et∆]f(x)|2 dxdt
t

≤ c

∫
Ω

|∇f(x)|2 dx,

where [A,B] = AB −BA.
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A similar phenomenon appears with those harmonic functions on Q
solutions of

∂2u

∂t2
+ ∆u = 0 in Q = Ω × (0,+∞),

u(0) = f on Ω,

with Dirichlet or Neumann condition on the lateral boundary of Q and
u going to 0 at ∞. One has for s ∈ [0, 1),

∫
Q

η(X)2(1−s)|∇xu(X)|2 dX

η(X)
≤ cs‖f‖2

s,

and for s = 1, correcting u with the harmonic function v taking values
∇f on Ω we will obtain

(2)
∫

Q

|∇xu(X) − v(X)|2 dX

η(X)
≤ c‖∇f‖2

2.

This amounts to studying another commutator: [∇x, e
−t(−∆)1/2

].

Both inequalities (1) and (2) can be seen from different viewpoints:
they are either endpoint estimates in a family of Littlewood-Paley es-
timates and or a measure of the defect of the semigroups of not being
convolution operators. It should be observed that, if Ω = R

n, both
semigroups are convolution operators and the commutators vanish. We
also suspect some connections with the Hodge theory for the Dirichlet
or Neumann Laplacian on Ω. Such estimates arose in connection with
our work [2] on the square roots of second order elliptic divergence op-
erators on Lipschitz domains for which we had to understand this defect
precisely.

This paper is organised as follows. In Section 2, we state the main
theorem. We explain the result in the case of the upper half-space in
Section 3. Then we prove it for special Lipschitz domains in Section 4
and for bounded Lipschitz domains in Section 5. We conclude with other
commutators in Section 6.

We want to thank S. Hofmann and A. McIntosh with whom we have
discussed these topics.
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2. Statement of the main result

As we shall see in Section 6, the commutators introduced above
have the same nature as the one defined in terms of the resolvent fam-
ily Rt = (1 − t2∆)−1 for t > 0. Specific features of potential theory
forces us to use resolvents. Recall that for given f ∈ L2(Ω), u = Rtf is
the unique element in V such that∫

Ω

uv + t2
∫

Ω

∇u · ∇v =
∫

Ω

fv, ∀ v ∈ V,

so that
‖Rtf‖2

2 + t2‖∇Rtf‖2
2 ≤ ‖f‖2

2

is obtained by letting v = u. Here and thereafter, ∇ is the n-tuple of
partial derivatives ∂

∂xj
, 1 ≤ j ≤ n, defined on V . Also, V = H1

0 (Ω) in
the case of the Dirichlet Laplacian, and V = H1(Ω) in the case of the
Neumann Laplacian.

Before moving on, let us recall some basic facts for the square root of
−∆. By a straightforward integration by parts, we have

(3) ‖(−∆)1/2f‖2 = ‖∇f‖2, ∀ f ∈ V.

Since (−∆)1/2V is dense in L2(Ω), this means that for all j = 1, . . . , n,
∂

∂xj
(−∆)−1/2 extends to a bounded operator in L2(Ω) with norm equal to

1. These operators are commonly called the Riesz transforms associated
to the Laplacian.

Let h ∈ H1(Ω) with compact support and f ∈ (−∆)1/2V . Then

(4)
〈
(−∆)−1/2 ∂h

∂xj
, f

〉
=

〈
∂h
∂xj

, (−∆)−1/2f
〉

= −
〈
h, ∂

∂xj
(−∆)−1/2f

〉
where the last equality comes from Green’s formula. By the boundedness
of ∂

∂xj
(−∆)−1/2 and density

(5) ‖(−∆)−1/2 ∂h
∂xj

‖2 ≤ ‖h‖2.

Thus, (−∆)−1/2 ∂
∂xj

also extends to a bounded operator on L2(Ω).

Next, introduce the commutator

Ct = [∇, Rt]

between the partial derivatives and the resolvent of ∆, that is

Ctf =
(

∂

∂xj
(1 − t2∆)−1f − (1 − t2∆)−1 ∂f

∂xj

)
1≤j≤n



Commutator estimates for Laplacians on domains 689

for f ∈ V . By definition ‖Rt∇f‖2 ≤ ‖∇f‖2 is granted; we also have
‖∇Rtf‖2 ≤ ‖∇f‖2. Indeed, since functions of ∆ commute

(6) ‖∇Rtf‖2 = ‖(−∆)1/2Rtf‖2 = ‖Rt(−∆)1/2f‖2

≤ ‖(−∆)1/2f‖2 = ‖∇f‖2.

Hence ‖Ctf‖2 ≤ 2‖∇f‖2. The cancellation in the commutator brings a
better result.

Theorem 1. We have

(7)
∫ ∞

0

∫
Ω

|Ctf(x)|2 dxdt
t

≤ c

∫
Ω

|∇f(x)|2 dx, f ∈ V.

Here and from now on V = H1
0 (Ω) for a Dirichlet boundary condition

and V = H1(Ω) for a Neumann boundary condition.

Remark. The constant c depends only on the Lipschitz character of
Ω when Ω is a special Lipschitz domain (see Section 4). When Ω is
a bounded Lipschitz domain, the proof gives a right hand side of the
form c(

∫
Ω
|∇f(x)|2 dx+ d−2

∫
Ω
|f(x)|2 dx) where d has the homogeneity

of a length and c depends only on the Lipschitz character of Ω. On gets
rid of

∫
Ω
|f(x)|2 dx by Poincaré’s inequality, but this makes the constant

in (7) depend on other geometrical parameters of the domain. Still, it
remains invariant under rigid motion between domains.

