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CODIMENSION 4 SINGULARITIES
OF REFLECTIONALLY SYMMETRYC

PLANAR VECTOR FIELDS

F. Dumortier and S. Ibáñez∗

Abstract

The paper deals with the topological classification of singularities
of vector fields on the plane which are invariant under reflection
with respect to a line. As it has been proved in previous papers,
such a classification is necessary to determine the different topo-
logical types of singularities of vector fields on R3 whose linear
part is invariant under rotations. To get the classification we use
normal form theory and the blowing-up method.

1. Introduction

Consider a C∞ vector field X on R
2 with X(0) = 0. The set of all

C∞ vector fields which coincide with X in some neighbourhood of 0 is
called the germ of X in 0 and denoted by any of its elements. Let Ḡ2

be the set of all germs in 0 having a representative X which is invariant
under the symmetry R(x, y) = (−x, y). We say that X is reflectionally
symmetric. In the sequel we assume that each representative which is
given for a germ in Ḡ2 is reflectionally symmetric.

Given X, Y ∈ Ḡ2, they are said to be k-jet equivalent, with
k ∈ N ∪ {∞}, if their Taylor approximations up to order k are equal.
The set of all germs which are k-jet equivalent to X ∈ Ḡ2 is called the
k jet of X at 0 and denoted by jkX(0). J̄2

k denotes the set of k-jets in Ḡ2.
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Let us notice that there exists a one to one correspondence between J̄2
k

and the space of reflectionally symmetric vector fields Y on R
2 with

Y (0) = 0 and whose components are polynomials of degree less or equal
than k. Therefore we will consider J̄2

k as a vector space of finite dimension
with the usual topology.

Take the projections jk : Ḡ2 → J̄2
k induced by the k-jet equivalence.

Ḡ2 is considered to be endowed with the coarsest topology which makes
jk continuous for all k ∈ N.

A set A ⊂ Ḡ2 is said to be algebraic if A = j−1
k (Ã) with Ã ⊂ J̄2

k an
algebraic set of J̄2

k . The codimension of A is the codimension of Ã in J̄2
k .

On the other hand X, Y ∈ Ḡ2 are said to be C0 equivalent if for some
(and hence for all) representatives X̃ and Ỹ of X and Y , respectively,
there are open neighbourhoods U and V of 0 ∈ R

2 and a homeomor-
phism h : U → V which sends orbits of X̃ to orbits of Ỹ preserving the
sense but not necessarily the parametrization.

To give the topological classification of the singularities having a codi-
mension at most four in Ḡ2, we will define a stratification:

Ḡ2 = V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ V4 ⊃ V5,

where for each i = 1, 2, 3, 4, 5, Vi is a closed algebraic set of codimension i
and Vi−1 \ Vi is a regular manifold of codimension i − 1 such that for
all X ∈ Vi−1 \ Vi there is a neighbourhood U of X in Ḡ2 for which
Y ∈ (Vi−1 \ Vi) ∩ U implies that X and Y are C0 equivalent.

Consider XR ∈ Ḡ2 given by

(1) XR = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
,

where f and g are C∞ functions. Since XR is reflectionally symmetric,
it follows that f(−x, y) = −f(x, y) and g(−x, y) = g(x, y). As a con-
sequence of the Malgrange Division Theorem [CH] we know that there
exist C∞ functions f̃ , g̃ : R

2 → R such that

f(x, y) = xf̃(x2, y), g(x, y) = g̃(x2, y).
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Therefore, we can use the change of coordinates w = x2 and z = y to
write

(2) XR = wf̃(w, z)
∂

∂w
+ g̃(w, z)

∂

∂z
.

Let us now study expression (2) using again (x, y) instead of (w, z) and
f , g instead of f̃ , g̃:

(3) XR = xf(x, y)
∂

∂x
+ g(x, y)

∂

∂y
.

We only need to study the restriction of XR to the halfplane {(x, y) ∈
R

2 : x ≥ 0}.
Consider the following developments of f and g:

f(x, y) = a00 + a10y + a01x+ a20y2 + a11yx+ a02x2 + ◦(‖(x, y)‖2)

g(x, y) = b10y + b01x+ b20y2 + b11yx+ b02x2

+ b30y3 + b21y2x+ b12yx2 + b03x3 + ◦(‖(x, y)‖3).

If a00 �= 0 and b10 �= 0 the singularity is hyperbolic. Therefore, such con-
ditions define the codimension 0 singularities and their corresponding
phase-portraits are well known. The same happens with the semihyper-
bolic cases. They correspond to one of the following conditions

a00 �= 0, b10 = 0

or
a00 = 0, b10 �= 0.

To determine the subsequent stratification we use the reduction to a
1-dimensional center manifold. To draw the different topological types
one only needs to consider the classification of the semihyperbolic singu-
larities on the plane up to codimension 5 (see [D]), bearing in mind that
the y-axis is always invariant. Therefore we will find singularities which
are topologically equivalent to either saddles or nodes or saddle-nodes.

We will start the classification on a stratumW2 ⊂ V2 of codimension 2
given by the conditions

a00 = 0, b10 = 0.
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Hence (3) reduces to

(4)

XR = x(a10y + a01x+ a20y2 + a11yx+ a02x2 + ◦(‖(x, y)‖2))
∂

∂x

+ (b01x+ b20y2 + b11yx+ b02x2

+ b30y3 + b21y2x+ b12yx2 + b03x3 + ◦(‖(x, y)‖3))
∂

∂y
.

Moreover we will distinguish two cases:

b01 �= 0 (nilpotent case),

b01 = 0 (quadratic case).

They will be studied in sections 2 and 3, respectively. For each of them
we will consider aditional restrictions. Although the study of the nilpo-
tent case for codimension 2 is already present in the literature (see [T])
and also some singularities of codimension 3 in the quadratic case are
considered in [KR], we include them here for the sake of completeness.

