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A NOTE ON INVERSE LIMITS
OF CONTINUOUS IMAGES OF ARCS

Ivan Lončar

Abstract

The main purpose of this paper is to prove some theorems con-
cerning inverse systems and limits of continuous images of arcs.
In particular, we shall prove that if X = {Xa, pab, A} is an inverse
system of continuous images of arcs with monotone bonding map-
pings such that cf(card(A)) �= ω1, then X = limX is a continuous
image of an arc if and only if each proper subsystem {Xa, pab, B}
of X with cf(card(B)) = ω1 has the limit which is a continuous
image of an arc (Theorem 18).

1. Inverse limits of hereditarily locally
connected continua

An arc (or ordered continuum) is a Hausdorff continuum with exactly
two non-separating points. Each separable arc is homeomorphic to the
closed interval I = [0, 1].

A space X is said to be an IOK (IOC) if there exists an ordered
compact (connected) space K and a continuous surjection f : K → X.
Frequently, we will say that a space X is a continuous image of an arc if
X is an IOC.

The cardinality of a set A will be denoted by card(A). We assume
that card(A) is the initial ordinal number. The cofinality of a cardinal
number m will be denoted by cf(m).
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A continuum X is said to be hereditarily locally connected if each
subcontinuum of X is locally connected. A continuum X is said to
be finitely Suslinian [17] if there do not exist open sets U and V , and
an infinite collection K of pairwise disjoint subcontinua of X such that
Cl(U) ∩ Cl(V ) = ∅ and K ∩ V �= ∅ and K ∩ U �= ∅ for each K in
K. Each finitely Suslinian continuum is hereditarily locally connected.
A continuum X is rim-finite (rim-countable) if it has a basis B such
that card(Bd(U)) < ℵ0 (card(Bd(U)) ≤ ℵ0) for each U ∈ B. Each rim-
finite continuum is finitely Suslinian. Each hereditarily locally connected
continuum is a continuous image of an arc [11, Theorem 3.4].

In the paper [8, Problem 9.10] the authors asked when the inverse limit
of an inverse system X = {Xa, pab, A} of hereditarily locally connected
continua with monotone surjective bonding mappings pab is a continuous
image of an arc.

If X = {Xa, pab, A} is an inverse system of hereditarily locally con-
nected continua, then X = limX need not be a hereditarily locally
continuum since each locally connected metric continuum of dimen-
sion 1 (= curve) is the limit of an inverse sequence of rim-finite continua
with surjective monotone bonding mappings [13, Theorem 2.2].

In the present section we shall define a class of hereditarily locally con-
nected continua such that each inverse limit of such spaces and monotone
bonding mappings has a hereditarily locally connected limit.

In Appendix we review some definitions and known results needed in
this section.

We say that an inverse system Y = {Ya, qab, B} is a subsystem of
X = {Xa, pab, A} if B ⊂ A, Ya = Xa and each qab is pab.

We start with the following theorem.

Theorem 1. Let X be the limit of an inverse system X = {Xa, pab, A}
of hereditarily locally connected continua Xa such that the bonding map-
pings pab : Xb → Xa are monotone surjections. Then X is a hereditarily
locally continuum if and only if each countable inverse subsystem of X
has a hereditarily locally connected limit.

Proof: By Theorem 29 X is homeomorphic to the limit of Xσ =
{X∆, p∆Γ, Aσ}, where Aσ is the family of all nonempty countable di-
rected subsets of A. If X is hereditarily locally connected then each X∆

is hereditarily locally connected as a monotone image of a hereditarily
locally connected continuum X (see Lemma 28). Conversely, if each X∆

is hereditarily locally connected, then X is hereditarily locally connected
(Theorem 27).
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The following theorem is a generalization of the well-known result of
G. T. Whyburn [20, p. 81] which asserts that a metric continuum X
is hereditarily locally connected if and only if each cyclic element (see
Appendix) Z ⊆ X is hereditarily locally connected.

Theorem 2. A locally connected continuum X is hereditarily locally
connected if and only if each cyclic element of X is hereditarily locally
connected.