3. The case of the upper half-space

It is interesting to examine in some detail the case of a flat boundary
(Ω = R

n
+) since the reflection principle yields a kernel representation of

the commutator.
Let E(x) be the fundamental solution of 1−∆ on R

n, which vanishes
at ∞. Hence Et(x) = 1

tnE(x
t ) is the fundamental solution of 1 − t2∆

and the kernel of Rt is given by

Et(x− y) ± Et(x− y∗),

where the − sign is for Dirichlet boundary condition and the kernel is
called Gt(x, y) and the + sign is for Neumann boundary condition and
the kernel is called Nt(x, y). Here, y∗ = (y1, . . . , yn−1,−yn) denotes the
reflection of y across the boundary in the vertical direction.
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Since Rt is of convolution type in the first n−1 variables, it commutes
with ∂

∂xj
for 1 ≤ j ≤ n−1. When j = n, easy computations give a kernel

representation of Ctf in terms of ∂f
∂xn

. More precisely, for f ∈ C1
0 (Rn

+),

(8a)
∫

R
n
+

(
Gt(x, y)

∂f(y)
∂yn

− ∂Gt(x, y)
∂xn

f(y)
)
dy

= −2
∫

R
n
+

Et(x− y∗)
∂f(y)
∂yn

dy

and for f ∈ C1
0 (Rn

+),

(8b)
∫

R
n
+

(
Nt(x, y)

∂f(y)
∂yn

− ∂Nt(x, y)
∂xn

f(y)
)
dy

= +2
∫

R
n
+

Et(x− y∗)
∂f(y)
∂yn

dy.

Note that (8a) would not hold if f had a non vanishing trace on the
boundary.

Hence (7) in both cases follows from an inequality of the type

∫ ∞

0

∫
R

n
+

∣∣∣∣ ∫
R

n
+

Et(x− y∗)u(y) dy
∣∣∣∣2 dxdtt ≤ C

∫
R

n
+

|u(y)|2 dy.

As we shall see in Section 4.3, this is basically a consequence of Hardy
inequality together with the classical estimates for E which we now recall
(see [7]).

Lemma 2. For all x �= 0, E(x) > 0, and there exists non-negative
constants such that

c1|x|2−ne−α1|x| ≤ E(x) ≤ c2|x|2−ne−α2|x|

with |x|2−n replaced by ln(2 + |x|−1) when n = 2.

In the case of a general Lipschitz domain, kernel representation will
also be our basic tool together with Green formula.
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4. Special Lipschitz domains

Assume that Ω is the open set above a Lipschitz graph. Let us intro-
duce some notations. We are given a function φ : R

n−1 → R satisfying
‖∇φ‖∞ = M < ∞. The Lipschitz character of Ω is this numberM . Then
Ω = {(x′, xn) ∈ R

n; xn > φ(x′)}. If x = (x′, xn) ∈ Ω then x̄ = (x′, φ(x′))
is its vertical projection on ∂Ω and x∗ = (x′, 2φ(x′) − xn) is its vertical
reflection across ∂Ω. We shall consistently use the notation x̄ to denote
a point on ∂Ω. It is worth noticing that x → x∗ is a bilipschitz transfor-
mation from Ω onto cΩ with jacobian determinant equal to 1. Finally, σ
denotes surface measure on ∂Ω and N(x) the exterior unit normal.

We first assume that Ω is smooth, that is with a C∞ boundary, in
order to make the computations rigourous. The limiting argument is
done in Section 4.4. Of course, we only use quantitatively the Lipschitz
character of Ω.

4.1. Dirichlet boundary condition.

Let Gt(x, y) be the Green’s function of I − t2∆ on Ω. It is defined for
(x, y) ∈ Ω×Ω and x �= y. Elliptic boundary regularity tells us that Gt is
C∞ where it is defined. Moreover, for fixed y ∈ Ω, Gt and ∇xGt decay
exponentially fast as |x| → ∞, x ∈ Ω.

Define a function Ht(x, y) by

(9) Gt(x, y) = Et(x− y) −Ht(x, y), (x, y) ∈ Ω × Ω, x �= y,

where Et(x) is the fundamental solution of I − t2∆ on R
n as introduced

above. In other words, for fixed y ∈ Ω, Ht(·, y) satisfies

(10)
{

(I − t2∆x)Ht(x, y) = 0, in Ω,
Ht(x, y) = Et(x− y), on ∂Ω.

Also Ht(x, y) and ∇xHt(x, y) have exponential decay as |x| → ∞, x ∈ Ω.

We now come to the proof of (7). By density, it suffices to take f ∈
C1

0 (Ω). Denote by Et and Ht the operators on C1
0 (Ω) associated with

the kernels above. Since Et is a convolution operator, [∇, Et] = 0 when
acting on C1

0 (Ω). Thus, we have

Ctf = −∇Htf +Ht∇f, f ∈ C1
0 (Ω).
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The difference no longer plays any role and (7) will follow from

I1 =
∫ ∞

0

∫
Ω

|Ht∇f(x)|2 dxdt
t

≤ c

∫
Ω

|∇f(x)|2 dx(11a)

I2 =
∫ ∞

0

∫
Ω

|∇Htf(x)|2 dxdt
t

≤ c

∫
Ω

|∇f(x)|2 dx.(11b)

Pointwise interior estimates on Ht(x, y) give us a direct proof of (11a).
The proof of (11b) is more involved and use instead boundary represen-
tation and Rellich inequalities in the spirit of [5].

We begin with controlling I1. Let us make a simple but useful geo-
metric observation whose proof is left to the reader.

Lemma 3. There is a constant c(M) > 1 (c(M) =
√

1 +M2 + M
works) such that

(12) c(M)−1|x̄− y∗| ≤ |x̄− y| ≤ c(M)|x̄− y∗|, x̄ ∈ ∂Ω, y ∈ Ω.

The key estimate is the following

Lemma 4. There are numbers c > 0 and a ≥ 1 depending only on M
such that

(13) 0 ≤ Ht(x, y) ≤ cEat(x− y∗), x, y ∈ Ω, t > 0.

Proof: Let us observe that 0 ≤ Ht(x, y) follows from the minimum
principle, since Et(x̄− y) is non-negative everywhere for x̄ ∈ ∂Ω.

Let α2 < α1 be the constants of Lemma 2 and set a = c(M)α1/α2

where c(M) is the constant in (12). Then, there exists a constant c > 0
such that

Et(x̄− y) ≤ cEat(x̄− y∗), x̄ ∈ ∂Ω, y ∈ Ω, t > 0.

Hence, the function u(x) = cEat(x− y∗) −Ht(x, y) is positive on ∂Ω.
Now, using (10) we also have

u(x) − t2∆u(x) = c
a2 − 1
a2

Eat(x− y∗)

so that u − t2∆u ≥ 0 in Ω since a ≥ 1. It follows from the minimum
principle that u is positive on Ω.

