A NOTE ON INVERSE LIMITS OF CONTINUOUS IMAGES OF ARCS

IVAN LONČAR

Abstract _

The main purpose of this paper is to prove some theorems concerning inverse systems and limits of continuous images of arcs. In particular, we shall prove that if $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of continuous images of arcs with monotone bonding mappings such that $cf(card(A)) \neq \omega_1$, then $X = \lim \mathbf{X}$ is a continuous image of an arc if and only if each proper subsystem $\{X_a, p_{ab}, B\}$ of \mathbf{X} with $cf(card(B)) = \omega_1$ has the limit which is a continuous image of an arc (Theorem 18).

1. Inverse limits of hereditarily locally connected continua

An arc (or ordered continuum) is a Hausdorff continuum with exactly two non-separating points. Each separable arc is homeomorphic to the closed interval I = [0, 1].

A space X is said to be an IOK (IOC) if there exists an ordered compact (connected) space K and a continuous surjection $f: K \to X$. Frequently, we will say that a space X is a continuous image of an arc if X is an IOC.

The cardinality of a set A will be denoted by card(A). We assume that card(A) is the initial ordinal number. The cofinality of a cardinal number m will be denoted by cf(m).

Keywords. Inverse system and limit, continuous image of an arc.

¹⁹⁹¹ Mathematics subject classifications: 54B35, 54C05, 54F50.

A continuum X is said to be hereditarily locally connected if each subcontinuum of X is locally connected. A continuum X is said to be finitely Suslinian [17] if there do not exist open sets U and V, and an infinite collection \mathcal{K} of pairwise disjoint subcontinua of X such that $Cl(U) \cap Cl(V) = \emptyset$ and $K \cap V \neq \emptyset$ and $K \cap U \neq \emptyset$ for each K in \mathcal{K} . Each finitely Suslinian continuum is hereditarily locally connected. A continuum X is rim-finite (rim-countable) if it has a basis \mathcal{B} such that $card(Bd(U)) < \aleph_0$ (card(Bd(U)) $\leq \aleph_0$) for each $U \in \mathcal{B}$. Each rimfinite continuum is finitely Suslinian. Each hereditarily locally connected continuum is a continuous image of an arc [11, Theorem 3.4].

In the paper [8, Problem 9.10] the authors asked when the inverse limit of an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of hereditarily locally connected continua with monotone surjective bonding mappings p_{ab} is a continuous image of an arc.

If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of hereditarily locally connected continua, then $X = \lim \mathbf{X}$ need not be a hereditarily locally continuum since each locally connected metric continuum of dimension 1 (= curve) is the limit of an inverse sequence of rim-finite continua with surjective monotone bonding mappings [13, Theorem 2.2].

In the present section we shall define a class of hereditarily locally connected continua such that each inverse limit of such spaces and monotone bonding mappings has a hereditarily locally connected limit.

In Appendix we review some definitions and known results needed in this section.

We say that an inverse system $\mathbf{Y} = \{Y_a, q_{ab}, B\}$ is a subsystem of $\mathbf{X} = \{X_a, p_{ab}, A\}$ if $B \subset A$, $Y_a = X_a$ and each q_{ab} is p_{ab} .

We start with the following theorem.

Theorem 1. Let X be the limit of an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of hereditarily locally connected continua X_a such that the bonding mappings $p_{ab} : X_b \to X_a$ are monotone surjections. Then X is a hereditarily locally continuum if and only if each countable inverse subsystem of \mathbf{X} has a hereditarily locally connected limit.

Proof: By Theorem 29 X is homeomorphic to the limit of $\mathbf{X}_{\sigma} = \{X_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$, where A_{σ} is the family of all nonempty countable directed subsets of A. If X is hereditarily locally connected then each X_{Δ} is hereditarily locally connected as a monotone image of a hereditarily locally connected continuum X (see Lemma 28). Conversely, if each X_{Δ} is hereditarily locally connected, then X is hereditarily locally connected (Theorem 27). ■

The following theorem is a generalization of the well-known result of G. T. Whyburn [20, p. 81] which asserts that a metric continuum X is hereditarily locally connected if and only if each cyclic element (see Appendix) $Z \subseteq X$ is hereditarily locally connected.

Theorem 2. A locally connected continuum X is hereditarily locally connected if and only if each cyclic element of X is hereditarily locally connected.

Proof: By Theorems 31 and 29 there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric locally connected spaces such that p_{ab} are monotone and X is homeomorphic to $\lim \mathbf{X}$. Let us prove that each X_a is hereditarily locally connected. It suffices to prove that each cyclic element Z_a of X_a is hereditarily locally connected. By Lemma 34 there exists a cyclic element Z of $\lim \mathbf{X}$ such $p_a(Z) \supseteq Z_a$. Since $\lim \mathbf{X}$ is homeomorphic to X, Z is hereditarily locally connected. It follows that Z_a is hereditarily locally connected. It follows that Z_a is hereditarily locally connected. It follows that Z_a is hereditarily locally connected since $Z_a \subseteq p_a(Z)$. We infer that each X_a is hereditarily locally connected since X_a is a metric continuum. From Theorem 27 it follows that X is hereditarily locally connected.