Our main motivation for the study of the topological classification of
reflectionally symmetric planar vector fields is that they play an essen-
tial role in the classification of singularities in R

3. As it is shown in
[T], any C∞ vector field X on R

3, with X(0) = 0 and 1-jet linearly
conjugate to the infinitesimal rotation λ(y ∂

∂x − x ∂
∂y ), can be given in a

normal form which is, up to flat terms, invariant under rotations. After
normalizing the rotational component and introducing cylindrical coor-
dinates (θ, r, z), X can be written as

2π
∂

∂θ
+XR + Y,

where j∞Y (θ, 0, 0) = 0 for all θ ∈ S1 and XR is a reflectionally sym-
metric planar vector field, depending on the coordinates (r, z), such that
XR ∈W2. In [DI] it is shown that, at least up to codimension four, flat
terms have no influence on the topological type of the singularity which,
in fact, is given by the topological type of XR. Nevertheless, neither
the classification of the reflectionally symmetric vector fields XR nor the
topological types were described in [DI]. In this paper we provide such a
complete classification. The pictures that we give for the phase portraits
have been made with the computer package P4 (see [DH] and [H]). The
models which are used will be indicated in each case. We would like to
thank Chris Herssens and Peter de Maesschalck for having helped us in
making these pictures.
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2. Nilpotent case (b01 �= 0)

A linear coordinate change permits to take b01 = 1. Hence we can
write the ∞-jet of XR as


 ∑

i+j≥1

aijy
ixj


x ∂

∂x
+


x+

∑
i+j≥2

bijy
ixj


 ∂

∂y
.

One can prove that, up to a C∞ coordinate change which leaves {x = 0}
invariant, the ∞-jet of XR can be written as:

(5) x


∑

i≥1

aiy
i


 ∂

∂x
+


x+

∑
i≥2

biy
i


 ∂

∂y
.

Indeed, let m ≥ 2 be an integer. Since

[
x
∂

∂y
, xj−1ym−j+1 ∂

∂x

]
= (m− j + 1)xjym−j ∂

∂x
− xj−1ym−j+1 ∂

∂y
,

all the terms xjym−j ∂
∂x with j ≥ 2 can be removed after a change of

coordinates which does not affect neither the remaining terms of the
m-jet of the ∂

∂x -component nor the terms of the (m − 1)-jet of the
∂
∂y -component. Moreover, since

[
x
∂

∂y
, xj−1ym−j+1 ∂

∂y

]
= (m− j + 1)xjym−j ∂

∂y
,

all the terms xjym−j ∂
∂y with j ≥ 1 can be removed after a change of

coordinates which does not affect the remaining terms of the m-jet of
the vector field. All the changes of coordinates which are needed leave
{x = 0} invariant and it is important to observe that (5) is the simplest
normal form which preserves such an invariance.
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We define the following stratification

N2,1 = {X ∈W2 | b01 �= 0},

N3,1 = {X ∈ N2,1 | b2 = 0},

N3,2 = {X ∈ N2,1 | b2 �= 0, a1 = 0},

N3,3 = {X ∈ N2,1 | b2 �= 0, a1 �= 0, a1 = 2b2},

N4,1 = {X ∈ N2,1 | b2 = 0, a1 = 0},

N4,2 = {X ∈ N2,1 | b2 = 0, a1 �= 0, b3 = 0},

N4,3 = {X ∈ N2,1 | b2 �= 0, a1 = 0, a2 = 0},

N5,1 = {X ∈ N2,1 | b2 = 0, a1 = 0, a2 = 0},

N5,2 = {X ∈ N2,1 | b2 = 0, a1 = 0, a2 �= 0, b3 = 0},

N5,3 = {X ∈ N2,1 | b2 = 0, a1 = 0, a2 �= 0, b3 �= 0, a2 = 3b3},

N5,4 = {X ∈ N2,1 | b2 = 0, a1 �= 0, b3 = 0, b4 = 0},

N5,5 = {X ∈ N2,1 | b2 �= 0, a1 = 0, a2 = 0, a3 = 0}.

N2,1

N3,1 N3,2 N3,3

N4,1 N4,2 N4,3

N5,1 N5,2 N5,3 N5,4 N5,5

Figure 2.1. Stratification in the nilpotent case.

Note that each Ni,j with i = 2, 3, 4, 5 is a semi-algebraic set of codimen-
sion i. In Figure 2.1 we show how the previous strata are organized. Let
us now consider the different equivalence classes which are found in each
stratum. To do this we use the blow-up

x = r2u, y = rv
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with u2 + v2 = 1 and r ∈ R
+ and as usual the calculations are made

by means of directional blow-up’s. Since the exponent of r in the
change y = rv is odd the vector field obtained by blowing-up in the
y-direction with v = −1 is related with the one obtained by taking v = 1
by means of the change (r, u) → (−r, u) and the rescaling t → −t. We
keep this in mind in order to draw the different phase-portraits after
blowing up. Further simplifications are possible in each case separately.

Remark 2.1. Let us recall that in the previous observations and
calculations made on expression (3) the coordinates (x, y) represent in
fact (w, z) in expression (2). Going back to the original coordinates (x, y)
in (1) we have to use w = x2 and z = y. Now by means of blow-up we
will, in many cases, prove the existence of invariant curves for vector
fields like in (2) of the form w = αz2 + o(z2) with α positive. Hence,
with respect to the original (x, y)-coordinates, we get invariant curves
of the form x =

√
αy + o(y) for vector fields (1). However, in the cases

drawn in Figure 2.9, the invariant curves in {x > 0} are obtained by a
blow-up (w = r3u, z = rv) and will be of the form x = γy3/2 + o(y3/2)
for some γ > 0.

2.1. Singularities of codimension 2.
Let X ∈ N2,1 \(N3,1∪N3,2∪N3,3). In this case we have b2 �= 0, a1 �= 0

and a1 �= 2b2. By means of the change of variables x = x̄/b2, y = ȳ/b2,
we get from (5) the vector field

(6)




x̄′ =
a1
b2
x̄ȳ + x̄

∑
i≥2

ai

bi2
ȳi

ȳ′ = x̄+ ȳ2 +
∑
j≥3

bj

bj−1
2

ȳj .

Blowing-up in the ȳ-direction with v = 1, we get



r′ = ru+ r + o(r)

u′ =
(
a1
b2

− 2
)
u− 2u2 + u(O(r)).

This vector field restricted to {r = 0} has exactly two hyperbolic singu-
larities at (r, u) = (0, 0) and (r, u) = (0, (a1/b2 − 2)/2). Blowing-up in
the x̄-direction, no singularity is found at (r, v) = (0, 0). The study of
the singularities leads to the phase-portraits given in Figure 2.2 (a) for a
neighbourhood of S1 × {0}. In Figure 2.2 (b) we represent the different
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topological types corresponding to XR as in (1). Note that, because of
the change of variables used to get (6), we must take into account the
sign of b2.

(a)

(b)

b2 > 0

b2 < 0

a1
b2
< 0 0 < a1

b2
< 2 2 < a1

b2

(a1, b2) = (−1, 1) (a1, b2) = (1, 1) (a1, b2) = (3, 1)

(a1, b2) = (1,−1)
a1
b2
< 0

(a1, b2) = (−1,−1)

0 < a1
b2
< 2

(a1, b2) = (−3,−1)

2 < a1
b2

Figure 2.2. Topological types for vector fields in N2,1\(N3,1∪N3,2∪N3,3).
We use the model a1

2 xy
∂
∂x + (x2 + b2y2) ∂

∂y .