The estimate (11a) is now a simple consequence of Lemma 5 whose
proof is postponed for the moment.
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Lemma 5. Define on R
n, w(x) = |x|−βe−α|x|, where α > 0 and

β < n−1. Define wt(x) = t−nw(x/t) and Atf(x) =
∫
Ω
wt(x−y∗)f(y) dy

for f ∈ L2(Ω). Then,∫ ∞

0

∫
Ω

|Atf(x)|2 dxdt
t

≤ c

∫
Ω

|f(x)|2 dx,

where c depends only on M , α, β and n.

We now turn to proving (11b). First we reduce things to boundary
integrals.

Lemma 6. Let u ∈ C2(Ω) be a real valued function satisfying
(I − t2∆)u = 0 in Ω. Assume furthermore that u and ∇u have rapid
decay at ∞. Then

∫
Ω

|∇u|2+ 1
t2

∫
Ω

|u|2≤
√∫

∂Ω

t|∇u(x̄) ·N(x̄)|2 dσ(x̄)
∫

∂Ω

t−1|u(x̄)|2 dσ(x̄).

The proof is classical. Integrate by parts 0 =
∫
ΩR

u(I − t2∆)u using
Green’s theorem on ΩR = Ω∩BR(0) where BR(0) is the ball of radius R
centered at 0 to get (for R large enough)

t−2

∫
ΩR

u2 +
∫

ΩR

|∇u|2 =
∫

∂ΩR

(∇u ·N)u dσ.

Then apply Cauchy-Schwarz inequality and let R tends to ∞.

For f ∈ C1
0 (Ω) the qualitative properties of Ht(x, y) imply that for

each t > 0, u = Htf satisfies the hypothesis of Lemma 6. Hence, we
have I2 ≤

√
I3I4, where

I3 =
∫ ∞

0

∫
∂Ω

|Htf(x̄)|2 dσ(x̄) dt
t2

,

and

I4 =
∫ ∞

0

∫
∂Ω

|∇Htf(x̄) ·N(x̄)|2 dσ(x̄) dt.

The integral I3 is the easiest to deal with. Since f vanishes on ∂Ω, we
can write

f(y) =
∫ yn

ȳn

∂f

∂yn
(ȳ + uen) du,
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where en = (0, . . . , 0, 1) so that we obtain, using Fubini’s theorem,

Htf(x̄) =
∫

Ω

H̃t(x̄, y)
∂f

∂yn
(y) dy,

where
H̃t(x̄, y) =

∫ ∞

yn

Ht(x̄, ȳ + uen) du.

Next, using Lemma 4 and Lemma 3, we obtain

|H̃t(x̄, y)| ≤ ct−2|x̄− y|3−n e−
α|x̄−y|

t

when n ≥ 4 and similar estimates when n = 2 and n = 3. We con-
clude applying the following lemma to the operator Ht

t whose proof is in
Section 4.3.

Lemma 7. Define on R
n, w(x) = |x|−βe−α|x|, where α > 0 and

β < n− 1. Define wt(x) = t−nw(x/t) and Btf(x) =
∫
Ω
wt(x− y)f(y) dy

for f ∈ L2(Ω). Then,∫ ∞

0

∫
∂Ω

|Btf(x̄)|2 dσ(x̄) dt ≤ c

∫
Ω

|f(x)|2 dx,

where c depends only on M , α, β and n.

Of course, one cannot do the same thing with ∇xHt(x, y) as we do not
have enough information on the normal component (recall that we do
not want to use quantitatively the smoothness assumption on Ω). This
is where we use the Rellich identity.

Lemma 8. Let u ∈ C2(Ω) be a real valued function satisfying
(I − t2∆)u = 0 in Ω. Assume furthermore that u and ∇u have rapid
decay at ∞. Then∫

∂Ω

|∇u(x̄) ·N(x̄)|2 dσ(x̄) ≤ c

∫
∂Ω

|∇Tu(x̄)|2 dσ(x̄),

where ∇T denotes the tangential gradient at the boundary, and c depends
only on M .

Proof: Let e ∈ R
n. Observe that in Ω we have

div
(
|∇u|2e− 2(∇u · e)∇u

)
= −2(∇u · e)∆u = −2(∇u · e) u

t2
= −∇u2 · e

t2
.
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Hence, by Stokes theorem (as in Lemma 6 do it on ΩR and let R tend
to ∞) we obtain∫

∂Ω

(
|∇u|2(e ·N) − 2(∇u · e)(∇u ·N)

)
dσ =

∫
∂Ω

u2

t2
(e ·N) dσ.

The tangential gradient is defined by ∇Tu = ∇u− (∇u ·N)N so that it
is orthogonal to the normal derivative. Hence |∇u|2 = |∇Tu|2+ |∇u ·N |2
and (∇u · e)(∇u ·N) = (∇Tu · e)(∇u ·N) + |∇u ·N |2(e ·N). Hence∫

∂Ω

|∇u ·N |2(e ·N) dσ =
∫

∂Ω

|∇Tu|2(e ·N) dσ

− 2
∫

∂Ω

(∇Tu · e)(∇u ·N) dσ −
∫

∂Ω

u2

t2
(e ·N) dσ.

Note that all integrals converge thanks to the assumptions. Now choose
e = (0, . . . , 0,−1). Since Ω is a special Lipschitz domain, there exists
α > 0 depending onM only such that 1 ≥ e·N ≥ α a.e. on ∂Ω. Using this
and |2

∫
∂Ω

(∇Tu · e)(∇u ·N) dσ| ≤ α
2

∫
∂Ω

|∇u ·N |2 dσ+ 2
α

∫
∂Ω

|∇Tu|2 dσ,
we conclude that

α

2

∫
∂Ω

|∇u ·N |2 dσ ≤
(

1 +
2
α

) ∫
∂Ω

|∇Tu|2 dσ

because −
∫

∂Ω
u2

t2 (e ·N) dσ ≤ 0.

Remark. As we were finishing writing this paper, we learned that
Ancona proved the Rellich identity on bounded Lipschitz domains for
functions in the domain of the Laplacian, i.e. u ∈ H1

0 (Ω) with ∆u ∈
L2(Ω). See [1] for details. The weak version given here is enough for our
needs.

Since f has compact support, this lemma applies to u = Htf for each
t > 0 thanks to the qualitative properties of Ht(x, y). Integrating with
respect to t gives us

I4 ≤ c

∫ ∞

0

∫
∂Ω

t2|∇THtf(x̄)|2 dσ(x̄) dt.