Proof: By Theorems 31 and 29 there exists a σ-directed inverse sys-
tem X = {Xa, pab, A} of metric locally connected spaces such that pab

are monotone and X is homeomorphic to limX. Let us prove that each
Xa is hereditarily locally connected. It suffices to prove that each cyclic
element Za of Xa is hereditarily locally connected. By Lemma 34 there
exists a cyclic element Z of limX such pa(Z) ⊇ Za. Since limX is
homeomorphic to X, Z is hereditarily locally connected. This means
that pa(Z) is hereditarily locally connected. It follows that Za is hered-
itarily locally connected since Za ⊆ pa(Z). We infer that each Xa is
hereditarily locally connected since Xa is a metric continuum. From
Theorem 27 it follows that X is hereditarily locally connected.

A surjective mapping f : X → Y is said to be hereditarily monotone
[5, pp. 16–17] if for each subcontinuum K of X the restriction f | K :
K → f(K) is monotone.

If f : X → Y and g : Y → Z are hereditarily monotone mappings,
then gf : X → Z is hereditarily monotone [5, p. 29, (5.3)].

Lemma 3. If Z is a cyclic element of X, then the canonical retrac-
tion ρ : X → Z is hereditarily monotone.

Proof: Let ρ : X → Z (see Appendix, p. 13) and let K be any subcon-
tinuum of X. Let us prove that the restriction ρK : K → ρK(K) ⊆ Z is
monotone. Consider the following cases.

a) K ⊆ Z. Now ρK is the identity and is monotone.

b) K ⊆ X \ Z. It is clear that K is a subset of some component J
of X \ Z. Let {zJ} = Bd(J). Now, ρK(K) = {zJ}. This means that
ρ−1

K (zJ) = K. Hence ρK is monotone.

c) K
⋂
Z �= ∅ and K

⋂
(X \ Z) �= ∅. In this case

K =
(
K

⋂
Z

) ⋃ {
K

⋂
J : J is a component of X \ Z, K

⋂
J �= ∅

}
.
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We infer that

ρK(K) =
(
K

⋂
Z

) ⋃
{{zJ} : J is a component of X\Z, {zJ}=Bd(J)}.

If x ∈ ρK(K) such that x �= zJ for all components J of X \ Z, then
ρ−1

K (x) = {x}. Hence ρ−1
K (x) is connected. If x = zJ for some compo-

nent J , then

ρ−1
K (x) = {zJ}

⋃ {
K

⋂
Ji : {zJ} = Bd(Ji), i ∈ I

}
.

It suffices to prove that each set Cl(Ji)
⋂
K is connected. Suppose that

Cl(Ji)
⋂
K is not connected. There exists a component L of Cl(Ji)

⋂
K

such that zJ /∈ L. By virtue of the normality of X it follows that there
exists a pair U , V of disjoint open sets such that L ⊆ U and zJ ∈ V .
We may assume that ClU ⊆ J since J is open. For each point x of
K\(U

⋃
V ) there exists an open set Ux such that x ∈ Ux and Ux

⋂
U = ∅.

Let W be the union of V and all the sets Ux, x ∈ K \ (U
⋃
V ). It is

clear that U
⋂
W = ∅ and K ⊆ U

⋃
W . This is impossible since K is

connected. Hence, Cl(Ji)
⋂
K is connected and ρK is monotone.

Theorem 4. Let X = {Xa, pab, A} be an inverse system of continua
and hereditarily monotone bonding mappings. Then the projections pa,
a ∈ A, are hereditarily monotone. Moreover, if each Xa is hereditarily
locally connected, then X = limX is hereditarily locally connected.

Proof: Let K be a subcontinuum of X. For each a ∈ A, Ka = pa(K)
is a subcontinuum of Xa. We have the inverse system K = {Ka, pab |
Kb, A}. From the definition of hereditarily monotone mapping it follows
that each mapping pab | Kb is a monotone mapping. This means that
the projections pa | K are monotone [2, pp. 462–463]. From [2, Theo-
rem 6.1.28] it follows that K is locally connected. Thus, X is hereditarily
locally connected.