A surjective mapping $f: X \to Y$ is said to be *hereditarily monotone* [5, pp. 16–17] if for each subcontinuum K of X the restriction $f \mid K : K \to f(K)$ is monotone.

If $f: X \to Y$ and $g: Y \to Z$ are hereditarily monotone mappings, then $gf: X \to Z$ is hereditarily monotone [5, p. 29, (5.3)].

Lemma 3. If Z is a cyclic element of X, then the canonical retraction $\rho: X \to Z$ is hereditarily monotone.

Proof: Let $\rho: X \to Z$ (see Appendix, p. 13) and let K be any subcontinuum of X. Let us prove that the restriction $\rho_K: K \to \rho_K(K) \subseteq Z$ is monotone. Consider the following cases.

a) $K \subseteq Z$. Now ρ_K is the identity and is monotone.

b) $K \subseteq X \setminus Z$. It is clear that K is a subset of some component J of $X \setminus Z$. Let $\{z_J\} = \operatorname{Bd}(J)$. Now, $\rho_K(K) = \{z_J\}$. This means that $\rho_K^{-1}(z_J) = K$. Hence ρ_K is monotone.

c) $K \bigcap Z \neq \emptyset$ and $K \bigcap (X \setminus Z) \neq \emptyset$. In this case

$$K = \left(K \bigcap Z\right) \bigcup \left\{K \bigcap J : J \text{ is a component of } X \setminus Z, \ K \bigcap J \neq \emptyset\right\}.$$

We infer that

$$\rho_K(K) = \left(K \bigcap Z\right) \bigcup \{\{z_J\} : J \text{ is a component of } X \setminus Z, \{z_J\} = \operatorname{Bd}(J) \}.$$

If $x \in \rho_K(K)$ such that $x \neq z_J$ for all components J of $X \setminus Z$, then $\rho_K^{-1}(x) = \{x\}$. Hence $\rho_K^{-1}(x)$ is connected. If $x = z_J$ for some component J, then

$$\rho_K^{-1}(x) = \{z_J\} \bigcup \left\{ K \bigcap J_i : \{z_J\} = \mathrm{Bd}(J_i), \, i \in I \right\}.$$

It suffices to prove that each set $Cl(J_i) \cap K$ is connected. Suppose that $Cl(J_i) \cap K$ is not connected. There exists a component L of $Cl(J_i) \cap K$ such that $z_J \notin L$. By virtue of the normality of X it follows that there exists a pair U, V of disjoint open sets such that $L \subseteq U$ and $z_J \in V$. We may assume that $ClU \subseteq J$ since J is open. For each point x of $K \setminus (U \bigcup V)$ there exists an open set U_x such that $x \in U_x$ and $U_x \cap U = \emptyset$. Let W be the union of V and all the sets $U_x, x \in K \setminus (U \bigcup V)$. It is clear that $U \cap W = \emptyset$ and $K \subseteq U \bigcup W$. This is impossible since K is connected. Hence, $Cl(J_i) \cap K$ is connected and ρ_K is monotone.

Theorem 4. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of continua and hereditarily monotone bonding mappings. Then the projections p_a , $a \in A$, are hereditarily monotone. Moreover, if each X_a is hereditarily locally connected, then $X = \lim \mathbf{X}$ is hereditarily locally connected.

Proof: Let *K* be a subcontinuum of *X*. For each $a \in A$, $K_a = p_a(K)$ is a subcontinuum of X_a . We have the inverse system $K = \{K_a, p_{ab} \mid K_b, A\}$. From the definition of hereditarily monotone mapping it follows that each mapping $p_{ab} \mid K_b$ is a monotone mapping. This means that the projections $p_a \mid K$ are monotone [2, pp. 462–463]. From [2, Theorem 6.1.28] it follows that *K* is locally connected. Thus, *X* is hereditarily locally connected. ■

A surjective mapping $f : X \to Y$ is said to be *cyclically hereditarily* monotone if for each cyclic element Z of X the restriction $f \mid Z$ is hereditarily monotone.

Theorem 5. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of hereditarily locally connected continua X_a and cyclically hereditarily monotone bonding mappings p_{ab} . Then $X = \lim \mathbf{X}$ is hereditarily locally connected. Proof: By Theorem 2 it suffices to prove that each cyclic element Z of X is hereditarily locally connected. There exists an inverse system (Theorem 35) $\mathbf{Z} = \{Z_a, g_{ab}, A\}$ such that Z_a is a cyclic element of X_a , $g_{ab} = \rho_a \circ (f_{ab} \mid Z_b)$ for all $a \leq b \in A$, and Z is homeomorphic to lim \mathbf{Z} . This means that g_{ab} is hereditarily monotone since ρ_a is hereditarily monotone (Lemma 3). From Theorem 4 it follows that Z is hereditarily locally connected. \blacksquare

A space X is in class \mathcal{H}_m if X is a hereditarily locally connected continuum and X contains no non-degenerate metric subcontinuum. Each space in class \mathcal{H}_m is rim-finite [19, Theorem 1].

