A NOTE ON INVERSE LIMITS
OF CONTINUOUS IMAGES OF ARCS

IVAN LONČAR

Abstract

The main purpose of this paper is to prove some theorems concerning inverse systems and limits of continuous images of arcs. In particular, we shall prove that if \(X = \{X_a, p_{ab}, A\} \) is an inverse system of continuous images of arcs with monotone bonding mappings such that \(\text{cf}(\text{card}(A)) \neq \omega_1 \), then \(X = \lim X \) is a continuous image of an arc if and only if each proper subsystem \(\{X_a, p_{ab}, B\} \) of \(X \) with \(\text{cf}(\text{card}(B)) = \omega_1 \) has the limit which is a continuous image of an arc (Theorem 18).

1. Inverse limits of hereditarily locally connected continua

An arc (or ordered continuum) is a Hausdorff continuum with exactly two non-separating points. Each separable arc is homeomorphic to the closed interval \(I = [0, 1] \).

A space \(X \) is said to be an IOK (IOC) if there exists an ordered compact (connected) space \(K \) and a continuous surjection \(f : K \to X \). Frequently, we will say that a space \(X \) is a continuous image of an arc if \(X \) is an IOC.

The cardinality of a set \(A \) will be denoted by \(\text{card}(A) \). We assume that \(\text{card}(A) \) is the initial ordinal number. The cofinality of a cardinal number \(m \) will be denoted by \(\text{cf}(m) \).

Keywords. Inverse system and limit, continuous image of an arc.
A continuum X is said to be hereditarily locally connected if each subcontinuum of X is locally connected. A continuum X is said to be finitely Suslinian \cite{17} if there do not exist open sets U and V, and an infinite collection \mathcal{K} of pairwise disjoint subcontinua of X such that $\text{Cl}(U) \cap \text{Cl}(V) = \emptyset$ and $K \cap V \neq \emptyset$ and $K \cap U \neq \emptyset$ for each K in \mathcal{K}. Each finitely Suslinian continuum is hereditarily locally connected. A continuum X is said to be rim-finite (rim-countable) if it has a basis \mathcal{B} such that $\text{card}(\text{Bd}(U)) < \aleph_0$ (card(Bd(U)) $\leq \aleph_0$) for each $U \in \mathcal{B}$. Each rim-finite continuum is finitely Suslinian. Each hereditarily locally connected continuum is a continuous image of an arc \cite[Theorem 3.4]{11}.

In the paper \cite[Problem 9.10]{8} the authors asked when the inverse limit of an inverse system $X = \{X_a, p_{ab}, A\}$ of hereditarily locally connected continua with monotone surjective bonding mappings p_{ab} is a continuous image of an arc.

If $X = \{X_a, p_{ab}, A\}$ is an inverse system of hereditarily locally connected continua, then $X = \lim X$ need not be a hereditarily locally connected continuum since each locally connected metric continuum of dimension 1 (= curve) is the limit of an inverse sequence of rim-finite continua with surjective monotone bonding mappings \cite[Theorem 2.2]{13}.

In the present section we shall define a class of hereditarily locally connected continua such that each inverse limit of such spaces and monotone bonding mappings has a hereditarily locally connected limit.

In Appendix we review some definitions and known results needed in this section.

We say that an inverse system $Y = \{Y_a, q_{ab}, B\}$ is a subsystem of $X = \{X_a, p_{ab}, A\}$ if $B \subset A$, $Y_a = X_a$ and each q_{ab} is p_{ab}.

We start with the following theorem.

Theorem 1. Let X be the limit of an inverse system $X = \{X_a, p_{ab}, A\}$ of hereditarily locally connected continua X_a such that the bonding mappings $p_{ab} : X_b \rightarrow X_a$ are monotone surjections. Then X is a hereditarily locally continuum if and only if each countable inverse subsystem of X has a hereditarily locally connected limit.