Codimension 4 singularities 509

Before continuing with the study of the singularities of higher codi-
mension let us quickly describe the dynamic degeneracies that will occur
in each of the next strata. For that we look at the singularities which ap-
pear after the previous directional blowing-up. For vector fields in N3,1

the singularity at (0, 0) has a vanishing radial eigenvalue because of the
coalescence with an extra hyperbolic singular point. Along the branches
N3,1, N4,2 and N5,4 new singular points coalesce with (0, 0) leading to
more degenerate singularities, however staying semi-hyperbolic in all
cases. A similar phenomenon happens at (0, (a1/b2 − 2)/2) for the
branches N3,2, N4,3 and N5,5. For vector fields in N3,3 both singularities
on the blown-up circle {r = 0} coalesce at (0, 0) which hence becomes
a semi-hyperbolic singular point whose center manifold is contained in
{r = 0}; further degeneracies are not possible. Something similar hap-
pens for N4,1 but in this case the singularity at (0, 0) has a double zero
eigenvalue and an extra blowing-up should be used. We will find again
two singularities on the new blown-up circle. Then the strata N5,j with
j = 1, 2, 3 will have the same dynamical meaning, with respect to these
new singularities, as N3,j has with respect to those obtained after the
first blowing-up. In any case, as we will see later, it is better to modify
the original blowing-up instead of making an extra one. On the other
hand, looking at the quadratic case as limit of the nilpotent case, when
b01 = 0, and applying the same blowing-up, we would find degenerate
singularities on the second blown-up circle. This is the reason why we
use, after further simplifications, a different blowing-up. If we take into
account the influence of b01, the singularity (0, (a1/b2 − 2)/2) will tend
to infinity when b01 tends to 0, leading to the coalescence of two singu-
lar points on the blown-up circle. Such degeneracy is considered in the
quadratic case.

2.2. Singularities of codimension 3.
We have three different cases:

1. X ∈ N3,3. In this case b2 �= 0, a1 �= 0 and a1 = 2b2,
2. X ∈ N3,2 \N4,3. In this case b2 �= 0, a1 = 0 and a2 �= 0,
3. X ∈ N3,1 \ (N4,1 ∪N4,2). In this case b2 = 0, a1 �= 0 and b3 �= 0,

which are studied separately.

Case 1: Since b2 �= 0 we use (6) which is given, taking into account
that a1 = 2b2, by 


x̄′ = 2x̄ȳ + x̄

∑
i≥2

ai

bi2
ȳi

ȳ′ = x̄+ ȳ2 +
∑
j≥3

bj

bj−1
2

ȳj .



510 F. Dumortier, S. Ibáñez

Blowing-up in the ȳ-direction with v = 1, we get{
r′ = ru+ r + o(r)
u′ = −2u2 + u(O(r)).

On the invariant line {r = 0} we find exactly one singularity at
(r, u) = (0, 0). The linear part at (0, 0) has eigenvalues 1 and 0. The un-
stable manifold is contained in {u = 0} while {r = 0} contains a center
manifold. One can check that blowing-up in the x̄-direction no singular-
ity is found at (r, v) = (0, 0). Glueing the different charts together we
obtain the phase-portrait given in Figure 2.3 (a) for a neighbourhood of
S1 × {0}. In Figure 2.3 (b) we represent the different topological types
corresponding to XR. Again we must take into account the sign of b2.

(a) (b)

b2 = 1

b2 > 0, a1 = 2b2

b2 = −1

b2 < 0, a1 = 2b2

Figure 2.3. Topological types for vector fields in N3,3.
We use the model b2xy ∂

∂x + (x2 + b2y2) ∂
∂y .

Case 2: We use again (6) which is given, taking into account that
a1 = 0, by 



x̄′ =
a2
b22
x̄ȳ2 + x̄

∑
i≥3

ai

bi2
ȳi

ȳ′ = x̄+ ȳ2 +
b3
b22
ȳ3 +

∑
j≥4

bj

bj−1
2

ȳj .

Blowing-up in the ȳ-direction with v = 1, we get

r′ = ru+ r +

b3
b22
r2 + o(r2)

u′ = −2u(u+ 1) +
(
a2
b22

− 2b3
b22

)
ru+ u(o(r)).
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On the invariant line {r = 0} we find exactly two singularities at
(r, u) = (0, 0) and (r, u) = (0,−1). The linear part at (0, 0) has eigenval-
ues 1 and −2 and {r = 0} (resp. {u = 0}) contains the stable (resp. un-
stable) manifold at (0, 0). The linear part at (0,−1) has eigenvalues 0
and 2. In this case {r = 0} contains the unstable manifold. Putting
u + 1 = z, we bring the singularity at (0,−1) to (r, z) = (0, 0). With
respect to the new coordinates a first order approximation of the center
manifold is given by z = (a2/2b22 − b3/b22)r + o(r). Hence, the reduction
at order 2 to the center manifold is

r′ =
a2
2b22
r2 + o(r2).

Blowing-up in the x̄-direction no singularity is found at (r, v) = (0, 0).
The phase-portraits for the blowing-up are given in Figure 2.4 (a). Tak-
ing into account the sign of b2 we obtain the topological types depicted
in Figure 2.4 (b) for XR.

(a)

(b)

a2 < 0 a2 > 0

(a2, b2) = (1, 1)

b2 > 0, a2 �= 0

(a2, b2) = (−1,−1)

b2 < 0, a2 < 0

(a2, b2) = (1,−1)

b2 < 0, a2 > 0

Figure 2.4. Topological types for vector fields in N3,2 \N4,3.
We use the model a2

2 xy
2 ∂

∂x + (x2 + b2y2) ∂
∂y .
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Case 3: By means of the change of variables and the rescaling given by

(7)




x =
a31
b23
x̄

t =
b3
a21
t̄

y =
a1
b3
ȳ

we get from (5) the vector field{
x̄′ = x̄(ȳ + o(ȳ))
ȳ′ = x̄+ ȳ3 + o(ȳ3).

Blowing-up in the ȳ-direction with v = 1, we get{
r′ = ru+ r2 + o(r2)
u′ = u(1 − 2u) + u(O(r)).