By definition of Ht, we have ∇THtf(x̄) = −∇TEtf(x̄) on ∂Ω, so that it
suffices to prove

I5 =
∫ ∞

0

∫
∂Ω

t2|∇Etf(x̄)|2 dσ(x̄) dt ≤ c

∫
Ω

|∇f |2, f ∈ C1
0 (Ω),
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where now the gradient is taken over all directions. Using the same
technique as for I3, we have

∇Etf(x̄) =
∫

Ω

Ẽt(x̄, y)
∂f

∂yn
(y) dy,

where
Ẽt(x̄, y) =

∫ ∞

yn

∇Et(x̄− ȳ − uen) du.

It is well-known that |∇E(x)| ≤ c|x|1−ne−α|x|, so that an easy calcula-
tion gives

|Ẽt(x̄, y)| ≤ ct−2|x̄− y|2−n e−α|x̄−y|/t,

with the usual change if n = 2. We apply again Lemma 7. The proof of
Theorem 1 in this special case is complete.

Remark. We owe Steve Hofmann another argument to estimate I2
which avoids the use of Rellich identity. The idea is to prove the identity,

(14)
∫ ∞

0

∫
Ω

(
|∇ut|2 +

|ut|2
t2

)
dxdt

t
=

∫
Ω

∫
Ω

K(x, y)
∂f

∂yn
(y)

∂f

∂yn
(x) dx dy

whenever ut = Htf , where |K(x, y)| ≤ c|x − y∗|−n for some number c
depending only on M .

Indeed, an application of Hardy’s inequality yields∣∣∣∣∫
Ω

∫
Ω

|x− y∗|−ng(y)g(x) dx dy
∣∣∣∣ ≤ c

∫
Ω

|g|2

for some number c depending only on M . Thus, (14) implies I2 ≤
c‖∂f/∂yn‖2

2, which is even more precise than (11b).
Let us prove (14). Fix t > 0. We start out with the similar integration

by parts:∫
Ω

(
|∇ut|2 +

|ut|2
t2

)
=

∫
∂Ω

∇ut(x̄) ·N(x̄)ut(x̄) dσ(x̄).

Now, replace in the normal derivative ut = Htf by Etf −Rtf to obtain∫
∂Ω

∇ut(x̄)·N(x̄)ut(x̄) dσ(x̄)=
∫

∂Ω

∫
Ω

∇xEt(x̄−y)·N(x̄)f(y)ut(x̄) dσ(x̄) dy

−
∫

∂Ω

∫
Ω

∇xGt(x̄, y) ·N(x̄)f(y)ut(x̄) dσ(x̄) dy.
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The key observation comes from Green’s theorem which gives us that for
all y ∈ Ω, ∫

∂Ω

∇xGt(x̄, y) ·N(x̄)ut(x̄) dσ(x̄) = −ut(y)
t2

.

Hence, by Fubini’s theorem,∫
∂Ω

∫
Ω

∇xGt(x̄, y) ·N(x̄)f(y)ut(x̄) dσ(x̄) dy = −
∫

Ω

f(y)
ut(y)
t2

dy.

Once this is done it suffices to replace ut by Htf and to express as
before f in terms of ∂f/∂yn

since f vanishes on ∂Ω. Then integrate
in t to obtain an explicit but quite messy expression for K(x, y). The
control of its size uses Lemma 2, Lemma 3, Lemma 4 and elementary
calculations which we leave to the interested reader.

4.2. Neumann boundary condition.
We now work with the Neumann Laplacian. We prove

(15)
∫ ∞

0

∫
Ω

|Ctf(x)|2 dxdt
t

≤ c

∫
Ω

|∇f |2, f ∈ C1
0 (Ω)

by following a similar strategy. This is enough since C1
0 (Ω) is a dense

subspace of V = H1(Ω).
Define a function Ft(x, y) on Ω × Ω by

(16) Nt(x, y) = Et(x− y) + Et(x− y∗) + Ft(x, y),

where Nt(x, y) is the Neumann function of I−t2∆ on Ω. In other words,
for fixed y ∈ Ω, Ft(·, y) satisfies

(17)
{

(I − t2∆x)Ft(x, y) = 0, in Ω,
∇xFt(x̄, y)·N(x̄) =−∇x(Et(x̄− y)+Et(x̄− y∗))·N(x̄), on ∂Ω.

This is a simple reformulation of the definition of Nt(x, y). Since Ω is
smooth, Nt(x, y) extends smoothly to Ω×Ω away from the diagonal and
for fixed y ∈ Ω, Nt(x, y) and ∇xNt(x, y) decay rapidly to 0 as |x| → ∞
with x ∈ Ω. The same properties hold for Ft(x, y) as well. Let us list
further properties of Ft(x, y).
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Lemma 9.
(i) For some constants c, a > 0 depending only on M , we have

|Ft(x, y)| ≤ cEat(x− y∗), t > 0, x ∈ Ω, y ∈ Ω.

(ii) For all x ∈ Ω and t > 0,∫
Ω

Ft(x, y) dy = 0.

Remark. The mean value property is of crucial importance; it is the
reason of our choice for Ft(x, y).

Proof: To see (i), recall by (12) that |x̄− y| ∼ |x̄− y∗| for x̄ ∈ ∂Ω and
y ∈ Ω. Since Ω has the extension property, we have the estimate (see
[3]),

|Nt(x̄, y)| ≤ ct−2|x̄− y|2−ne−
α|x̄−y|

t , t > 0, x̄ ∈ ∂Ω, y ∈ Ω,

where c depends only on M , while α is independent of Ω. Hence, we
have

|Ft(x̄, y)| ≤ cEat(x̄− y∗), t > 0, x̄ ∈ ∂Ω, y ∈ Ω,

for some c > 0 and a > 1. We conclude as in the proof of Lemma 4
applying the minimum principle to the functions cEat(x−y∗)±Ft(x, y).

To prove (ii), it suffices to remark that by change of variable y �→ y∗

(18)
∫

Ω

Et(x− y) + Et(x− y∗) dy =
∫

Rn

Et(x− y) dy = 1

and that
∫
Ω
Nt(x, y) dy = 1 from the construction of Nt(x, y). The

lemma is proved.