Proof: By Theorem 29 X is homeomorphic to the limit of $X_\sigma = \{X_\Delta, p_{\Delta}, A_\sigma\}$, where A_σ is the family of all nonempty countable directed subsets of A. If X is hereditarily locally connected then each X_Δ is hereditarily locally connected as a monotone image of a hereditarily locally connected continuum X (see Lemma 28). Conversely, if each X_Δ is hereditarily locally connected, then X is hereditarily locally connected (Theorem 27). \blacksquare
The following theorem is a generalization of the well-known result of G. T. Whyburn [20, p. 81] which asserts that a metric continuum X is hereditarily locally connected if and only if each cyclic element (see Appendix) $Z \subseteq X$ is hereditarily locally connected.

Theorem 2. A locally connected continuum X is hereditarily locally connected if and only if each cyclic element of X is hereditarily locally connected.

Proof: By Theorems 31 and 29 there exists a σ-directed inverse system $X = \{X_a, p_{ab}, A\}$ of metric locally connected spaces such that p_{ab} are monotone and X is homeomorphic to $\lim X$. Let us prove that each X_a is hereditarily locally connected. It suffices to prove that each cyclic element Z_a of X_a is hereditarily locally connected. By Lemma 34 there exists a cyclic element Z of $\lim X$ such $p_a(Z) \supseteq Z$. Since $\lim X$ is homeomorphic to X, Z is hereditarily locally connected. This means that $p_a(Z)$ is hereditarily locally connected. It follows that Z_a is hereditarily locally connected since $Z_a \subseteq p_a(Z)$. We infer that each X_a is hereditarily locally connected since X_a is a metric continuum. From Theorem 27 it follows that X is hereditarily locally connected. \hfill \square

A surjective mapping $f : X \to Y$ is said to be **hereditarily monotone** [5, pp. 16–17] if for each subcontinuum K of X the restriction $f \mid K : K \to f(K)$ is monotone.

If $f : X \to Y$ and $g : Y \to Z$ are hereditarily monotone mappings, then $gf : X \to Z$ is hereditarily monotone [5, p. 29, (5.3)].

Lemma 3. If Z is a cyclic element of X, then the canonical retraction $\rho : X \to Z$ is hereditarily monotone.

Proof: Let $\rho : X \to Z$ (see Appendix, p. 13) and let K be any subcontinuum of X. Let us prove that the restriction $\rho_K : K \to \rho_K(K) \subseteq Z$ is monotone. Consider the following cases.

a) $K \subseteq Z$. Now ρ_K is the identity and is monotone.

b) $K \subseteq X \setminus Z$. It is clear that K is a subset of some component J of $X \setminus Z$. Let $\{z_J\} = \text{Bd}(J)$. Now, $\rho_K(K) = \{z_J\}$. This means that $\rho_K^{-1}(z_J) = K$. Hence ρ_K is monotone.

c) $K \cap Z \neq \emptyset$ and $K \cap (X \setminus Z) \neq \emptyset$. In this case

$$K = \left(K \cap Z\right) \cup \left\{K \cap J : J \text{ is a component of } X \setminus Z, K \cap J \neq \emptyset\right\}.$$
We infer that
\[\rho_K(K) = \left(K \cap Z \right) \cup \{ \{ z_J \} : J \text{ is a component of } X \setminus Z, \{ z_J \} = \text{Bd}(J) \}. \]

If \(x \in \rho_K(K) \) such that \(x \neq z_J \) for all components \(J \) of \(X \setminus Z \), then \(\rho_K^{-1}(x) = \{ x \} \). Hence \(\rho_K^{-1}(x) \) is connected. If \(x = z_J \) for some component \(J \), then
\[\rho_K^{-1}(x) = \{ z_J \} \cup \left\{ K \cap J_i : \{ z_J \} = \text{Bd}(J_i), i \in I \right\}. \]