(a) (b)

(a1, b3) = (1, 1)

a1 > 0, b3 > 0

(a1, b3) = (1,−1)

a1 > 0, b3 < 0

(a1, b3) = (−1, 1)

a1 < 0, b3 > 0

(a1, b3) = (−1,−1)

a1 < 0, b3 < 0

Figure 2.5. Topological types for vector fields in N3,1 \ (N4,1 ∪N4,2).
We use the model a1

2 xy
∂
∂x + (x2 + b3y3) ∂

∂y .
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On the invariant line {r = 0} we find exactly two singularities at
(r, u) = (0, 0) and (r, u) = (0, 1/2). The linear part at (0, 0) has eigenval-
ues 0 and 1 and {r = 0} (resp. {u = 0}) contains the unstable manifold
(resp. a center manifold). The linear part at (0, 1/2) has eigenvalues 1/2
and −1. Again all the relevant information is given by the previous
blowing-up. Figure 2.5 shows the phase-portrait close to S1 × {0} and
the corresponding flows for XR, which are obtained taking into account
the signs of a1 and b3 in (7).

2.3. Singularities of codimension 4.
We will distinguish four cases:

1. X ∈ N4,3 \N5,5. In this case b2 �= 0, a1 = 0, a2 = 0 and a3 �= 0,

2. X ∈ N4,2 \N5,4. In this case b2 = 0, a1 �= 0, b3 = 0 and b4 �= 0,

3. X ∈ N4,1\(N5,1∪N5,2∪N5,3). In this case b2 = 0, a1 = 0, a2 �= 0,
b3 �= 0 and a2 �= 3b3,

which are studied separately.

Case 1: Since b2 �= 0 we use again (6) which is given, taking into
account that a1 = a2 = 0, by




x̄′ =
a3
b32
x̄ȳ3 + x̄

∑
i≥4

ai

bi2
ȳi

ȳ′ = x̄+ ȳ2 +
b3
b22
ȳ3 +

b4
b32
ȳ4 +

∑
j≥5

bj

bj−1
2

ȳj .

Blowing-up in the ȳ-direction with v = 1, we get



r′ = ru+ r +

b3
b22
r2 +

b4
b32
r3 + o(r3)

u′ = −2u(u+ 1) − 2b3
b22
ru+

(
a3
b32

− 2b4
b32

)
r2u+ u(o(r2)).

On the invariant line {r = 0} we find exactly two singularities at
(r, u) = (0, 0) and (r, u) = (0,−1). The linear part at (0, 0) has eigen-
values 1 and −2 and {r = 0} (resp. {u = 0}) contains the stable
(resp. unstable) manifold at (0, 0). The linear part at (0,−1) has eigen-
values 0 and 2. In this case {r = 0} contains the unstable manifold.
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Putting u + 1 = z, we bring the singularity at (0,−1) to (r, z) = (0, 0).
With respect to the new coordinates a second order approximation of the
center manifold is given by z = (−b3/b22)r + (a3/2b32 − b4/b32)r2 + o(r2).
Hence, the reduction at order 3 to the center manifold is

r′ =
a3
2b32
r3 + o(r3).

Blowing-up in the x̄-direction no singularity is found at (r, v) = (0, 0).
The phase-portraits for the blowing-up are given in Figure 2.6 (a). Tak-
ing into account the sign of b2 we obtain the topological types depicted
in Figure 2.6 (b) for XR.

(a)

(b)

a3
2b32
> 0 a3

2b32
< 0

(a3, b2) = (1, 1)

b2 > 0, a3 �= 0

(a3, b2) = (−1,−1)

b2 < 0, a3 < 0

(a3, b2) = (1,−1)

b2 < 0, a3 > 0

Figure 2.6. Topological types for vector fields in N4,3 \N5,5.
We use the model a3

2 xy
3 ∂

∂x + (x2 + b2y2) ∂
∂y .
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Case 2: Suppose that a1b4 > 0. In such a case we use the change of
variables and the rescaling given by

(8)




x =
a21
b4
x̄

t =
(
b4
a1

) 3
2 1
b4
t̄

y =
(
a1
b4

) 1
2

ȳ

to obtain from (5) the vector field{
x̄′ = x̄ȳ + x̄(o(ȳ))
ȳ′ = x̄+ ȳ4 + o(ȳ4).

Blowing-up in the ȳ-direction with v = 1, we get{
r′ = ru+ r3 + o(r3)
u′ = u− 2u2 + u(O(r)).

On the invariant line {r = 0} we find exactly two singularities at
(r, u) = (0, 0) and (r, u) = (0, 1/2). The singularity (0, 1/2) is hyperbolic
and the eigenvalues of the linear part are 1/2 and −1. The eigenvalues of
the linear part at (0, 0) are 0 and 1. The unstable manifold is contained
in {r = 0} and since {u = 0} is invariant, it contains a center manifold.
All the relevant information is given by the previous blowing-up. Glue-
ing the different charts together we obtain the phase-portrait given in
Figure 2.7 (a). Taking into account (8) we obtain the topological types
of Figure 2.7 (b) for XR which depend on the signs of a1 and b4.

(a) (b)

(a1, b4) = (1, 1)

a1 > 0, b4 > 0

(a1, b4) = (−1,−1)

a1 < 0, b4 < 0

Figure 2.7. Topological types for vector fields in N4,2\N5,4 with a1b4>0.
We use the model a1

2 xy
∂
∂x + (x2 + b4y4) ∂

∂y .
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On the other hand, when a1b4 < 0 we use the change of variables and
the rescaling given by

(9)




x = −a
2
1

b4
x̄

t = −
(
− b4
a1

) 3
2 1
b4
t̄

y =
(
−a1
b4

) 1
2

ȳ

to reduce (5) to {
x̄′ = x̄ȳ + x̄(o(ȳ))
ȳ′ = x̄− ȳ4 + o(ȳ4).

In this case, by blowing-up in the ȳ-direction with v = 1, we get{
r′ = ru− r3 + o(r3)
u′ = u− 2u2 + u(O(r)).

As in the previous cases the above vector field gives us all the relevant
information. We obtain the phase-portrait given in Figure 2.8 (a) and
the topological types given in Figure 2.8 (b) taking into account the signs
of a1 and b4 in (9).

(a) (b)

(a1, b4) = (−1, 1)

a1 < 0, b4 > 0

(a1, b4) = (1,−1)

a1 > 0, b4 < 0

Figure 2.8. Topological types for vector fields in N4,2\N5,4 with a1b4<0.
We use the model a1

2 xy
∂
∂x + (x2 + b4y4) ∂

∂y .