Lemma 10. For f ∈ C1
0 (Ω) and x ∈ Ω, we have

Ctf(x) = 2
∫

Ω

Et(x− y∗)
∂f

∂yn
(y)Ñ(ȳ) dy

−
∫

Ω

Ft(x, y)∇f(y) dy +
∫

Ω

∇xFt(x, y)f(y) dy,

where
Ñ(ȳ) =

√
1 + |∇φ(y′)|2N(ȳ), ȳ = (y′, φ(y′)).
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Proof: Denote by Et, Et,∗ and Ft the operators defined on C1
0 (Ω)

associated with the kernels in (16). Writing

Ctf(x) = [∇, Et]f(x) + [∇, Et,∗]f(x) − Ft∇f(x) + ∇Ftf(x),

we have to show

[∇, Et]f(x) + [∇, Et,∗]f(x) = 2
∫

Ω

Et(x− y∗)
∂f

∂yn
(y)Ñ(ȳ) dy.

Note that although Et is a convolution operator, [∇, Et] is not 0 when
acting on smooth functions that do not vanish on the boundary of Ω.
Indeed, integrating by parts via Green’s theorem (with the classical
way of taking care of the singularity at x for Et(x − y) and using
∇x(Et(x− y)) = −∇y(Et(x− y))) yield

[∇, Et]f(x) = −
∫

∂Ω

Et(x− ȳ)f(ȳ)N(ȳ) dσ(ȳ).

Now,

Et,∗f(x) =
∫

Ω

Et(x− y∗)f(y) dy =
∫

cΩ

Et(x− y)f(y∗) dy,

and since N points into cΩ, we have

∇xEt,∗f(x) = −
∫

cΩ

∇y(Et(x− y))f(y∗) dy

= +
∫

∂Ω

Et(x− ȳ)f(ȳ)N(ȳ) dσ(ȳ) +
∫

cΩ

Et(x− y)∇y(f(y∗)) dy.

Using the change of variables y → y∗ one can see that∫
cΩ

Et(x− y)∇y(f(y∗)) dy =
∫

Ω

Et(x− y∗)J(ȳ)∇f(y) dy

where J(ȳ) is the jacobian matrix of y → y∗, which depends only on ȳ.
A straightforward computation shows that

J(ȳ)∇f(y) −∇f(y) = 2
∂f

∂yn
(y)Ñ(ȳ),

where Ñ(ȳ) is defined in the statement. Thus,

[∇, Et,∗]f(x) = +
∫

∂Ω

Et(x− ȳ) f(ȳ)N(ȳ) dσ(ȳ)

+ 2
∫

Ω

Et(x− y∗)
∂f

∂yn
(y)Ñ(ȳ) dy.

Putting altogether these equalities proves the lemma.
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We now prove (15). Using Lemma 5 and the interior estimates on
Et(x−y∗) and Ft(x, y), we obtain good control on both terms

∫
Ω
Et(x−

y∗) ∂f
∂yn

(y)Ñ(ȳ) dy and
∫
Ω
Ft(x, y)∇f(y) dy. By Lemma 10, it remains

to look at the last term, namely
∫
Ω
∇xFt(x, y)f(y) dy. We use again

boundary integrals. By the qualitative properties of Ft and the fact
that f has compact support, we easily see that u = Ftf satisfies the
hypotheses of Lemma 6 and we have

2
∫

Ω

|∇Ftf |2 ≤
∫

∂Ω

t|∇Ftf(x̄) ·N(x̄)|2 dσ(x̄) +
∫

∂Ω

t−1|Ftf(x̄)|2 dσ(x̄).

Thus, it is enough to show that

(19a) J1 =
∫ ∞

0

∫
∂Ω

|Ftf(x̄)|2 dσ(x̄)dt
t2

≤ c

∫
Ω

|∇f |2

and

(19b) J2 =
∫ ∞

0

∫
∂Ω

|∇Ftf(x̄) ·N(x̄)|2 dσ(x̄) dt ≤ c

∫
Ω

|∇f |2.

To estimate J1, we use the mean value property (ii) in Lemma 9 to
write

Ftf(x̄) =
∫

Ω

Ft(x̄, y)(f(y) − f(x̄)) dy.

Since

f(y) − f(x̄) = f(ȳ) − f(x̄) +
∫ yn

ȳn

∂f

∂yn
(ȳ + uen) du,

we obtain, using Fubini’s theorem,

(20) Ftf(x̄) =
∫

∂Ω

Ft(x̄, ȳ)(f(ȳ) − f(x̄)) dσ(ȳ) +
∫

Ω

F̃t(x̄, y)
∂f

∂yn
(y) dy,

where

F̃t(x̄, y) =
∫ ∞

yn

Ft(x̄, ȳ + uen) du.

The term with F̃t(x̄, y) is handled similarly as the one with H̃t(x, y) in
the Dirichlet case, by using Lemma 7.

The first integral in (20) is of a new type and can be estimated by
using the following result.



Commutator estimates for Laplacians on domains 701

Lemma 11. Define on R
n, w(x) = |x|−βe−α|x|, where α > 0 and

β < n−1. Define wt(x) = t−nw(x/t) and Ctf(x̄) =
∫

∂Ω
wt(ȳ−x̄)(f(ȳ)−

f(x̄)) dσ(ȳ) for f ∈ C1
0 (∂Ω). Then,

(21)
∫ ∞

0

∫
∂Ω

|Ctf(x̄)|2 dσ(x̄) dt

≤ c

∫
∂Ω

∫
∂Ω

|f(ȳ) − f(x̄)|2
|ȳ − x̄|n dσ(x̄) dσ(ȳ),

where c depends only on M , α, β and n.

Admit this lemma for the moment. Then, it is classical that the in-
tegral in the right hand side of (21) is equivalent to the square of the
norm of f in the homogeneous Sobolev space Ḣ1/2(∂Ω), and the trace
theorem, therefore, implies that

∫
∂Ω

∫
∂Ω

|f(ȳ) − f(x̄)|2
|ȳ − x̄|n dσ(x̄) dσ(ȳ) ≤ c

∫
Ω

|∇f |2.

See [6]. This yields the desired control of J1 and (19a) is proved.
We now turn to the control of J2. The explicit value of the normal

derivative of Ft(x, y) at the boundary given by (17) implies

∇Ftf(x̄) ·N(x̄) = −∇(Et + Et,∗)f(x̄) ·N(x̄).

Now, observe that as in (18)

∫
Ω

(∇Et)(x− y) + (∇Et)(x− y∗) dy = ∇x

∫
Rn

Et(x− y) dy = ∇x1 = 0.