Theorem 6. Let $\mathbf{X} = \{X_n, p_{mn}, \mathbb{N}\}$ be an inverse sequence with monotone surjective bonding mappings. If each X_n is in class \mathcal{H}_m , then $X = \lim \mathbf{X}$ is in class \mathcal{H}_m . Moreover, X is rim-finite.

Proof: Each X_n is a continuous image of an arc [11, Corollary 3.5] since each X_n is hereditarily locally connected. Thus, X is a continuous image of an arc (Theorem 14). Let us prove that X contains no nondegenerate metric subcontinuum. Suppose that Y is a non-degenerate metric subcontinuum of X. Then there exists a $n \in N$ such that $p_m(Y)$ is a non-degenerate metric subcontinuum of X_m for each $m \ge n$. This is impossible since X_m is in class \mathcal{H}_m . We infer that X contains no non-degenerate metric subcontinua. By virtue of Theorem 21 it follows that X is hereditarily locally connected. Moreover, from Theorem 1 of [19] it follows that X is rim-finite.

Theorem 7. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system with monotone surjective bonding mappings. If each X_a is in class \mathcal{H}_m , then $X = \lim \mathbf{X}$ is in class \mathcal{H}_m . Moreover, X is rim-finite.

Proof: Apply Theorem 1 and Theorem 23. ■

A hereditarily locally connected continuum X is in class \mathcal{H}_{zm} if each cyclic element Z of X is in class \mathcal{H}_m .

Theorem 8. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system with monotone surjective bonding mappings. If each X_a is in class \mathcal{H}_{zm} , then $X = \lim X$ is in class \mathcal{H}_{zm} .

Proof: Let Z be a cyclic element of X. By Theorem 35 there exists an inverse system $(Z_{\gamma}, g_{\gamma\gamma'}, \Gamma)$ such that Z is homeomorphic to $\lim \operatorname{inv}(Z_{\gamma}, g_{\gamma\gamma'}, \Gamma)$, where Z_{γ} is a cyclic element of X_{γ} and $g_{\gamma\gamma'}$ is monotone. By Theorem 7 Z is in class \mathcal{H}_m . From Theorem 2 it follows that X is hereditarily locally connected. Hence, X is in class \mathcal{H}_{zm} .

I. Lončar

2. Special classes of continuous images of arcs

Theorem 9 [9]. Let X be a locally connected continuum such that for each pair of distinct points a, b in X, there exists a continuous onto map $f: X \to [c, d]$ such that f(a) = c and f(b) = d and [c, d] is a nonmetrizable arc. If X is rim-metrizable or rim-scattered or monotonically normal, then X is a continuous image of an arc.

A locally connected continuum is said to be a *NTT-space* if for each pair of distinct points a, b in X, there exists a continuous onto map $f : X \to [c,d]$ such that f(a) = c and f(b) = d and [c,d] is a non-metrizable arc.

Theorem 10. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of NTT-spaces with monotone surjective bonding mappings. Then $X = \lim \mathbf{X}$ is a NTT-space.

Proof: It is known that X is locally connected continuum. Let x, y be a pair of distinct points of X. There exists an $a \in A$ such that $p_b(x) \neq p_b(y)$ for each $b \geq a$. Since X_b is a NTT-space there exists a non-metrizable arc [c, d] and a surjective mapping $f : X_b \to [c, d]$ such that f(x) = c and f(y) = d. Considering the mapping $fp_b : X \to [c, d]$ we infer that X is a NTT-space.

Theorem 11. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of NTT-spaces and monotone surjective bonding mappings. If $X = \lim \mathbf{X}$ is rim-metrizable or rim-scattered or monotonically normal, then X is a continuous image of an arc.

Proof: By Theorem 10 X is a NTT-space. Apply Theorem 9. \blacksquare

Theorem 12. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of spaces X_a such that for each pair x_a , y_a of points of X_a the subspace $X_a \setminus \{x_a, y_a\}$ is connected, $a \in A$. If each X_a is a continuous image of an arc and each p_{ab} is a monotone surjection, then $X = \lim \mathbf{X}$ is a continuous image of an arc if and only if there exists an $a \in A$ such that $p_b : X \to X_b$ is a homeomorphism for each $b \ge a$ (if and only if Xis metrizable).

Proof: By Theorem 2 of [18] each X_a is metrizable. We shall prove that for each pair x, y of points of X the subspace $Y = X \setminus \{x, y\}$ is connected. Suppose that Y is not connected. Then there exists a pair U, V of disjoint open subsets of X such that $Y = U \cup V$. Moreover,

there exists an $a \in A$ such that $p_b(x) \neq p_b(y)$, $b \geq a$. The sets $U_a = \{x_a : x_a \in X_a, p_a^{-1}(x_a) \subset U\}$ and $V_a = \{x_a : x_a \in X_a, p_a^{-1}(x_a) \subset V\}$ are disjoint and open. Now we have $X \setminus \{p_a(x), p_a(y)\} = U_a \cup V_a$. This is impossible since $X \setminus \{p_a(x), p_a(y)\}$ is connected. Hence, $Y = X \setminus \{x, y\}$ is connected. It follows that if X is a continuous image of an arc, then it is metrizable ([18, Theorem 2]). From Theorem 26 it follows that there exists a $b \in A$ such that $p_c : X \to X_c$ is a homeomorphism for every $c \geq b$. Conversely, if such $b \in A$ exists, then X is a continuous image of an arc.