Case 3: Now we use a different blowing-up given by

x̄ = r3u, ȳ = rv.
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Blowing-up in the ȳ-direction with v = 1 we obtain, after division by r2,{
r′ = ru+ b3r + o(r)
u′ = a2u− 3u(u+ b3) +O(r).

b3 > 0

a2 > 0

b3a2 < 0

b3 < 0

a2 < 0

(a2, b3) = (4, 1) (a2, b3) = (1, 1)

(a2, b3) = (1,−1) (a2, b3) = (−1, 1)

(a2, b3) = (−1,−1)

a2 − 3b3 > 0

(a2, b3) = (−4,−1)

a2 − 3b3 < 0

Figure 2.9. Topological types for vector fields in N4,1\(N5,1∪N5,2∪N5,3).
We use the model a2

2 xy
2 ∂

∂x + (x2 + b3y3) ∂
∂y .
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We find exactly two hyperbolic singularities at (r, u) = (0, 0) and (r, u) =
(0, (a2−3b3)/3). The blowing-up in the y-direction with v = −1 is related
to the one obtained by taking v = 1 by means of the change (r, u) →
(−r,−u). All the relevant information is given by the previous vector
field and glueing the different charts together we get the phase-portraits
given in Figure 2.9 for the blowing-up near S1 × {0} as well as for the
different topological types corresponding to XR.

3. Quadratic case (b01 = 0)

Under certain conditions we will consider further simplifications of
the expresion of XR given in (4). These simplifications are obtained by
means of linear changes of coordinates and they are such that the 2-jet of
(4) with respect to the new coordinates presents some specific invariant
lines. Let us recall that the 2-jet of XR is given by

(10) x(a10y + a01x)
∂

∂x
+ (b20y2 + b11yx+ b02x2)

∂

∂y
.

Simple calculations permit to show that if A is such that

(11) (a10 − b20)A2 + (a01 − b11)A− b02 = 0,

then the line y = Ax is invariant for the vector field given in (10). Let

∆ = (a01 − b11)2 + 4b02(a10 − b20)

be the discriminant of equation (11).

If ∆ < 0 then a10 − b20 �= 0 and hence (11) is a quadratic equation
which has no real solutions. In this case no further simplifications are
done and we merely define the following strata in W2:

C3,1 = {X ∈W2 | b01 = 0, ∆ < 0},

C4,1 = {X ∈ C3,1 | b20 = 0},

C5,1 = {X ∈ C3,1 | b20 = 0, b30 = 0}.
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If ∆ > 0 and a10 − b20 �= 0 then (11) is a quadratic equation with
two different real solutions A1 and A2 for which condition A2 > A1 is
assumed. The linear change of coordinates

(12)
{
x = x̄
y = A1x̄+ (A2 −A1)ȳ

sends the lines {y = A1x} and {y = A2x} to {ȳ = 0} and {ȳ = x̄},
respectively. Hence, with respect to the (x̄, ȳ)-coordinates, XR still main-
tains {x̄ = 0} as an invariant line and presents the following 3-jet:

(13) x̄(ā10ȳ + ā01x̄+ ā20ȳ2 + ā11ȳx̄+ ā02x̄2)
∂

∂x̄

+ (b̄20ȳ2 + b̄11ȳx̄+ b̄30ȳ3 + b̄21ȳ2x̄+ b̄12ȳx̄2 + b̄03x̄3)
∂

∂ȳ

with b̄20 + b̄11 = ā01 + ā10 since ȳ = x̄ is an invariant line for the 2-jet.
Under these conditions we define the following stratification:

C3,2 = {X ∈W2 | b01 = 0, ∆ > 0, a10 − b20 �= 0},

C4,2 = {X ∈ C3,2 | b̄20 = 0},

C4,3 = {X ∈ C3,2 | b̄20 �= 0, ā01 = 0},

C4,4 = {X ∈ C3,2 | b̄20 �= 0, ā01 �= 0, ā01 + ā10 = 0},

C5,2 = {X ∈ C3,2 | b̄20 = 0, ā01 = 0},

C5,3 = {X ∈ C3,2 | b̄20 = 0, ā01 �= 0, ā01 + ā10 = 0},

C5,4 = {X ∈ C3,2 | b̄20 = 0, ā01 �= 0, ā01 + ā10 �= 0, b̄30 = 0},

C5,5 = {X ∈ C3,2 | b̄20 �= 0, ā01 = 0, ā10 = 0},

C5,6 = {X ∈ C3,2 | b̄20 �= 0, ā01 = 0, ā10 �= 0, ā10b̄03+ā02(b̄20−ā10)=0},

C5,7 = {X ∈ C3,2 | b̄20 �= 0, ā01 �= 0, ā01 + ā10 = 0, b̄20(ā20 + ā11 + ā02)

− ā10(b̄30 + b̄21 + b̄12 + b̄03) = 0}.



520 F. Dumortier, S. Ibáñez

Finally, we have to consider the cases {∆ > 0, a10 − b20 = 0} and
{∆ = 0, a10 − b20 �= 0}. The condition in the first case implies that
a01 − b11 �= 0 and therefore (11) is a linear equation. In the second
case (11) is a second order equation with a unique real solution. Let A1

be the unique solution of (11) under any of the previous conditions. In
such a case, with respect to the (x̄, ȳ)-coordinates given by the linear
transformation

(14)
x = x̄
y = A1x̄+ ȳ,

the vector field XR still maintains {x̄ = 0} as an invariant line and its
3-jet is like in (13). That is, the 2-jet presents {ȳ = 0} as the unique
invariant line of the type ȳ = Ax̄. Thus, we define the following strata
of codimension 4 and 5:

C4,5 = {X ∈W2 | b01 = 0, ∆ > 0, a10 − b20 = 0},

C5,8 = {X ∈ C4,5 | b̄20 = 0},

C5,9 = {X ∈ C4,5 | b̄20 �= 0, ā01 = 0}

and

C4,6 = {X ∈W2 | b01 = 0, ∆ = 0, a10 − b20 �= 0},

C5,10 = {X ∈ C4,6 | b̄20 = 0},

C5,11 = {X ∈ C4,6 | b̄20 �= 0, ā01 = 0}.

C3,1 C3,2

C4,1 C4,2 C4,3 C4,4 C4,5 C4,6

C5,1 C5,2C5,3 C5,4 C5,5 C5,6 C5,7C5,8 C5,9 C5,10 C5,11 C5,12

Figure 3.1. Stratification in the quadratic case.
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We also define the stratum C5,12 = {X ∈ W2 | b01 = 0, ∆ = 0,
a10 − b20 = 0}. Note that each Ci,j with i = 3, 4, 5 is a semi-algebraic
set of codimension i. In Figure 3.1 we show how the different strata are
organized.