A surjective mapping f : X → Y is said to be cyclically hereditarily
monotone if for each cyclic element Z of X the restriction f | Z is
hereditarily monotone.

Theorem 5. Let X = {Xa, pab, A} be an inverse system of heredi-
tarily locally connected continua Xa and cyclically hereditarily monotone
bonding mappings pab. Then X = limX is hereditarily locally connected.
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Proof: By Theorem 2 it suffices to prove that each cyclic element Z
of X is hereditarily locally connected. There exists an inverse system
(Theorem 35) Z = {Za, gab, A} such that Za is a cyclic element of Xa,
gab = ρa ◦ (fab | Zb) for all a ≤ b ∈ A, and Z is homeomorphic to limZ.
This means that gab is hereditarily monotone since ρa is hereditarily
monotone (Lemma 3). From Theorem 4 it follows that Z is hereditarily
locally connected. Thus, X is hereditarily locally connected.

A space X is in class Hm if X is a hereditarily locally connected con-
tinuum and X contains no non-degenerate metric subcontinuum. Each
space in class Hm is rim-finite [19, Theorem 1].

Theorem 6. Let X = {Xn, pmn,N} be an inverse sequence with
monotone surjective bonding mappings. If each Xn is in class Hm, then
X = limX is in class Hm. Moreover, X is rim-finite.

Proof: Each Xn is a continuous image of an arc [11, Corollary 3.5]
since each Xn is hereditarily locally connected. Thus, X is a continuous
image of an arc (Theorem 14). Let us prove that X contains no non-
degenerate metric subcontinuum. Suppose that Y is a non-degenerate
metric subcontinuum of X. Then there exists a n ∈ N such that pm(Y )
is a non-degenerate metric subcontinuum of Xm for each m ≥ n. This
is impossible since Xm is in class Hm. We infer that X contains no
non-degenerate metric subcontinua. By virtue of Theorem 21 it follows
that X is hereditarily locally connected. Moreover, from Theorem 1 of
[19] it follows that X is rim-finite.

Theorem 7. Let X = {Xa, pab, A} be an inverse system with mono-
tone surjective bonding mappings. If each Xa is in class Hm, then
X = limX is in class Hm. Moreover, X is rim-finite.

Proof: Apply Theorem 1 and Theorem 23.

A hereditarily locally connected continuum X is in class Hzm if each
cyclic element Z of X is in class Hm.

Theorem 8. Let X = {Xa, pab, A} be an inverse system with mono-
tone surjective bonding mappings. If each Xa is in class Hzm, then
X = limX is in class Hzm.

Proof: Let Z be a cyclic element of X. By Theorem 35 there ex-
ists an inverse system (Zγ , gγγ′ ,Γ) such that Z is homeomorphic to
lim inv(Zγ , gγγ′ ,Γ), where Zγ is a cyclic element of Xγ and gγγ′ is mono-
tone. By Theorem 7 Z is in class Hm. From Theorem 2 it follows that
X is hereditarily locally connected. Hence, X is in class Hzm.
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2. Special classes of continuous images of arcs

Theorem 9 [9]. Let X be a locally connected continuum such that
for each pair of distinct points a, b in X, there exists a continuous onto
map f : X → [c, d] such that f(a) = c and f(b) = d and [c, d] is a non-
metrizable arc. If X is rim-metrizable or rim-scattered or monotonically
normal, then X is a continuous image of an arc.

A locally connected continuum is said to be a NTT-space if for each
pair of distinct points a, b in X, there exists a continuous onto map f :
X → [c, d] such that f(a) = c and f(b) = d and [c, d] is a non-metrizable
arc.

Theorem 10. Let X = {Xa, pab, A} be an inverse system of NTT-
spaces with monotone surjective bonding mappings. Then X = limX is
a NTT-space.