Theorem 13. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of spaces X_a such that for each pair x_a , y_a of points of X_a the subspace $X_a \setminus \{x_a, y_a\}$ is connected, $a \in A$. If each X_a is a continuous image of an arc and each p_{ab} is a monotone surjection, then $X = \lim \mathbf{X}$ is a continuous image of an arc if and only if there exists a countable subsystem \mathbf{Y} of \mathbf{X} such that $\lim \mathbf{Y}$ is homeomorphic to X.

Proof: Consider the inverse system $\mathbf{X}_{\sigma} = \{X_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$ from Theorem 29 and apply Theorem 12.

3. Inverse systems and subsystems

Theorem 14 [8, Theorem 5.1]. Let $\mathbf{X} = \{X_n, p_{mn}, \mathbb{N}\}$ be an inverse sequence with monotone surjective bonding mappings. If each X_n is the continuous image of an arc, then $X = \lim \mathbf{X}$ is the continuous image of an arc.

Theorem 15 [4, Theorem 2.17]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a wellordered inverse system such that $cf(A) \neq \omega_1$. If the mappings p_{ab} are monotone surjections and if the spaces X_a are the continuous images of arcs, then $X = \lim \mathbf{X}$ is the continuous image of an arc.

Remark 16. Theorem 15 is not true if $cf(A) = \omega_1$. This is shown by the following example of Nikiel [10]. Let *L* denote the long interval [2, p. 297]. For each ordinal number α , $0 < \alpha < \omega_1$, let $f_\alpha : [0,1] \times L \rightarrow$ $[0,1] \times [0,\alpha]_L$ be defined by

$$f(s,t) = \begin{cases} (s,t) & \text{if } t \leq_L \alpha \\ (s,\alpha) & \text{if } \alpha \leq_L t \end{cases}$$

Each $X_{\alpha} = [0,1] \times [0,\alpha]_L$ is homeomorphic to $[0,1] \times [0,1]$ and it is a continuous image of an arc. Moreover, $w(X_a) = \aleph_0$. Let $f_{\alpha\beta} = f_{\alpha} \mid [0,1] \times [0,\beta]_L$, $\beta < \alpha$. We obtain an inverse system $\{X_{\alpha}, f_{\alpha\beta}, \alpha < \omega_1\}$ whose limit is $[0,1] \times L$ which is not a continuous image of an arc.

Theorem 17. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces such that $\operatorname{card}(A) > \aleph_0$. There exists a transfinite sequence $\{A_\alpha : \alpha < \operatorname{card}(A)\}$ of directed subsets A_α of A such that:

- 1. $\operatorname{card}(A_{\alpha}) < \operatorname{card}(A), \ \alpha < \operatorname{card}(A),$
- 2. $\alpha < \beta < \operatorname{card}(A)$ implies $A_{\alpha} \subseteq A_{\beta}$,
- 3. $A = \bigcup \{A_{\alpha} : \alpha < \operatorname{card}(A)\},\$
- 4. each collection $\{X_a, p_{ab}, A_\alpha\}$ is an inverse system with limit X_α ,
- 5. if $\alpha < \beta < \operatorname{card}(A)$ then there exists a mapping $q_{\alpha\beta} : X_{\beta} \to X_{\alpha}$,
- 6. $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\},\$
- 7. if the mappings p_{ab} are monotone, then the mappings $q_{\alpha\beta}$ are monotone.

Proof: The proof consists of several steps. Step 1 is from [7, pp. 238–239, Hilfssatz]. For the sake of the completeness we give the proof of Step 1.

Step 1: Let ν be any finite subset of A. There exists a $\delta(\nu) \in A$ such that $\delta \leq \delta(\nu)$ for each $\delta \in \nu$. For each $B \subseteq A$ there exists a set $F_1(B) = B \bigcup \{\delta(\nu) : \nu \subset B \text{ and } \nu \text{ is finite}\}$. Put

$$F_{n+1} = F_1(F_n(B)),$$

and

$$F_{\infty}(B) = \bigcup \{F_n(B) : n \in \mathbb{N}\}.$$

It is clear that

$$F_1(B) \subseteq F_2(B) \subseteq \ldots \subseteq F_n(B) \subseteq \ldots$$

The set $F_{\infty}(B)$ is directed since each finite subset ν of $F_{\infty}(B)$ is contained in some $F_n(B)$ and, consequently, $\delta(\nu)$ is contained in $F_{\infty}(B)$. If B is finite, then $\operatorname{card}(F_{\infty}(B)) = \aleph_0$. If $\operatorname{card}(B) \ge \aleph_0$, then we have $\operatorname{card}(\{\delta(\nu) : \nu \in B\}) \le \operatorname{card}(B)\aleph_0$. We infer that $\operatorname{card}(F_1(B)) \le \operatorname{card}(B)\aleph_0$. Similarly, $\operatorname{card}(F_n(B)) \le \operatorname{card}(B)\aleph_0$. This means that $\operatorname{card}(F_{\infty}(B)) \le \operatorname{card}(B)\aleph_0$. Thus