It suffices to prove that each set \(\text{Cl}(J_i) \cap K \) is connected. Suppose that \(\text{Cl}(J_i) \cap K \) is not connected. There exists a component \(L \) of \(\text{Cl}(J_i) \cap K \) such that \(z_J \notin L \). By virtue of the normality of \(X \) it follows that there exists a pair \(U, V \) of disjoint open sets such that \(L \subseteq U \) and \(z_J \in V \). We may assume that \(\text{Cl}(U) \subseteq J \) since \(J \) is open. For each point \(x \) of \(K \setminus (U \cup V) \) there exists an open set \(U_x \) such that \(x \in U_x \) and \(U_x \cap U = \emptyset \). Let \(W \) be the union of \(V \) and all the sets \(U_x, x \in K \setminus (U \cup V) \). It is clear that \(U \cap W = \emptyset \) and \(K \subseteq U \cup W \). This is impossible since \(K \) is connected. Hence, \(\text{Cl}(J_i) \cap K \) is connected and \(\rho_K \) is monotone.

Theorem 4. Let \(X = \{ X_a, p_{ab}, A \} \) be an inverse system of continua and hereditarily monotone bonding mappings. Then the projections \(p_a, a \in A \), are hereditarily monotone. Moreover, if each \(X_a \) is hereditarily locally connected, then \(X = \lim X \) is hereditarily locally connected.

Proof: Let \(K \) be a subcontinuum of \(X \). For each \(a \in A \), \(K_a = p_a(K) \) is a subcontinuum of \(X_a \). We have the inverse system \(K = \{ K_a, p_{ab} | K_b, A \} \). From the definition of hereditarily monotone mapping it follows that each mapping \(p_{ab} | K_b \) is a monotone mapping. This means that the projections \(p_a | K \) are monotone [2, pp. 462–463]. From [2, Theorem 6.1.28] it follows that \(K \) is locally connected. Thus, \(X \) is hereditarily locally connected.

A surjective mapping \(f : X \to Y \) is said to be **cyclically hereditarily monotone** if for each cyclic element \(Z \) of \(X \) the restriction \(f | Z \) is hereditarily monotone.

Theorem 5. Let \(X = \{ X_a, p_{ab}, A \} \) be an inverse system of hereditarily locally connected continua \(X_a \) and cyclically hereditarily monotone bonding mappings \(p_{ab} \). Then \(X = \lim X \) is hereditarily locally connected.
Proof: By Theorem 2 it suffices to prove that each cyclic element Z of X is hereditarily locally connected. There exists an inverse system (Theorem 35) $\mathcal{Z} = \{Z_a, g_{ab}, A\}$ such that Z_a is a cyclic element of X_a, $g_{ab} = \rho_a \circ (f_{ab} | Z_b)$ for all $a \leq b \in A$, and Z is homeomorphic to $\lim Z$. This means that g_{ab} is hereditarily monotone since ρ_a is hereditarily monotone (Lemma 3). From Theorem 4 it follows that Z is hereditarily locally connected. Thus, X is hereditarily locally connected.

A space X is in class \mathcal{H}_m if X is a hereditarily locally connected continuum and X contains no non-degenerate metric subcontinuum. Each space in class \mathcal{H}_m is rim-finite [19, Theorem 1].

Theorem 6. Let $X = \{X_n, p_{mn}, N\}$ be an inverse sequence with monotone surjective bonding mappings. If each X_n is in class \mathcal{H}_m, then $X = \lim X$ is in class \mathcal{H}_m. Moreover, X is rim-finite.

Proof: Each X_n is a continuous image of an arc [11, Corollary 3.5] since each X_n is hereditarily locally connected. Thus, X is a continuous image of an arc (Theorem 14). Let us prove that X contains no non-degenerate metric subcontinuum. Suppose that Y is a non-degenerate metric subcontinuum of X. Then there exists a $n \in N$ such that $p_m(Y)$ is a non-degenerate metric subcontinuum of X_m for each $m \geq n$. This is impossible since X_m is in class \mathcal{H}_m. We infer that X contains no non-degenerate metric subcontinua. By virtue of Theorem 21 it follows that X is hereditarily locally connected. Moreover, from Theorem 1 of [19] it follows that X is rim-finite.