Proof: It is known that X is locally connected continuum. Let x, y
be a pair of distinct points of X. There exists an a ∈ A such that
pb(x) �= pb(y) for each b ≥ a. Since Xb is a NTT-space there exists a
non-metrizable arc [c, d] and a surjective mapping f : Xb → [c, d] such
that f(x) = c and f(y) = d. Considering the mapping fpb : X → [c, d]
we infer that X is a NTT-space.

Theorem 11. Let X = {Xa, pab, A} be an inverse system of NTT-
spaces and monotone surjective bonding mappings. If X = limX is
rim-metrizable or rim-scattered or monotonically normal, then X is a
continuous image of an arc.

Proof: By Theorem 10 X is a NTT-space. Apply Theorem 9.

Theorem 12. Let X = {Xa, pab, A} be a σ-directed inverse system
of spaces Xa such that for each pair xa, ya of points of Xa the sub-
space Xa \ {xa, ya} is connected, a ∈ A. If each Xa is a continuous
image of an arc and each pab is a monotone surjection, then X = limX
is a continuous image of an arc if and only if there exists an a ∈ A such
that pb : X → Xb is a homeomorphism for each b ≥ a (if and only if X
is metrizable).

Proof: By Theorem 2 of [18] each Xa is metrizable. We shall prove
that for each pair x, y of points of X the subspace Y = X \ {x, y}
is connected. Suppose that Y is not connected. Then there exists a
pair U , V of disjoint open subsets of X such that Y = U ∪V . Moreover,
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there exists an a ∈ A such that pb(x) �= pb(y), b ≥ a. The sets Ua =
{xa : xa ∈ Xa, p

−1
a (xa) ⊂ U} and Va = {xa : xa ∈ Xa, p

−1
a (xa) ⊂ V } are

disjoint and open. Now we have X \ {pa(x), pa(y)} = Ua ∪ Va. This is
impossible since X \ {pa(x), pa(y)} is connected. Hence, Y = X \ {x, y}
is connected. It follows that if X is a continuous image of an arc, then it
is metrizable ([18, Theorem 2]). From Theorem 26 it follows that there
exists a b ∈ A such that pc : X → Xc is a homeomorphism for every
c ≥ b. Conversely, if such b ∈ A exists, then X is a continuous image of
an arc.

Theorem 13. Let X={Xa, pab, A} be an inverse system of spaces Xa

such that for each pair xa, ya of points of Xa the subspace Xa \ {xa, ya}
is connected, a ∈ A. If each Xa is a continuous image of an arc and each
pab is a monotone surjection, then X = limX is a continuous image of
an arc if and only if there exists a countable subsystem Y of X such that
limY is homeomorphic to X.

Proof: Consider the inverse system Xσ = {X∆, p∆Γ, Aσ} from Theo-
rem 29 and apply Theorem 12.

3. Inverse systems and subsystems

Theorem 14 [8, Theorem 5.1]. Let X = {Xn, pmn,N} be an inverse
sequence with monotone surjective bonding mappings. If each Xn is the
continuous image of an arc, then X = limX is the continuous image of
an arc.

Theorem 15 [4, Theorem 2.17]. Let X = {Xa, pab, A} be a well-
ordered inverse system such that cf(A) �= ω1. If the mappings pab are
monotone surjections and if the spaces Xa are the continuous images of
arcs, then X = limX is the continuous image of an arc.

Remark 16. Theorem 15 is not true if cf(A) = ω1. This is shown by
the following example of Nikiel [10]. Let L denote the long interval [2,
p. 297]. For each ordinal number α, 0 < α < ω1, let fα : [0, 1] × L →
[0, 1] × [0, α]L be defined by

f(s, t) =
{

(s, t) if t ≤L α

(s, α) if α ≤L t.