$$\operatorname{card}(F_{\infty}(B)) \leq \operatorname{card}(B)\aleph_0$$

Suppose that $\operatorname{card}(A) > \aleph_0$. Put $\Omega = \operatorname{card}(A)$. Hence, $A = \{a_\alpha : \alpha < \Omega\}$. Put $B_\alpha = \{a_\mu : \mu < \alpha < \Omega\}$. We have a transfinite sequence $\{B_\alpha : \alpha < \Omega\}$ such that

a) $\operatorname{card}(B_{\alpha}) < \operatorname{card}(A)$, b) $\alpha < \beta < \Omega$ implies $B_{\alpha} \subseteq B_{\beta}$, c) $A = \bigcup \{B_{\alpha} : \alpha < \Omega\}$. Put $A_{\alpha} = F_{\infty}(B_{\alpha})$. Step 2: Assertions 1-3 follow from Step 1.

Step 3: Assertion 4 follows from the fact that each A_{α} is directed subset of A.

Step 4: Let us prove 5. From assertion 2 it follows that there exists a continuous mapping $q_{\alpha\beta} : X_{\beta} \to X_{\alpha}$ since each point $x \in X_{\beta}$ induces a collection $\{x_a : a \in A_{\alpha}\}$ which satisfies $p_{ab}(x_b) = x_a$, i.e., $\{x_a : a \in A_{\alpha}\}$ is a point of X_{α} .

Step 5: It is obvious that there exists a mapping $H : \lim \mathbf{X} \to \lim \{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\}$ since each $x = (x_a : a \in A) \in \lim \mathbf{X}$ induces a collection $\{x_a : a \in A_\alpha\}$ on each A_α . Thus we have the mappings $H_\alpha : \lim \mathbf{X} \to X_\alpha$, for each $\alpha < \operatorname{card}(A)$. The mappings H_α induce a continuous mapping $H : \lim \mathbf{X} \to \lim \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\}$. It remains to prove that H is 1-1 and onto. Let us prove that H is 1-1. Let $x, y \in \lim \mathbf{X}$ and $x \neq y$. There exists an $a \in A$ such that $x_a \neq y_a$. From Step 1 it follows that there is an A_α such that $a \in A_\alpha$. Now, $x_a \neq y_a$ implies $H_\alpha(x) \neq H_\alpha(y)$ (see Step 5). This means that $H(x) \neq H(y)$. Hence H is 1-1. In order to complete the proof it suffices to prove that H is onto. Let $y = (y_\alpha : \alpha < \operatorname{card}(A))$ be any point of $\lim \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\}$. Then $y_\alpha \in X_\alpha$. Thus, y_α is a thread in X_α , i.e., $y = (x_a, a \in A_\alpha)$. We infer that for each $a \in A$ there exists a point $x_a \in X_a$. It is readily to seen that $p_{ab}(x_b) = x_a$. Thus, $(x_a : a \in A)$ is a thread in $\lim \mathbf{X}$ such that H(x) = y.

Step 6: Let us prove 7. If the mappings p_{ab} are monotone, then from Lemma 28 it follows that the mappings $q_{\alpha\beta}$ are monotone.

Now we shall prove the main theorem of this section which is a generalization of Theorem 15.

Theorem 18. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of continuous images of arcs with monotone bonding mappings. If $cf(card(A)) \neq \omega_1$, then $X = \lim \mathbf{X}$ is a continuous image of an arc if and only if each proper subsystem $\{X_a, p_{ab}, B\}$ of \mathbf{X} with $cf(card(B)) = \omega_1$ has the limit which is a continuous image of an arc.

Proof: The "only if part". If X is a continuous image of an arc, then for each subsystem $\{X_a, p_{ab}, B\}$ there exists a natural projections $f_a: X \to \lim\{X_a, p_{ab}, B\}$. Hence, $\lim\{X_a, p_{ab}, B\}$ is a continuous image of an arc.

The "if" part. By Theorem 17 there exists a well-ordered inverse system $\{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < card(A)\}$ such that X is homeomorphic to $\lim \{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\}$. If $\operatorname{cf}(\operatorname{card}(A)) \leq \omega_0$, then we have an inverse subsequence of $\{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\}$ which is a cofinal subsystem of $\{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(A)\}$. By Theorem 14 X is a continuous image of an arc. Now, suppose that $cf(card(A)) > \omega_1$. By Theorem 17 it suffices to prove that each subsystem of $\{X_a, p_{ab}, B\}$ of $\mathbf{X} = \{X_a, p_{ab}, A\}$ has the limit which is a continuous image of an arc. We shall use the transfinite induction on $\operatorname{card}(B)$. If $\operatorname{card}(B) \leq \omega_0$, then we use Theorem 14. If $card(B) = \omega_1$, then $lim\{X_a, p_{ab}, B\}$ is a continuous image of an arc by assumption of Theorem. Let now $\{X_a, p_{ab}, B\}$ be a subsystem of $\{X_a, p_{ab}, A\}$ such that card $(B) > \omega_1$. Suppose that Theorem is true for each subsystem of the cardinality $< \operatorname{card}(B)$. By Theorem 17 there exists a well-ordered inverse system $\{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(B)\}$ such that $\lim\{X_a, p_{ab}, B\}$ is home-omorphic to $\lim\{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \operatorname{card}(B)\}$. Since each X_{α} is the limit of a subsystem of the cardinality $< \operatorname{card}(B)$, we have the inverse system $\{X_{\alpha}, q_{\alpha\beta}, \alpha < \beta < \text{card}(B)\}$ which satisfies the conditions of Theorem 15. Thus, $\lim \{X_a, p_{ab}, B\}$ is a continuous image of an arc. By the transfinite induction the proof is complete. \blacksquare