Theorem 7. Let $X = \{X_a, p_{ab}, A\}$ be an inverse system with monotone surjective bonding mappings. If each X_a is in class \mathcal{H}_m, then $X = \lim X$ is in class \mathcal{H}_m. Moreover, X is rim-finite.

Proof: Apply Theorem 1 and Theorem 23.

A hereditarily locally connected continuum X is in class \mathcal{H}_{zm} if each cyclic element Z of X is in class \mathcal{H}_m.

Theorem 8. Let $X = \{X_a, p_{ab}, A\}$ be an inverse system with monotone surjective bonding mappings. If each X_a is in class \mathcal{H}_{zm}, then $X = \lim X$ is in class \mathcal{H}_{zm}.

Proof: Let Z be a cyclic element of X. By Theorem 35 there exists an inverse system $(Z_\gamma, g_{\gamma\gamma'}, \Gamma)$ such that Z_γ is homeomorphic to $\lim \text{inv}(Z_\gamma, g_{\gamma\gamma'}, \Gamma)$, where Z_γ is a cyclic element of X_γ and $g_{\gamma\gamma'}$ is monotone. By Theorem 7 Z is in class \mathcal{H}_m. From Theorem 2 it follows that X is hereditarily locally connected. Hence, X is in class \mathcal{H}_{zm}.
2. Special classes of continuous images of arcs

Theorem 9 [9]. Let X be a locally connected continuum such that for each pair of distinct points a, b in X, there exists a continuous onto map $f : X \rightarrow [c,d]$ such that $f(a) = c$ and $f(b) = d$ and $[c,d]$ is a non-metrizable arc. If X is rim-metrizable or rim-scattered or monotonically normal, then X is a continuous image of an arc.

A locally connected continuum is said to be a $\textit{NTT-space}$ if for each pair of distinct points a, b in X, there exists a continuous onto map $f : X \rightarrow [c,d]$ such that $f(a) = c$ and $f(b) = d$ and $[c,d]$ is a non-metrizable arc.

Theorem 10. Let $X = \{X_a, p_{ab}, A\}$ be an inverse system of \textit{NTT}-spaces with monotone surjective bonding mappings. Then $X = \lim X$ is a \textit{NTT}-space.

Proof: It is known that X is locally connected continuum. Let x, y be a pair of distinct points of X. There exists an $a \in A$ such that $p_b(x) \neq p_b(y)$ for each $b \geq a$. Since X_b is a \textit{NTT}-space there exists a non-metrizable arc $[c,d]$ and a surjective mapping $f : X_b \rightarrow [c,d]$ such that $f(x) = c$ and $f(y) = d$. Considering the mapping $f_{ab} : X \rightarrow [c,d]$ we infer that X is a \textit{NTT}-space.

Theorem 11. Let $X = \{X_a, p_{ab}, A\}$ be an inverse system of \textit{NTT}-spaces and monotone surjective bonding mappings. If $X = \lim X$ is rim-metrizable or rim-scattered or monotonically normal, then X is a continuous image of an arc.

Proof: By Theorem 10 X is a \textit{NTT}-space. Apply Theorem 9.

Theorem 12. Let $X = \{X_a, p_{ab}, A\}$ be a σ-directed inverse system of spaces X_a such that for each pair x_a, y_a of points of X_a the subspace $X_a \setminus \{x_a, y_a\}$ is connected, $a \in A$. If each X_a is a continuous image of an arc and each p_{ab} is a monotone surjection, then $X = \lim X$ is a continuous image of an arc if and only if there exists an $a \in A$ such that $p_b : X \rightarrow X_b$ is a homeomorphism for each $b \geq a$ (if and only if X is metrizable).