Each Xα = [0, 1] × [0, α]L is homeomorphic to [0, 1] × [0, 1] and it is a
continuous image of an arc. Moreover, w(Xa) = ℵ0. Let fαβ = fα |
[0, 1] × [0, β]L, β < α. We obtain an inverse system {Xα, fαβ , α < ω1}
whose limit is [0, 1] × L which is not a continuous image of an arc.
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Theorem 17. Let X = {Xa, pab, A} be an inverse system of compact
spaces such that card(A) > ℵ0. There exists a transfinite sequence {Aα :
α < card(A)} of directed subsets Aα of A such that:

1. card(Aα) < card(A), α < card(A),
2. α < β < card(A) implies Aα ⊆ Aβ,
3. A =

⋃
{Aα : α < card(A)},

4. each collection {Xa, pab, Aα} is an inverse system with limit Xα,
5. if α < β < card(A) then there exists a mapping qαβ : Xβ → Xα,
6. limX is homeomorphic to lim{Xα, qαβ , α < β < card(A)},
7. if the mappings pab are monotone, then the mappings qαβ are

monotone.

Proof: The proof consists of several steps. Step 1 is from [7, pp. 238–
239, Hilfssatz]. For the sake of the completeness we give the proof of
Step 1.

Step 1: Let ν be any finite subset of A. There exists a δ(ν) ∈ A
such that δ ≤ δ(ν) for each δ ∈ ν. For each B ⊆ A there exists a set
F1(B) = B

⋃
{δ(ν) : ν ⊂ B and ν is finite}. Put

Fn+1 = F1(Fn(B)),

and
F∞(B) =

⋃
{Fn(B) : n ∈ N}.

It is clear that

F1(B) ⊆ F2(B) ⊆ . . . ⊆ Fn(B) ⊆ . . .
The set F∞(B) is directed since each finite subset ν of F∞(B) is con-
tained in some Fn(B) and, consequently, δ(ν) is contained in F∞(B). If
B is finite, then card(F∞(B)) = ℵ0. If card(B) ≥ ℵ0, then we have
card({δ(ν) : ν ∈ B}) ≤ card(B)ℵ0. We infer that card(F1(B)) ≤
card(B)ℵ0. Similarly, card(Fn(B)) ≤ card(B)ℵ0. This means that
card(F∞(B)) ≤ card(B)ℵ0. Thus

card(F∞(B)) ≤ card(B)ℵ0.

Suppose that card(A) > ℵ0. Put Ω = card(A). Hence, A = {aα : α <
Ω}. Put Bα = {aµ : µ < α < Ω}. We have a transfinite sequence
{Bα : α < Ω} such that

a) card(Bα) < card(A),
b) α < β < Ω implies Bα ⊆ Bβ ,
c) A =

⋃
{Bα : α < Ω}.

Put Aα = F∞(Bα).
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Step 2: Assertions 1-3 follow from Step 1.

Step 3: Assertion 4 follows from the fact that each Aα is directed
subset of A.

Step 4: Let us prove 5. From assertion 2 it follows that there exists a
continuous mapping qαβ : Xβ → Xα since each point x ∈ Xβ induces a
collection {xa : a ∈ Aα} which satisfies pab(xb) = xa, i.e., {xa : a ∈ Aα}
is a point of Xα.

Step 5: It is obvious that there exists a mapping H : limX →
lim{Xα, qαβ , α < β < card(A)} since each x = (xa : a ∈ A) ∈ limX
induces a collection {xa : a ∈ Aα} on each Aα. Thus we have the map-
pings Hα : limX → Xα, for each α < card(A). The mappings Hα induce
a continuous mapping H : limX → lim{Xα, qαβ , α < β < card(A)}.
It remains to prove that H is 1-1 and onto. Let us prove that H is
1-1. Let x, y ∈ limX and x �= y. There exists an a ∈ A such that
xa �= ya. From Step 1 it follows that there is an Aα such that a ∈ Aα.
Now, xa �= ya implies Hα(x) �= Hα(y) (see Step 5). This means that
H(x) �= H(y). Hence H is 1-1. In order to complete the proof it suffices
to prove that H is onto. Let y = (yα : α < card(A)) be any point of
lim{Xα, qαβ , α < β < card(A)}. Then yα ∈ Xα. Thus, yα is a thread in
Xα, i.e., y = (xa, a ∈ Aα). We infer that for each a ∈ A there exists a
point xa ∈ Xa. It is readily to seen that pab(xb) = xa. Thus, (xa : a ∈ A)
is a thread in limX such that H(x) = y.