Corollary 19. Let X be a locally connected continuum. The following conditions are equivalent:

- a) X is a continuous image of an arc.
- b) If $f: X \to Y$ is a continuous mapping and $cf(w(Y)) = \omega_1$, then Y is a continuous image of an arc.

Proof: a) \Rightarrow b). Obvious.

b) \Rightarrow a). By Theorem 31 there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that X_a are metric locally connected continua, p_{ab} are monotone mappings and X is homeomorphic to $\lim \mathbf{X}$. If $\mathbf{Y} = \{X_a, p_{ab}, B\}$ is any subsystem of $\{X_a, p_{ab}, A\}$ with $cf(card(B)) = \omega_1$, then there exists a natural projection $P : X \to \lim \mathbf{Y}$. By b) it follows that $\lim \mathbf{Y}$ is a continuous image of an arc since $w(\lim \mathbf{Y}) = \aleph_1$. Applying Theorem 18 we complete the proof.

Corollary 20. Let X be a locally connected continuum such that $w(X) > \aleph_{\omega_1}$. The following conditions are equivalent:

- a) X is a continuous image of an arc.
- b) If $f: X \to Y$ is a continuous mapping and $w(Y) = \aleph_1$, then Y is a continuous image of an arc.

4. Appendix

Theorem 21 [15, Theorem 4]. If X is a connected IOK and X contains no nondegenerate metric subcontinuum, then X is hereditarily locally connected.

Theorem 22 [17, Theorem]. If X is a continuum containing no nondegenerate metric subcontinuum, then X is finitely Suslinian if and only if X is a continuous image of an arc.

We say that $\mathbf{X} = \{X_a, p_{ab}, A\}$ is σ -directed if for each sequence $a_1, a_2, \ldots, a_k, \ldots$ of the members of A there is an $a \in A$ such that $a \ge a_k$ for each $k \in \mathbb{N}$.

Theorem 23 [8, Theorem 9.8]. If X is the limit of a σ -directed inverse system of finitely Suslinian continua, then X is finitely Suslinian.

Theorem 24 [8, Theorem 9.9]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of rim-finite continua with surjective bonding mappings. Then $X = \lim \mathbf{X}$ is a rim-finite continuum.

Theorem 25. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of compact spaces with surjective bonding mappings and limit X. Let Y be a metric compact space. For each surjective mapping $f : X \to Y$ there exists an $a \in A$ such that for each $b \geq a$ there exists a mapping $g_b : X_b \to Y$ such that $f = g_b p_b$.

Proof: Let \mathcal{B} be a countable basis of Y and let \mathcal{V} be a collection of all finite subfamilies of \mathcal{B} which cover X. Clearly, $\operatorname{card}(\mathcal{V}) = \aleph_0$. Hence, $\mathcal{V} = \{\mathcal{V}_n : n \in \mathbb{N}\}$. For each $\mathcal{V}_n f^{-1}(\mathcal{V}_n) = \{f^{-1}(U) : U \in \mathcal{V}_n\}$ is a covering of X. There exists an $a(n) \in A$ such that for each $b \geq a(n)$ there is a cover \mathcal{V}_{nb} of X_b with $p_b^{-1}(\mathcal{V}_{nb}) \prec f^{-1}(\mathcal{V}_n)$. From the σ -directedness of A it follows that there is an $a \in A$ such that $a \geq a(n)$, $n \in \mathbb{N}$. Let $b \geq a$. We claim that $f(p_b^{-1}(x_b))$ is degenerate. Suppose that there exists a pair u, v of distinct points of Y such that $u, v \in f(p_b^{-1}(x_b))$. Then there exists a pair x, y of distinct points of $p_b^{-1}(x_b)$ such that f(x) = uand f(y) = v. Let U, V be a pair of disjoint open sets of Y such that $u \in U$ and $v \in V$. Consider the covering $\{U, V, Y \setminus \{u, v\}\}$. There exists a covering $\mathcal{V}_n \in \mathcal{V}$ such that $\mathcal{V}_n \prec \{U, V, X \setminus \{u, v\}\}$. We infer that there is a covering \mathcal{V}_{nb} of X_b such that $p_b^{-1}(\mathcal{V}_{nb}) \prec f^{-1}(\mathcal{V}_n)$. It follows that $p_b(x) \neq p_b(y)$ since x and y lie in the disjoint members of the covering $f^{-1}(\mathcal{V}_n)$. This is impossible since $x, y \in p_b^{-1}(x_b)$. Thus, $f(p_b^{-1}(x_b))$ is degenerate. Now we define $g_b : X_b \to Y$ by $g_b(x_b) = f(p_b^{-1}(x_b))$. It is clear that $g_b p_b = f$. Let us prove that g_b is continuous. Let U be open in Y. Then $g_b^{-1}(U)$ is open since $p_b^{-1}(g_b^{-1}(U)) = f^{-1}(U)$ is open and p_b is quotient (as a closed mapping).