Remark 3.1. The aij and bij refer to coefficients in (4) while āij

and b̄ij to coefficients in (13). Nevertheless, it is important to ob-
serve that after the change (12) (resp. (14)) ā10 = a10(A2 − A1) and
b̄20 = b20(A2 − A1) (resp. ā10 = a10 and b̄20 = b20). Therefore, in both
cases ā10 − b̄20 and a10 − b20 have the same sign. Since ȳ = 0 is the
unique invariant line of the type ȳ = Ax̄ for the 2-jet of (13) if X ∈ C4,5,
it follows that A = 0 is the unique solution of (ā01− b̄11)A = 0 and hence
ā01 − b̄11 �= 0. Similarly, if X ∈ C4,6 then A = 0 is the unique solution
of (ā10 − b̄20)A2 + (ā01 − b̄11)A = 0 and hence ā01 = b̄11.

Remark 3.2. Putting together the different strata which we have
just characterized with the ones given for the nilpotent case in section 2,
we finally obtain the following stratification of W2:

W22 = N2,1

W23 =
(
∪3

j=1N3,j

)
∪

(
∪2

j=1C3,j

)
,

W24 =
(
∪3

j=1N4,j

)
∪

(
∪6

j=1C4,j

)
,

W25 =
(
∪5

j=1N5,j

)
∪

(
∪12

j=1C5,j

)
.

Note that each W2i with i = 2, 3, 4, 5 is a semi-algebraic set of codimen-
sion i.

We will obtain the different equivalence classes which are found in each
stratum Ci,j \Ci,j+1. To do this we use the homogeneous blow-up given
by

x = ru, y = rv.

Since the exponent of r in the change y = rv is odd the vector field
obtained by blowing-up in the y-direction with v = −1 is related to the
one obtained by taking v = 1 by means of the change (r, u) → (−r,−u)
and t→ −t. We will keep this in mind in the sequel.
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We can first give a survey of the different dynamics which are ob-
served in each stratum as well as of the different transitions. We first
study the singularities obtained after one blow-up. Only the side u ≥ 0
on the blown-up circle needs to be considered. In all cases we will find
two singularities at (u, v) = (0,±1), corresponding to the invariant axes.
For C3,1 there are no more singularities and further degeneracies in C4,1

and C5,1 are given by the coalescence of an extra hyperbolic singular
point with (0,±1). For C3,2 we also find two singularities p1 and p2
on the blown-up circle with u > 0. Further degeneracies along the dif-
ferent strata contained in C3,2 are given by the coalescence of an extra
hyperbolic singular point with (0,±1), p1 or p2. C4,5 can be seen as the
transition inside C3,2 from a10 − b20 positive to negative. As a conse-
quence, one of the singularities, either p1 or p2, coalesce with (0,±1) in
a saddle-node bifurcation. Finally C4,6 shows the transition from C3,2

to C3,1, in which p1 and p2 coalesce in a saddle-node bifurcation.

Remark 3.3. Let us recall that in the previous calculations on (3)
the coordinates (x, y) represent in fact (w, z) in expression (2). Going
back to the original coordinates (x, y) in (1) we have to use w = x2 and
z = y. By means of blow-up we prove the existence of invariant curves
for vector fields like in (3) of the form z = αw+o(w). Hence, with respect
to (x, y)-coordinates we get invariant curves of type y = αx2/2 + o(x2).
This must be kept in mind when drawing, as we do in this case, the
different topological types for vector fields (1).

3.1. Singularities of codimension 3.

We will distinguish two cases:

1. X ∈ C3,1 \ C4,1. In this case b01 = 0, ∆ < 0 and b20 �= 0,

2. X ∈ C3,2 \ (C4,2 ∪ C4,3 ∪ C4,4). In this case b01 = 0, ∆ > 0,
a10 − b20 �= 0, b̄20 �= 0, ā01 �= 0 and ā01 + ā10 �= 0,

which are studied separately.

Case 1: We consider expression (4) for XR. The change of coordinates
(x, y) → (x,−y) permits us to put b20 > 0. Hence, we assume that b20
is positive. Blowing-up in the y-direction with v = 1 we get

{
r′ = b20r + r(O(‖(r, u)‖))
u′ = u(a10 − b20 + (a01 − b11)u− b02u2) + u(O(r)).
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Since ∆ < 0, on the invariant line {r = 0} we find exactly one hy-
perbolic singularity at (r, u) = (0, 0). Recall that ∆ < 0 implies that
(a10 − b20) �= 0. One can check that blowing-up in the x-direction no
singularity is found at (r, v) = (0, 0). The study of the singularity leads
to the phase-portraits given in Figure 3.2 for the blowing-up as well as
for the corresponding topological types of XR.

(a10, b20, b02) = (2, 1,−1)

a10 − b20 > 0

(a10, b20, b02) = (−1, 1, 1)

a10 − b20 < 0

Figure 3.2. Topological types for vector fields in C3,1 \ C4,1.
We use the model 1

2x(a10y + a01x2) ∂
∂x + (b20y2 + b11yx2+

b02x
4) ∂

∂y .

Case 2: In this case we consider the expression ofXR which is obtained
after the change (12) and hence we assume that its 3-jet is given by (13).
As it is explained in Remark 3.1, ā10 − b̄20 �= 0. Moreover we use that
b̄20 + b̄11 = ā01 + ā10 and assume, as in the previous case, that b̄20 > 0.

Blowing-up in the x̄-direction with u = 1 we get

{
r′ = (ā10v + ā01)r + o(r)
v′ = (b̄20 − ā10)v(v − 1) +O(r).

On the invariant line {r = 0} we find exactly two hyperbolic singularities
at (r, u) = (0, 0) and (r, v) = (0, 1). Blowing-up in the ȳ-direction with
v = 1 we get an extra hyperbolic singularity at (r, u) = (0, 0). Studying
the singularities and glueing the different charts together we obtain the
phase-portraits given in Figure 3.3.
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ā01 > 0

ā10 + ā01 > 0

ā01 > 0

ā10 + ā01 < 0

ā01 < 0

ā10 + ā01 > 0

ā01 < 0

< 0

(ā10, ā01, b̄20) = (2, 1, 1)

(ā10, ā01, b̄20) = (2,−1, 1)

(ā10, ā01, b̄20) = (−1, 2, 1)

(ā10, ā01, b̄20) = (−2, 1, 1)

(ā10, ā01, b̄20) = (1/2,−1/4, 1)

(ā10, ā01, b̄20) = (2,−3, 1)

ā10 − b̄20 > 0

(ā10, ā01, b̄20) = (−1,−1, 1)

ā10 − b̄20 < 0

ā10 + ā01

Figure 3.3. Topological types for vector fields in C3,2\(C4,2∪C4,3∪C4,4).
We use the model 1

2x(ā10y+ā01x
2) ∂

∂x +(b̄20y2+(ā01+ā10−
b̄20)yx2) ∂

∂y .
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3.2. Singularities of codimension 4.