Step 6: Let us prove 7. If the mappings pab are monotone, then from
Lemma 28 it follows that the mappings qαβ are monotone.

Now we shall prove the main theorem of this section which is a gener-
alization of Theorem 15.

Theorem 18. Let X = {Xa, pab, A} be an inverse system of contin-
uous images of arcs with monotone bonding mappings. If cf(card(A)) �=
ω1, then X = limX is a continuous image of an arc if and only if each
proper subsystem {Xa, pab, B} of X with cf(card(B)) = ω1 has the limit
which is a continuous image of an arc.

Proof: The “only if part”. If X is a continuous image of an arc,
then for each subsystem {Xa, pab, B} there exists a natural projections
fa : X → lim{Xa, pab, B}. Hence, lim{Xa, pab, B} is a continuous image
of an arc.
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The “if” part. By Theorem 17 there exists a well-ordered inverse
system {Xα, qαβ , α < β < card(A)} such that X is homeomorphic to
lim{Xα, qαβ , α < β < card(A)}. If cf(card(A)) ≤ ω0, then we have
an inverse subsequence of {Xα, qαβ , α < β < card(A)} which is a cofi-
nal subsystem of {Xα, qαβ , α < β < card(A)}. By Theorem 14 X is a
continuous image of an arc. Now, suppose that cf(card(A)) > ω1. By
Theorem 17 it suffices to prove that each subsystem of {Xa, pab, B} of
X = {Xa, pab, A} has the limit which is a continuous image of an arc.
We shall use the transfinite induction on card(B). If card(B) ≤ ω0,
then we use Theorem 14. If card(B) = ω1, then lim{Xa, pab, B} is
a continuous image of an arc by assumption of Theorem. Let now
{Xa, pab, B} be a subsystem of {Xa, pab, A} such that card(B) > ω1.
Suppose that Theorem is true for each subsystem of the cardinality
< card(B). By Theorem 17 there exists a well-ordered inverse sys-
tem {Xα, qαβ , α < β < card(B)} such that lim{Xa, pab, B} is home-
omorphic to lim{Xα, qαβ , α < β < card(B)}. Since each Xα is the
limit of a subsystem of the cardinality < card(B), we have the inverse
system {Xα, qαβ , α < β < card(B)} which satisfies the conditions of
Theorem 15. Thus, lim{Xa, pab, B} is a continuous image of an arc. By
the transfinite induction the proof is complete.

Corollary 19. Let X be a locally connected continuum. The following
conditions are equivalent:

a) X is a continuous image of an arc.
b) If f : X → Y is a continuous mapping and cf(w(Y )) = ω1, then
Y is a continuous image of an arc.

Proof: a) ⇒ b). Obvious.

b) ⇒ a). By Theorem 31 there exists an inverse system X={Xa, pab,A}
such that Xa are metric locally connected continua, pab are monotone
mappings and X is homeomorphic to limX. If Y = {Xa, pab, B} is any
subsystem of {Xa, pab, A} with cf(card(B)) = ω1, then there exists a
natural projection P : X → limY. By b) it follows that limY is a
continuous image of an arc since w(limY) = ℵ1. Applying Theorem 18
we complete the proof.

Corollary 20. Let X be a locally connected continuum such that
w(X) > ℵω1 . The following conditions are equivalent:

a) X is a continuous image of an arc.
b) If f : X → Y is a continuous mapping and w(Y ) = ℵ1, then Y is

a continuous image of an arc.
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4. Appendix

Theorem 21 [15, Theorem 4]. If X is a connected IOK and X con-
tains no nondegenerate metric subcontinuum, then X is hereditarily lo-
cally connected.

Theorem 22 [17, Theorem]. If X is a continuum containing no non-
degenerate metric subcontinuum, then X is finitely Suslinian if and only
if X is a continuous image of an arc.