Hence, we can proceed as before and obtain for (∇Ftf)(x̄) · N(x̄) a
representation similar to (20) where F̃t(x̄, y) is replaced by

F �
t (x̄, y) = −

∫ ∞

yn

{(∇Et)(x̄− ȳ − uen) + (∇Et)(x̄− ȳ + uen))} du.

Since x̄ ∈ ∂Ω, we know that |x̄− ȳ − uen| ∼ |x̄− ȳ + uen| so that both
terms can be treated similarly using Lemma 11. Further details are left
to the reader. This proves (19b) and with it (15).
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4.3. Proofs of technical lemmas.

For simplicity, we assume that Ω = R
n
+. If not the case, we can

pull back Ω to R
n
+ via the transformation F : (x′, xn) �→ (x′, φ(x′) + xn)

which is a bilipschitz homeomorphism from R
n
+ onto Ω and with jacobian

determinant equal to 1. With Ω = R
n
+, we have x∗ = (x′,−xn) when

x = (x′, xn) and the boundary is identified with R
n−1 via x̄ = (x′, 0).

Proof of Lemma 5: It is easy to obtain from the definition of w that

wt(x− y∗) ≤ c

tn
w̃

(
x′ − y′

t

)
exp

(
−α(xn + yn)

t

)

where w̃(x′) = |x′|−βe−α|x′| ∈ L1(Rn−1). Hence, Young’s inequality and
the definition of At give us∫

Rn−1
|Atf(x′, xn)|2 dx′

≤ e−
2αxn

t

∫
Rn−1

∣∣∣∣ ∫
Rn−1

c

tn−1
w̃

(
x′ − y′

t

)
ft(y′) dy′

∣∣∣∣2 dx′
≤ ce−

2αxn

t

∫
Rn−1

|ft(x′)|2 dx′,

where ft(x′) = 1
t

∫ ∞
0

e−
αu
t f(x′, u) du. Thus, integrating with respect to

xn yields

∫
R

n
+

|Atf(x)|2 dx ≤ c

∫
Rn−1

1
t

∣∣∣∣ ∫ ∞

0

e−
αu
t f(x′, u) du

∣∣∣∣2 dx′.
Next, we expand the square and integrate with respect to dt

t to obtain
a bound

c

∫
Rn−1

∫ ∞

0

∫ ∞

0

f(x′, u)f(x′, v)
u+ v

du dv dx′

which, by Hardy’s bilinear inequality ([4, p. 229]), is controlled by

cπ

∫
Rn−1

∫ ∞

0

|f(x′, u)|2 du dx′.

The proof is complete.
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Proof of Lemma 7: Using the same setting and notation as in the
previous proof, we have

|Btf(x′, 0)| ≤ c

tn−1

∫
Rn−1

w̃

(
x′ − y′

t

)
|ft(y′)| dy′.

Since w̃ ∈ L1(Rn−1), we obtain∫
Rn−1

|Btf(x′, 0)|2 dx′ ≤ c

∫
Rn−1

|ft(x′)|2 dx′.

Now, integrate against dt and finish the argument as in the preceding
proof.

Proof of Lemma 11: We write x̄ = (x′, 0). By Schwarz inequality,
since w ∈ L1(Rn−1)

|Ctf(x′, 0))|2 ≤ c

tn+1

∫
Rn−1

w

(
y′ − x′

t

)
|f(y′) − f(x′)|2 dy′.

Now,
∫ ∞
0

w(u
t ) dt

tn+1 = c
un , hence∫ ∞

0

|Ctf(x′, 0)|2 dt ≤ c

∫
Rn−1

|f(y′) − f(x′)|2
|y′ − x′|n dy′

and the conclusion follows immediately by integrating with respect to
x′.

4.4. Limiting argument.
Let us use a particular change of variable introduced by Kenig and

Stein to approximate a special Lipschitz domains by smooth ones with
a uniform character.

Let g ∈ C∞
0 (Rn−1) be even with g ≥ 0 and

∫
g = 1. Let gt(x) =

t−n+1g(x/t). Then, choosing c > 0 large enough (c ≥ 2M
∫
g(y)|y| dy

works), the mapping

F (x′, xn) = (x′, cxn + (gxn ∗ φ)(x′))

is a bilipchitz change of variable between R
n
+ and Ω. Now Ωk ={F (x′, xn);

x′n ≥ 2−k} for k = 1, 2, . . . , is a C∞ domain with Lipschitz character
bounded by M . Remark also that Ωk ↑ Ω.

We begin with the case of a Dirichlet boundary condition. Let us see
that if (7) holds for all Ωk with a constant that depends only on M then
it holds for Ω.

Denote by Rk
t and Ck

t respectively the resolvent of the Dirichlet Lapla-
cian on Ωk and the associated commutator. Let f ∈ C1

0 (Ω), then
f ∈ C1

0 (Ωk) for k large enough and Ck
t f is well-defined on Ωk; extend it

by 0 outside.
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Lemma 12. With the above notation, for all t > 0, Ck
t f converges to

Ctf in L2(Ω) as k tends to ∞.

Admitting this lemma, an application of Fatou lemma yields (7) on Ω
for such an f and a density argument concludes the proof.

The proof of Lemma 12 follows from a classical fact which we recall
for convenience. Let g ∈ L2(Ω) and define uk = Rk

t g and u = Rtg. This
means that u ∈ H1

0 (Ω) is the unique solution of∫
Ω

u v + t2
∫

Ω

∇u · ∇v =
∫

Ω

gv, ∀ v ∈ H1
0 (Ω),

and uk ∈ H1
0 (Ωk) is the unique solution of∫

Ωk

uk v + t2
∫

Ωk

∇uk · ∇v =
∫

Ωk

gv, ∀ v ∈ H1
0 (Ωk).

Extend uk to be 0 outside of Ωk then (uk) is bounded in H1
0 (Ω), so

it has a weakly convergent subsequence, which, by taking weak limits
in the variational formulation (with v having compact support in Ω)
must converge to u. Thus (uk) converges weakly to u in H1

0 (Ω). Now
expanding the squares and using the equations, one finds∫

Ω

|u− uk|2 + t2
∫

Ω

|∇(u− uk)|2 = Re
∫

Ω

g(u− uk).

Letting k tend to ∞ proves that uk converges strongly to u in H1
0 (Ω).