We have six cases:

1. X ∈ C4,1 \C5,1. In this case b01 = 0, ∆ < 0, b20 = 0 and b30 �= 0,
2. X ∈ C4,2 \ (C5,2 ∪ C5,3 ∪ C5,4). In this case b01 = 0, ∆ > 0,
a10 − b20 �= 0, b̄20 = 0, ā01 �= 0, ā01 + ā10 �= 0 and b30 �= 0,

3. X ∈ C4,3 \(C5,5∪C5,6). In this case b01 = 0, ∆ > 0, a10−b20 �= 0,
b̄20 �= 0, ā01 = 0, ā10 �= 0 and ā10b̄03 + ā02(b̄20 − ā10) �= 0,

4. X ∈ C4,4 \ C5,7. In this case b01 = 0, ∆ > 0, a10 − b20 �= 0,
b̄20 �= 0, ā01 �= 0, ā01 + ā10 = 0 and b̄20(ā20 + ā11 + ā02)− ā10(b̄30 +
b̄21 + b̄12 + b̄03) �= 0,

5. X ∈ C4,5 \(C5,8∪C5,9). In this case b01 = 0, ∆ > 0, a10−b20 = 0,
b̄20 �= 0 and ā01 �= 0,

6. X ∈ C4,6\(C5,10∪C5,11). In this case b01 = 0, ∆ = 0, a10−b20 �= 0,
b̄20 �= 0 and ā01 �= 0,

which are studied separately.

Case 1: In this case the change of coordinates (x̄, ȳ) → (x̄,−ȳ) permit
us to put a10 > 0 and hence we assume that such a condition is satisfied.
Blowing-up (4) in the y-direction with v = 1 we get

{
r′ = r(b11u+ b02u2) + r2(b30 + b21u+ b12u2 + b03u3) + o(r2)
u′ = u(a10 + (a01 − b11)u− b02u2) + u(O(r)).

(a10, b02, b30) = (1,−1, 1)

b30 > 0

(a10, b02, b30) = (1,−1,−1)

b30 < 0

Figure 3.4. Topological types for vector fields in C4,1 \ C5,1.
We use the model 1

2x(a10y + a01x2) ∂
∂x + (b11yx2 + b02x4+

b30y
3) ∂

∂y .
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Since ∆ < 0, on the invariant line {r = 0} we find exactly one singularity
at (r, u) = (0, 0), where the linear part is given by a10u ∂

∂u . Therefore,
there exists a center manifold tangent to the eigenspace associated to
the 0 eigenvalue. In this case {u = 0} is an invariant line and hence it is
a center manifold. The restriction of the vector field to {u = 0} is given
by (b30r2 + o(r2)) ∂

∂r . One can check that blowing-up in the x-direction
no singularity is found at (r, v) = (0, 0). Glueing the different charts
together we get the phase-portraits given in Figure 3.4 for the blowing-
up near S1 × {0} as well as for the corresponding topological types of
XR.

Case 2: We use the expression of the 3-jet of XR which is given in
(13) and, similarly to the previous case, we may assume that ā10 > 0.
By blowing-up XR in the x̄-direction we will obtain the same phase-
portraits as in case 2 of codimension 3. Nevertheless, blowing-up in the
ȳ-direction with v = 1 we get{

r′ = b̄11ru+ r2(b̄30 + b̄21u+ b̄12u2 + b̄03u3) + o(r2)
u′ = u(ā10 + (ā01 − b̄11)u) + u(O(r)).

The linear part at (r, u) = (0, 0) is given by ā10u ∂
∂u . As in the previous

case, {u = 0} is a center manifold. The restriction of the vector field to
{u = 0} is given by (b̄30r2 + o(r2)) ∂

∂r . In Figure 3.5 the corresponding
phase-portraits for the blowing-up and for XR are depicted.

Case 3: We assume that b̄20 > 0. After blowing-up we obtain the same
singularities as in case 2 of codimension 3. Also the behaviour at each
one of them is the same except for the singularity at (r, v) = (0, 0) which
is obtained by blowing-up in the x̄-direction with u = 1. In such a case
we get the vector field


r′ = ā10rv + r2(ā20v2 + ā11v + ā02) + o(r2)
v′ = (b̄20 − ā10)v(v − 1) + r((b̄30 − ā20)v3

+ (b̄21 − ā11)v2 + (b̄12 − ā02)v + b̄03) + o(r).

The linear part at (r, v) = (0, 0) is given by (b̄03r + (ā10 − b̄20)v) ∂
∂v .

The singularity is hyperbolic for the restriction to {r = 0} and there
exists a center manifold W c tangent to the eigenspace associated to the
0 eigenvalue. A simple calculation shows that a first order approximation
of W c is given by

b̄03
b̄20 − ā10

r + o(r)
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and the reduction of the vector field to W c is

r′ =
ā10b̄03 + ā02(b̄20 − ā10)

b̄20 − ā10
r2 + o(r2).

ā01 > 0

ā10 + ā01 > 0

ā01 < 0

ā10 + ā01 > 0

ā01 < 0

< 0

(ā10, ā01, b̄30) = (1, 1, 1)

(ā10, ā01, b̄30) = (1,−1/2, 1)

(ā10, ā01, b̄30) = (1, 1,−1)

(ā10, ā01, b̄30) = (1,−1/2,−1)

(ā10, ā01, b̄30) = (1,−2, 1)

b̄30 > 0

(ā10, ā01, b̄30) = (1,−2,−1)

b̄30 < 0

ā10 + ā01

Figure 3.5. Topological types for vector fields in C4,2\(C5,2∪C5,3∪C5,4).
We use the model 1

2x(ā10y + ā01x2) ∂
∂x + ((ā01 + ā10)yx2+

b̄30y
3) ∂

∂y .
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We get the phase-portraits depicted in Figure 3.6 for the blowing-up and
for the topological types of XR.