Theorem 26. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of compact spaces with limit X. A closed subspace Y of X is metrizable if and only if there exists an $a \in A$ such that $p_b \mid Y : Y \to p_b(Y)$ is a homeomorphism for each $b \ge a$.

Proof: Consider the inverse system $\mathbf{Y} = \{p_a(Y), p_{ab} \mid p_b(Y), A\}$ with limit Y and the identity mapping $i: Y \to Y$. Apply Theorem 25.

Theorem 27 [3, Corollary 3]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of hereditarily locally connected continua X_a . Then $X = \lim \mathbf{X}$ is hereditarily locally connected.

The following lemma follows from Theorem 10 and Corollary on p. 69 of [14]. See also [12, Lemma 3.5].

Lemma 28. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces with monotone bonding surjections, $X = \lim \mathbf{X}$, Y be a compact space and $m_a : Y \to X_a$, $a \in A$, be monotone surjections such that $m_a = p_{ab}m_b$ for any $a, b \in A$, $a \leq b$. Moreover, let $m : Y \to X$ denote the map induced by m_a , $a \in A$. Then m is also a monotone surjection. Moreover, each projection $p_a : X \to X_a$, $a \in A$, is a monotone surjection.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system. For each infinite subset Δ_0 of (A, \leq) we define sets Δ_n , $n = 0, 1, \ldots$, by the inductive rule $\Delta_{n+1} = \Delta_n \bigcup \{m(x, y) : x, y \in \Delta_n\}$, where m(x, y) is a member of A such that $x, y \leq m(x, y)$. Let $\Delta = \bigcup \{\Delta_n : n \in \mathbb{N}\}$. It is clear that $\operatorname{card}(\Delta) = \operatorname{card}(\Delta_0)$. Moreover, Δ is directed by $\leq [\mathbf{8}, \text{ Lemma 9.2}]$. For each directed set (A, \leq) we define

 $A_{\sigma} = \{ \Delta : \emptyset \neq \Delta \subset A, \operatorname{card}(\Delta) \leq \aleph_0 \text{ and } \Delta \text{ is directed by } \leq \}.$

Then A_{σ} is σ -directed by inclusion [8, Lemma 9.3]. If $\Delta \in A_{\sigma}$, let $\mathbf{X}^{\Delta} = \{X_b, p_{bb'}, \Delta\}$ and $X_{\Delta} = \lim \mathbf{X}^{\Delta}$. If $\Delta, \Gamma \in A_{\sigma}$ and $\Delta \subseteq \Gamma$, let $p_{\Delta\Gamma} : X_{\Gamma} \to X_{\Delta}$ denote the map induced by the projections $p_{\delta}^{\Gamma} : X_{\Gamma} \to X_{\delta}, \delta \in \Delta$, of the inverse system X^{Γ} . Now, we have the following theorem.

Theorem 29 [8, Theorem 9.4]. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system, then $\mathbf{X}_{\sigma} = \{X_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$ is a σ -directed inverse system and $\lim \mathbf{X}$ and $\lim \mathbf{X}_{\sigma}$ are canonically homeomorphic.

497

Theorem 30. Let X be a compact space. There exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of compact metric spaces X_a and surjective bonding mappings p_{ab} such that X is homeomorphic to lim \mathbf{X} .

Proof: See [6, pp. 152, 164]. ■

Theorem 31. If X is a locally connected compact space, then there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric locally connected compact space, each p_{ab} is a monotone surjection and X is homeomorphic to $\lim \mathbf{X}$. Conversely, the inverse limit of such system is always a locally connected compact space.

Proof: See [6, p. 163, Theorem 2]. ■

Theorem 32 [11, Corollary 2.9]. If X is a hereditarily locally connected continuum, then there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metrizable hereditarily locally connected continuum, each p_{ab} is a monotone surjection and X is homeomorphic to lim \mathbf{X} .

Let X be a non-degenerate locally connected continuum. A subset Y of X is said to be a *cyclic element* of X if Y is connected and maximal with respect to the property of containing no separating point of itself. A cyclic element of locally connected continuum is again a locally connected continuum. We let

 $\mathbf{L}_X = \{Y \subset X : Y \text{ is a non-degenerate cyclic element of } X\}.$

Lemma 33 [8, Lemma 2.2]. If C is a connected subset of X and $Y \in \mathbf{L}_X$, then $C \cap Y$ is connected (possibly void).