Now Ck
t f = Rk

t ∇f −∇Rk
t f and the above fact applied with g = f and

g = ∇f proves the claim.
We now turn to the case of a Neumann boundary condition. This time

we approximate Ω from outside (applying the same construction to cΩ)
so that Ωk ↓ Ω. Recall that H1(Ω) is the space of restrictions to Ω of
functions in H1(Rn) and similarly for Ωk replacing Ω. Let f ∈ H1(Rn).
Thus with evident notations Ck

t f and Ctf are well-defined on Ωk and Ω
respectively.

Lemma 13. With the above notation, for all t > 0, Ck
t f converges to

Ctf in L2(Ω) as k tends to ∞.

Admitting this lemma, let f ∈ H1(Ω) be extended in such a way that
it belongs to H1(Rn) and

∫
Rn |∇f |2 ≤ c(M)

∫
Ω
|∇f |2. By (7) on Ωk we

have ∫ ∞

0

∫
Ωk

|Ck
t (f)|2 dxdt

t
≤ c(M)

∫
Ωk

|∇f |2 ≤ c(M)
∫

Ω

|∇f |2

and (7) on Ω follows from Fatou lemma and the above lemma.
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To prove Lemma 13, it is enough to consider resolvents. Let g ∈
L2(Rn), then u = Rtg is the unique solution in H1(Ω) of∫

Ω

u v + t2
∫

Ω

∇u · ∇v =
∫

Ω

gv, ∀ v ∈ H1(Ω),

while uk = Rk
t g is the unique solution in H1(Ωk) of∫

Ωk

uk v + t2
∫

Ωk

∇uk · ∇v =
∫

Ωk

gv, ∀ v ∈ H1(Ωk).

Recall also that
∫
Ωk

|uk|2 + t2|∇uk|2 ≤
∫
Ωk

|g|2 ≤ ‖g‖2
2. If v ∈ H1(Rn)

then∫
Ω

(u− uk) v + t2
∫

Ω

∇(u− uk) · ∇v =
∫

Ωk−Ω

gv − uk v − t2∇uk · ∇v

≤ 2‖g‖2

( ∫
Ωk−Ω

|v|2 + t2|∇v|2
)1/2

and this tends to 0 by dominated convergence. Thus uk converges weakly
to u in H1(Ω).

Strong convergence now follows from the inequality∫
Ωk

|u− uk|2 + t2
∫

Ωk

|∇(u− uk)|2 ≤ Re
∫

Ω

g(u− uk) + Re
∫

Ωk−Ω

guk

obtained from the defining equations for uk and u, the last integral being
controlled by( ∫

Ωk−Ω

|g|2
)1/2

‖uk‖2 ≤
( ∫

Ωk−Ω

|g|2
)1/2

‖g‖2

which tends to 0 as k → ∞ by dominated convergence.

5. Bounded Lipschitz domains

We now assume that Ω is a bounded and connected Lipschitz domain
with Lipschitz character M . Before going into details, let us remark
that it is enough to obtain (7) with a right hand side equal to c

∫
Ω
(|f |2 +

|∇f |2). Indeed if f ∈ V = H1
0 (Ω) (Dirichlet) Poincaré inequality yields∫

Ω
|f |2 ≤ C

∫
Ω
|∇f |2. If f ∈ V = H1(Ω) (Neumann), then it should be

observed that the commutator annihilates constants so that Ctf = Ct(f−
m), hence the Poincaré-Wirtinger inequality

∫
Ω
|f − m|2 ≤ C

∫
Ω
|∇f |2

for m = |Ω|−1
∫
Ω
f yields the desired result. See the remark in Section 2

for the behavior of the constants.
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Since Ω is a bounded Lipschitz domain, there exists a finite number
of C∞

0 (Rn) functions, χ1, . . . , χs, with the following properties:

1.
∑

1≤k≤s χk(x) = 1, x ∈ Ω;

2. For each k, there exists Ω̃k, image of a special Lipschitz domain
under an orthogonal transformation in R

n such that Suppχk∩Ω ⊂
Ω̃k ∩ Ω;

3. There exist open neighborhoods Ok, Pk of Suppχk in Ω∩ Ω̃k such
that Ok ⊂ Pk, Ω ∩ P k ⊂ Ω̃k ∩ P k and ∂Ω ∩ P k = ∂Ω̃k ∩ P k.

The Lipschitz character M of Ω is, by definition, the infimum of the
numbers sup M̃k, where M̃k is the Lipschitz character of Ω̃k, taken over
all decompositions of Ω in such a way. From now on the letter c denotes
constants that depend only on M .

Since there are a finite number of sets, there is d > 0 such that
d(Ok,

cPk) ≥ d and d(Suppχk,
cOk) ≥ d for all k. Denote by ηk ∈

C∞
0 (Pk) a real function such that ηk = 1 on Ok. This distance d de-

pends on the chosen partition: the largest possible value has an intrinsic
geometrical meaning, that is not related to the Lipschitz character.

For large scales (ie t > 1) we have

Lemma 14. For all f ∈ V

∫ ∞

d

∫
Ω

|Rt∇f(x)|2 + |∇Rtf(x)|2 dxdt
t

≤ n+ 1
2d2

∫
Ω

|f |2.

Proof: This follows immediatly from ‖∇Rtf‖2 ≤ t−1‖f‖2 and

‖Rt∇f‖2 = ‖Rt(−∆)1/2(−∆)−1/2∇f‖2

≤ t−1‖(−∆)−1/2∇f‖2 ≤
√
nt−1‖f‖2.

From Lemma 14, it is enough to prove that

∫ d

0

∫
Ω

|Ctf(x)|2 dxdt
t

≤ c

(∫
Ω

|∇f |2 +
1
d2

∫
Ω

|f |2
)
.

Let us discuss first the case of a Dirichlet boundary condition.
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Let f ∈ H1
0 (Ω) and write f =

∑
fk with fk = fχk ∈ Vk = H1

0 (Ω) ∩
H1

0 (Ω̃k). Write

Ctf =
∑

1≤k≤s

(1 − ηk)Ctfk +
∑

1≤k≤s

ηk(Ctfk − Ck
t fk) +

∑
1≤k≤s

ηkCk
t fk

= I + II + III,

where Ck
t is the commutator defined on Ω̃k using the resolvent which we

denote by Rk
t .

Analysis of III. By (7) on Ω̃k (this inequality is clearly invariant under
orthogonal transformations) we have for each k

∫ d

0

∫
Ω

|ηk(x)Ck
t fk(x)|2 dxdt

t
≤ c

∫
Ω

|∇fk|2 ≤ c

(∫
Ω

|∇f |2 +
1
d2

∫
Ω

|f |2
)
.