ā10 > 0

ā10 − b̄20 > 0

ā10 > 0

ā10 − b̄20 < 0

ā10 < 0

ā10 − b̄20 < 0

(ā10, ā02, b̄20) = (2, 1, 1)

(ā10, ā02, b̄20) = (1/2, 1, 1)

(ā10, ā02, b̄20) = (−1, 1, 1)

α > 0

(ā10, ā02, b̄20) = (−1,−1, 1)

α < 0

(ā10, ā02, b̄20) = (2,−1, 1)

(ā10, ā02, b̄20) = (1/2,−1, 1)

Figure 3.6. Topological types for vector fields in C4,3 \ (C5,5 ∪ C5,6).
α=(ā10b̄03 + ā02(b̄20 − ā10))/(b̄20 − ā10). We use the model
1
2x(ā10y+ā20y

2+ā02x4) ∂
∂x +(b̄20y2+(ā10−b̄20)yx2+b̄03x6) ∂

∂y .
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Case 4: Again, we assume that b̄20 > 0. As in the previous case,
after blowing-up, we obtain the same singularities that in case 2 of codi-
mension 3. The behaviour at each one of them is the same except for
the singularity which is present at (r, v) = (0, 1) after blowing-up in the
x̄-direction with u = 1. In such a case we get the vector field


r′ = r(ā10v + ā01) + r2(ā20v2 + ā11v + ā02) + o(r2)
v′ = (b̄20 − ā10)v(v − 1) + r((b̄30 − ā20)v3

+ (b̄21 − ā11)v2 + (b̄12 − ā02)v + b̄03) + o(r).

Putting v−1 = z we traslate the singularity at (r, z) = (0, 0). The linear
part of the new vector field at (0, 0) is

(((b̄30 + b̄21 + b̄12 + b̄03) − (ā20 + ā11 + ā02))r − (ā10 − b̄20)z)
∂

∂z
.

The singularity is hyperbolic for the restriction to {r = 0} and there
exists a center manifold W c tangent to the eigenspace associated to the
0 eigenvalue. A simple calculation shows that a first order approximation
of W c is given by

ā20 + ā11 + ā02 − b̄30 − b̄21 − b̄12 − b̄03
b̄20 − ā10

r + o(r)

and the corresponding reduction of the vector field to W c by

r′ =
b̄20(ā20 + ā11 + ā02) − ā10(b̄30 + b̄21 + b̄12 + b̄03)

b̄20 − ā10
r2 + o(r2).

In Figure 3.7 we represent the phase-portraits for the blowing-up and
the corresponding topological types for XR which are obtained.

Case 5: We assume that b̄20 > 0. Blowing-up in the ȳ-direction with
v = 1 we get {

r′ = r(b̄20 + b̄11u) + o(r)
u′ = (ā01 − b̄11)u2 + u(O(r)).

On the invariant line {r = 0} we only find a singularity at (r, u) = (0, 0)
with linear part b̄20r ∂

∂r . Therefore {r = 0} is a center manifold and the
corresponding restriction is given by (ā01 − b̄11)u2 ∂

∂u . We know from
Remark 3.1 that (ā01 − b̄11) �= 0.

Blowing-up in the x̄-direction with u = 1 we get

r′ = r(ā10v + ā01) + o(r)
v′ = −(ā01 − b̄11)v + r((b̄30 − ā20)v3

+ (b̄21 − ā11)v2 + (b̄12 − ā02)v + b̄03) + o(r).
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On the invariant line {r = 0} we get an extra hyperbolic singularity at
(r, v) = (0, 0) with linear part ā01r ∂

∂r + (b̄03r− (ā01 − b̄11)v) ∂
∂v . Glueing

the different charts together we get the phase-portraits for the blowing-
up and for the topological types for XR which are depicted in Figure 3.8.

ā10 − b̄20 < 0

ā01 > 0

ā10 − b̄20 > 0

ā01 < 0

ā10 − b̄20 < 0

ā01 < 0

(ā10, ā20, b̄20) = (−1, 1, 1)

(ā10, ā20, b̄20) = (2,−1, 1)

(ā10, ā20, b̄20) = (1/2, 1, 1)

β > 0

(ā10, ā20, b̄20) = (−1,−1, 1)

(ā10, ā20, b̄20) = (2, 1, 1)

(ā10, ā20, b̄20) = (1/2,−1, 1)

β < 0

Figure 3.7. Topological types for vector fields in C4,4 \ C5,7.
β=(b̄20(ā20+ā11+ā02)−ā10(b̄30+b̄21+b̄12+b̄03))/(b̄20−ā10).
We use the model 1

2x(ā10y−ā10x2+ā20y2+ā11yx2+ā02x4) ∂
∂x+

(b̄20y2−b̄20yx2+b̄02x4+b̄30y3+b̄21y2x2+b̄12yx4+b̄03x6) ∂
∂y .
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ā01 − b̄11 > 0

ā01 − b̄11 < 0

(ā01, b̄20, b̄11) = (1, 1, 0)

(ā01, b̄20, b̄11) = (1, 1, 2)

ā01 > 0

(ā01, b̄20, b̄11) = (−1, 1,−2)

(ā01, b̄20, b̄11) = (−1, 1, 0)

ā01 < 0

Figure 3.8. Topological types for vector fields in C4,5 \ (C5,8 ∪ C5,9).
We use the model 1

2x(b̄20y + ā01x2) ∂
∂x +(b̄20y2 + b̄11yx2) ∂

∂y .

Case 6: Let us recall from Remark 3.1 that ā01 − b̄11 = 0. Once more
again, we assume that b̄20 > 0. Blowing-up in the ȳ-direction with v = 1
we get {

r′ = r(b̄20 + b̄11u) + o(r)
u′ = u(ā10 − b̄20) + u(O(r)).

On the invariant line {r = 0} we find exactly one hyperbolic singularity
at (r, u) = (0, 0) with linear part b̄20r ∂

∂r + (ā10 − b̄20)u ∂
∂u .

Blowing-up in the x̄-direction with u = 1 we get



r′ = r(ā10v + ā01) + o(r)
v′ = (b̄20 − ā10)v2 + r((b̄30 − ā20)v3

+ (b̄21 − ā11)v2 + (b̄12 − ā02)v + b̄03) + o(r).
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Again (r, v) = (0, 0) is the unique singularity on {r = 0} and the linear
part is given by ā01r ∂

∂r + b̄03r ∂
∂v . Therefore {r = 0} is a center manifold

and the restriction of the vector field is given by (b̄20 − ā10)v2 ∂
∂v . Glue-

ing the different charts together we get the phase-portraits depicted in
Figure 3.9 where the different topological types corresponding to XR are
also shown.

ā10 − b̄20 > 0

ā10 − b̄20 < 0

(ā10, ā01, b̄20) = (2, 1, 1)

ā01 > 0

(ā10, ā01, b̄20) = (0, 1, 1)

(ā10, ā01, b̄20) = (2,−1, 1)

ā01 < 0

(ā10, ā01, b̄20) = (0,−1, 1)

Figure 3.9. Topological types for vector fields in C4,6 \ (C5,10 ∪ C5,11).
We use the model 1

2x(ā10y+ā01x
2) ∂

∂x +(b̄20y2+ā01yx2) ∂
∂y .
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