Lemma 34 [8, Lemma 2.3]. If $f : X \to X'$ is a monotone surjection, then for each $Y' \in \mathbf{L}_{X'}$ there exists $Y \in \mathbf{L}_X$ such that $Y' \subseteq f(Y)$. In particular, \mathbf{L}_X is non-empty if $\mathbf{L}_{X'}$ is non-empty.

Let Z be a cyclic element of X. For each component J of $X \setminus Z$, let $Bd(J) = \{z_J\}$. We define a mapping [8, p. 5] $\rho : X \to Z$ such that $\rho(x) = x$ if $x \in Z$ and $\rho(x) = z_J$ if $x \in J$.

The mapping ρ is a monotone continuous retraction. It is called the *canonical retraction* of X onto Z.

Theorem 35 [8, Theorem 2.7]. Let Y be a cyclic locally connected continuum and $S = (Y_{\gamma}, f_{\gamma\gamma'}, \Gamma)$ an inverse system such that $Y = \liminf S$ and each bonding mapping $f_{\gamma\gamma'}$ is a monotone surjection. For each $\gamma \in$ Γ , let Z_{γ} be either a cyclic element of Y_{γ} or a one-point subset of Y_{γ} . Let $\rho_{\gamma} : Y_{\gamma} \to Z_{\gamma}$ denote the canonical retraction if Z_{γ} is non-degenerate, and otherwise let ρ_{γ} be the constant map. Suppose that some Z_{γ_0} is non-degenerate, and that $Z_{\gamma} \subseteq f_{\gamma\gamma'}(Z_{\gamma'})$ for all $\gamma \leq \gamma' \in \Gamma$. Let $g_{\gamma\gamma'} =$ $\rho_{\gamma} \circ (f_{\gamma\gamma'} \mid Z_{\gamma'})$ for all $\gamma \leq \gamma' \in \Gamma$. Then each $g_{\gamma\gamma'} : Z_{\gamma'} \to Z_{\gamma}$ is a monotone surjection and $Y = \liminf (Z_{\gamma}, g_{\gamma\gamma'}, \Gamma)$.

Acknowledgement. The author is grateful to the referee for his help and valuable suggestions.

References

- 1. J. L. CORNETTE, "Image of a Hausdorff arc" is cyclically extensible and reducible, *Trans. Amer. Math. Soc.* **199** (1974), 253–267.
- 2. R. ENGELKING, "General Topology," PWN, Warszawa, 1977.
- G. R. GORDH, JR. AND S. MARDEŠIĆ, Characterizing local connectedness in inverse limits, *Pacific J. Math.* 58 (1975), 411–417.
- I. LONČAR, Inverse limit of continuous images of arcs, Zb. Rad. (Varaždin) 2(23) (1997), 47–60.
- T. MAĆKOWIAK, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 95 pp.
- S. MARDEŠIĆ, Locally connected, ordered and chainable continua, Rad Jugoslav. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 319 (1961), 147–166.
- F. MAEDA, "Kontinuierliche geometrien," Springer-Verlag, Berlin, 1958.
- J. NIKIEL, H. M. TUNCALI AND E. D. TYMCHATYN, Continuous images of arcs and inverse limit methods, *Mem. Amer. Math. Soc.* 104 (1993), 80 pp.
- J. NIKIEL, L. B. TREYBIG AND H. M. TUNCALI, Local connectivity and maps onto non-metrizable arcs, *Internat. J. Math. Math. Sci.* 20 (1997), 681–688.
- J. NIKIEL, Continuous images of arcs, Proc. Amer. Math. Soc. 103 (1988), 961–968.
- 11. J. NIKIEL, The Hahn-Mazurkiewicz theorem for hereditarily locally connected continua, *Topology Appl.* **32** (1989), 307–323.

- J. NIKIEL, A general theorem on inverse systems and their limits, Bull. Polish Acad. Sci. Math. 37 (1989), 127–136.
- J. NIKIEL, Locally connected curve viewed as inverse limits, Fund. Math. 133 (1989), 125–134.
- E. PUZIO, Limit mappings and projections of inverse systems, Fund. Math. 80 (1973), 57–73.
- 15. J. N. SIMONE, Continuous images of ordered compacta and hereditarily locally connected continua, *Colloq. Math.* **40** (1978), 77–84.
- J. N. SIMONE, Concerning hereditarily locally connected continua, Colloq. Math. 39 (1978), 243–251.
- 17. J. N. SIMONE, Suslinian images of ordered compacta and a totally nonmetric Hahn-Mazurkiewicz theorem, *Glas. Mat. Ser. III* **13(33)** (1978), 343–346.
- 18. L. B. TREYBIG, Concerning continua which are continuous image of compact ordered spaces, *Duke Math. J.* **32** (1965), 417–422.
- L. B. TREYBIG, Separation by finite sets in connected, continuous images of ordered compacta, *Proc. Amer. Math. Soc.* 74 (1979), 326–328.
- G. T. WHYBURN, "Analytic Topology," Amer. Math. Soc., Providence, R.I., 1963.

Fakultet organizacije i informatike Pavlinska 2 42000 Varaždin CROATIA

e-mail: iloncar1@vz.tel.hr iloncar@foi.hr

Primera versió rebuda el 8 de juny de 1998, darrera versió rebuda el 18 de maig de 1999