Analysis of II. We use a Cacciopoli inequality for each term in the
sum. We remark that

ηk(x)(Ctfk(x)−Ck
t fk(x))=ηk(x)

[
(∇(Rt−Rk

t ))fk(x)−((Rt−Rk
t )∇fk)(x)

]
.

If g ∈ L2 satisfies Supp g ⊂ Suppχk and uk = (Rt −Rk
t )g we have∫

uk v + t2
∫

∇uk · ∇v = 0, ∀ v ∈ Vk.

Inserting v = uk η
2
k yields∫

|uk|2η2
k + t2

∫
|∇uk|2η2

k = −2t2
∫

(ηk∇uk) · (uk∇ηk)

hence ∫
|uk|2η2

k +
t2

2

∫
|∇uk|2η2

k ≤ 2t2
∫

|uk∇ηk|2.

For g = fk, we obtain∫
|∇(Rt −Rk

t )fk|2η2
k ≤ 4

∫
|(Rt −Rk

t )fk|2|∇ηk|2.
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Now, by the maximum principle, the kernels of Rt and Rk
t are bounded

by at−2|x− y|2−ne−(α|x−y|/t) for some a < ∞ and α > 0 depending only
on dimension (usual change if n = 2). Since |x−y| ≥ d for x ∈ Supp∇ηk

and y ∈ Supp fk and t ≤ d, is easy to deduce a bound of the form∫
|(Rt −Rk

t )fk∇ηk|2 ≤ a/d2e−αd/t‖fk‖2
2

for other values of a and α. Similarly, for g = ∇fk, one obtains∫
|(Rt −Rk

t )∇fk|2|ηk|2 ≤ 2t2
∫

|(Rt −Rk
t )∇fk|2|∇ηk|2

≤ ae−αd/t‖∇fk‖2
2.

It is then easy to get
∫ d

0

∫
Ω
|II|2 dxdt

t ≤ c
∫
Ω
( |f |

2

d2 + |∇f |2).

Analysis of I. If g ∈ L2 with Supp g ⊂ Suppχk and u = Rtg ∈ H1
0 (Ω)

we have ∫
u v + t2

∫
∇u · ∇v =

∫
g v, ∀ v ∈ H1

0 (Ω).

Inserting v = u(1 − ηk)2 yields a null right hand side because ηk = 1 on
the support of g. We conclude using the same argument as before and
the fact that d(Supp g,Supp(1− ηk)) ≥ d. Further details are left to the
reader.

A similar analysis can be done under Neumann boundary condition
(Here, the kernels of Rt and Rk

t have estimates with constants that de-
pend on M). The proof of Theorem 1 is complete.

Remark. Minor modifications of the argument shows that the result
in Theorem 1 is valid (with an extra term c‖f‖2

2 on the right hand side of
(7)) on all strongly Lipschitz domains, which are those connected open
sets in R

n whose boundary is covered by finitely many parts of (rotated)
Lipschitz graphs, possibly one of those parts being infinite.

6. Other commutators

Using functional calculus we can consider other commutators such as
the ones in (1) and (2). The argument is identitical for the Dirichlet and
Neumann Laplacians.



Commutator estimates for Laplacians on domains 709

Proposition 15. Let ϕ be a complex bounded continuous function on
[0,∞) with ϕ(r) = ϕ(0)+0(rs) at 0 and |rsϕ(r)| bounded for some s > 0.
Then

(22)
∫ ∞

0

∫
Ω

∣∣[∇, ϕ(−t2∆)]f(x)
∣∣2 dxdt

t
≤ c

∫
Ω

|∇f(x)|2 dx, f ∈ V.

Proof: Assume ϕ(0) �= 0, otherwise apply the next argument to ϕ.
There is no loss of generality to set ϕ(0) = 1. Let ψ(r) = ϕ(r)−(1+r)−1.
Then |ψ(r)| ≤ crinf(s,1) for r ≤ 1 and |ψ(r)| ≤ cr− inf(s,1) for r ≥ 1.
Hence, ∫ ∞

0

∫
Ω

|ψ(−t2∆)u(x)|2 dxdt
t

≤ C

∫
Ω

|u(x)|2 dx

where by the Borel functional calculus, C is the norm of the self-adjoint
operator

∫ ∞
0

ψ(−t2∆)ψ(−t2∆)dt
t . By the spectral theorem,

C = sup
r>0

∫ ∞

0

|ψ(t2r)|2 dt
t

=
1
2

∫ ∞

0

|ψ(t)|2 dt
t

which is easily seen to be finite.
We have therefore, for f ∈ V∫ ∞

0

∫
Ω

|ψ(−t2∆)∇f(x)|2 dxdt
t

≤ C

∫
Ω

|∇f(x)|2 dx

and since functions of ∆ commute,∫ ∞

0

∫
Ω

|∇ψ(−t2∆)f(x)|2 dxdt
t

=
∫ ∞

0

∫
Ω

|(−∆)1/2ψ(−t2∆)f(x)|2 dxdt
t

=
∫ ∞

0

∫
Ω

|ψ(−t2∆)(−∆)1/2f(x)|2 dxdt
t

≤ C

∫
Ω

|(−∆)1/2f(x)|2 dx = C

∫
Ω

|∇f(x)|2 dx.

Hence, (22) follows from (7).

Let us go back to the case 0 ≤ s < 1 mentioned in the introduction
and finish by proving∫

Q

|∇xu(X)|2 dX

η(X)s
≤ cs‖f‖2

s,
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where in semigroup notations, u(X) = (et∆f)(x) for X = (x, t) ∈ Q.
Hence ∫

Q

|∇xu(X)|2 dX

η(X)s
=

∫ ∞

0

∫
Ω

t1−s|(−∆)1/2et∆f(x)|2 dxdt
t

=
∫ ∞

0

∫
Ω

|ψs(t∆)(−∆)s/2f(x)|2 dxdt
t

≤ cs

∫
Ω

|(−∆)s/2f(x)|2 dx,

where we have set
ψs(r) = r1−s/2e−r

and used as in the above proof the Littlewood-Paley estimate∫ ∞

0

∫
Ω

|ψs(t∆)g(x)|2 dxdt
t

≤ cs

∫
Ω

|g(x)|2 dx

with

cs =
∫ ∞

0

r1−se−2r dr
r .

Note that cs is independent of Ω.
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