We say that X = {Xa, pab, A} is σ-directed if for each sequence
a1, a2, . . . , ak, . . . of the members of A there is an a ∈ A such that
a ≥ ak for each k ∈ N.

Theorem 23 [8, Theorem 9.8]. If X is the limit of a σ-directed in-
verse system of finitely Suslinian continua, then X is finitely Suslinian.

Theorem 24 [8, Theorem 9.9]. Let X = {Xa, pab, A} be a σ-directed
inverse system of rim-finite continua with surjective bonding mappings.
Then X = limX is a rim-finite continuum.

Theorem 25. Let X = {Xa, pab, A} be a σ-directed inverse system of
compact spaces with surjective bonding mappings and limit X. Let Y be
a metric compact space. For each surjective mapping f : X → Y there
exists an a ∈ A such that for each b ≥ a there exists a mapping gb :
Xb → Y such that f = gbpb.

Proof: Let B be a countable basis of Y and let V be a collection of
all finite subfamilies of B which cover X. Clearly, card(V) = ℵ0. Hence,
V = {Vn : n ∈ N}. For each Vn f

−1(Vn) =
{
f−1(U) : U ∈ Vn

}
is a

covering ofX. There exists an a(n) ∈ A such that for each b ≥ a(n) there
is a cover Vnb of Xb with p−1

b (Vnb) ≺ f−1(Vn). From the σ-directedness
of A it follows that there is an a ∈ A such that a ≥ a(n), n ∈ N. Let
b ≥ a. We claim that f(p−1

b (xb)) is degenerate. Suppose that there exists
a pair u, v of distinct points of Y such that u, v ∈ f(p−1

b (xb)). Then
there exists a pair x, y of distinct points of p−1

b (xb) such that f(x) = u
and f(y) = v. Let U , V be a pair of disjoint open sets of Y such that
u ∈ U and v ∈ V . Consider the covering {U, V, Y \ {u, v}}. There exists
a covering Vn ∈ V such that Vn ≺ {U, V,X \{u, v}}. We infer that there
is a covering Vnb of Xb such that p−1

b (Vnb) ≺ f−1(Vn). It follows that
pb(x) �= pb(y) since x and y lie in the disjoint members of the covering
f−1(Vn). This is impossible since x, y ∈ p−1

b (xb). Thus, f(p−1
b (xb)) is

degenerate. Now we define gb : Xb → Y by gb(xb) = f(p−1
b (xb)). It is
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clear that gbpb = f . Let us prove that gb is continuous. Let U be open
in Y . Then g−1

b (U) is open since p−1
b (g−1

b (U)) = f−1(U) is open and pb

is quotient (as a closed mapping).

Theorem 26. Let X = {Xa, pab, A} be a σ-directed inverse system
of compact spaces with limit X. A closed subspace Y of X is metrizable
if and only if there exists an a ∈ A such that pb | Y : Y → pb(Y ) is a
homeomorphism for each b ≥ a.

Proof: Consider the inverse system Y = {pa(Y ), pab | pb(Y ), A} with
limit Y and the identity mapping i : Y → Y . Apply Theorem 25.

Theorem 27 [3, Corollary 3]. Let X = {Xa, pab, A} be a σ-directed
inverse system of hereditarily locally connected continua Xa. Then X =
limX is hereditarily locally connected.

The following lemma follows from Theorem 10 and Corollary on p. 69
of [14]. See also [12, Lemma 3.5].

Lemma 28. Let X = {Xa, pab, A} be an inverse system of compact
spaces with monotone bonding surjections, X = limX, Y be a compact
space and ma : Y → Xa, a ∈ A, be monotone surjections such that ma =
pabmb for any a, b ∈ A, a ≤ b. Moreover, let m : Y → X denote the map
induced by ma, a ∈ A. Then m is also a monotone surjection. Moreover,
each projection pa : X → Xa, a ∈ A, is a monotone surjection.

Let X = {Xa, pab, A} be an inverse system. For each infinite subset ∆0

of (A,≤) we define sets ∆n, n = 0, 1, . . . , by the inductive rule ∆n+1 =
∆n

⋃
{m(x, y) : x, y ∈ ∆n}, where m(x, y) is a member of A such that

x, y ≤ m(x, y). Let ∆ =
⋃
{∆n : n ∈ N}. It is clear that card(∆) =

card(∆0). Moreover, ∆ is directed by ≤ [8, Lemma 9.2]. For each
directed set (A,≤) we define

Aσ = {∆ : ∅ �= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.

Then Aσ is σ-directed by inclusion [8, Lemma 9.3]. If ∆ ∈ Aσ, let
X∆ = {Xb, pbb′ ,∆} and X∆ = limX∆. If ∆, Γ ∈ Aσ and ∆ ⊆ Γ,
let p∆Γ : XΓ → X∆ denote the map induced by the projections pΓδ :
XΓ → Xδ, δ ∈ ∆, of the inverse system XΓ. Now, we have the following
theorem.

Theorem 29 [8, Theorem 9.4]. If X = {Xa, pab, A} is an inverse
system, then Xσ = {X∆, p∆Γ, Aσ} is a σ-directed inverse system and
limX and limXσ are canonically homeomorphic.
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Theorem 30. Let X be a compact space. There exists a σ-directed
inverse system X = {Xa, pab, A} of compact metric spaces Xa and sur-
jective bonding mappings pab such that X is homeomorphic to limX.

Proof: See [6, pp. 152, 164].

Theorem 31. If X is a locally connected compact space, then there
exists an inverse system X = {Xa, pab, A} such that each Xa is a metric
locally connected compact space, each pab is a monotone surjection and X
is homeomorphic to limX. Conversely, the inverse limit of such system
is always a locally connected compact space.

Proof: See [6, p. 163, Theorem 2].

Theorem 32 [11, Corollary 2.9]. If X is a hereditarily locally con-
nected continuum, then there exists a σ-directed inverse system X =
{Xa, pab, A} such that each Xa is a metrizable hereditarily locally con-
nected continuum, each pab is a monotone surjection and X is homeo-
morphic to limX.

Let X be a non-degenerate locally connected continuum. A subset Y
of X is said to be a cyclic element of X if Y is connected and maximal
with respect to the property of containing no separating point of itself. A
cyclic element of locally connected continuum is again a locally connected
continuum. We let

LX = {Y ⊂ X : Y is a non-degenerate cyclic element of X}.

Lemma 33 [8, Lemma 2.2]. If C is a connected subset of X and
Y ∈ LX , then C

⋂
Y is connected (possibly void).

Lemma 34 [8, Lemma 2.3]. If f : X → X ′ is a monotone surjection,
then for each Y ′ ∈ LX′ there exists Y ∈ LX such that Y ′ ⊆ f(Y ). In
particular, LX is non-empty if LX′ is non-empty.

Let Z be a cyclic element of X. For each component J of X \ Z, let
Bd(J) = {zJ}. We define a mapping [8, p. 5] ρ : X → Z such that
ρ(x) = x if x ∈ Z and ρ(x) = zJ if x ∈ J .

The mapping ρ is a monotone continuous retraction. It is called the
canonical retraction of X onto Z.
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Theorem 35 [8, Theorem 2.7]. Let Y be a cyclic locally connected
continuum and S=(Yγ , fγγ′ ,Γ) an inverse system such that Y =lim invS
and each bonding mapping fγγ′ is a monotone surjection. For each γ ∈
Γ, let Zγ be either a cyclic element of Yγ or a one-point subset of Yγ . Let
ργ : Yγ → Zγ denote the canonical retraction if Zγ is non-degenerate,
and otherwise let ργ be the constant map. Suppose that some Zγ0 is
non-degenerate, and that Zγ ⊆ fγγ′(Zγ′) for all γ ≤ γ′ ∈ Γ. Let gγγ′ =
ργ ◦ (fγγ′ | Zγ′) for all γ ≤ γ′ ∈ Γ. Then each gγγ′ : Zγ′ → Zγ is a
monotone surjection and Y = lim inv(Zγ , gγγ′ ,Γ).
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