Proof: By Theorem 2 of [18] each X_a is metrizable. We shall prove that for each pair x, y of points of X the subspace $Y = X \setminus \{x,y\}$ is connected. Suppose that Y is not connected. Then there exists a pair U, V of disjoint open subsets of X such that $Y = U \cup V$. Moreover,
there exists an \(a \in A \) such that \(p_b(x) \neq p_b(y) \), \(b \geq a \). The sets \(U_a = \{ x_a : x_a \in X_a, p_a^{-1}(x_a) \subset U \} \) and \(V_a = \{ x_a : x_a \in X_a, p_a^{-1}(x_a) \subset V \} \) are disjoint and open. Now we have \(X \setminus \{ p_a(x), p_a(y) \} = U_a \cup V_a \). This is impossible since \(X \setminus \{ p_a(x), p_a(y) \} \) is connected. Hence, \(Y = X \setminus \{ x, y \} \) is connected. It follows that if \(X \) is a continuous image of an arc, then it is metrizable ([18, Theorem 2]). From Theorem 26 it follows that there exists a \(b \in A \) such that \(p_b : X \rightarrow X_b \) is a homeomorphism for every \(c \geq b \). Conversely, if such \(b \in A \) exists, then \(X \) is a continuous image of an arc.

Theorem 13. Let \(X = \{ X_a, p_{ab}, A \} \) be an inverse system of spaces \(X_a \) such that for each pair \(x_a, y_a \) of points of \(X_a \) the subspace \(X_a \setminus \{ x_a, y_a \} \) is connected, \(a \in A \). If each \(X_a \) is a continuous image of an arc and each \(p_{ab} \) is a monotone surjection, then \(X = \lim X \) is a continuous image of an arc if and only if there exists a countable subsystem \(Y \) of \(X \) such that \(\lim Y \) is homeomorphic to \(X \).

Proof: Consider the inverse system \(X = \{ X_a, p_{ab}, A \} \) from Theorem 29 and apply Theorem 12.

3. Inverse systems and subsystems

Theorem 14 [8, Theorem 5.1]. Let \(X = \{ X_n, p_{mn}, \mathbb{N} \} \) be an inverse sequence with monotone surjective bonding mappings. If each \(X_n \) is the continuous image of an arc, then \(X = \lim X \) is the continuous image of an arc.

Theorem 15 [4, Theorem 2.17]. Let \(X = \{ X_a, p_{ab}, A \} \) be a well-ordered inverse system such that \(\text{cf}(A) \neq \omega_1 \). If the mappings \(p_{ab} \) are monotone surjections and if the spaces \(X_a \) are the continuous images of arcs, then \(X = \lim X \) is the continuous image of an arc.

Remark 16. Theorem 15 is not true if \(\text{cf}(A) = \omega_1 \). This is shown by the following example of Nikkel [10]. Let \(L \) denote the long interval \([2, \infty)\). For each ordinal number \(\alpha, 0 < \alpha < \omega_1 \), let \(f_\alpha : [0, 1] \times L \rightarrow [0, 1] \times [0, \alpha] \) be defined by

\[
f(s, t) = \begin{cases} (s, t) & \text{if } t \leq_L \alpha \\ (s, \alpha) & \text{if } \alpha \leq_L t.
\end{cases}
\]

Each \(X_\alpha = [0, 1] \times [0, \alpha] \) is homeomorphic to \([0, 1] \times [0, 1]\) and it is a continuous image of an arc. Moreover, \(w(X_\alpha) = \aleph_0 \). Let \(f_{\alpha\beta} = f_\alpha | [0, 1] \times [0, \beta] \), \(\beta < \alpha \). We obtain an inverse system \(\{ X_\alpha, f_{\alpha\beta}, \alpha < \omega_1 \} \) whose limit is \([0, 1] \times L\) which is not a continuous image of an arc.
Theorem 17. Let $X = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces such that $\text{card}(A) > \aleph_0$. There exists a transfinite sequence $\{A_\alpha : \alpha < \text{card}(A)\}$ of directed subsets A_α of A such that:

1. $\text{card}(A_\alpha) < \text{card}(A)$, $\alpha < \text{card}(A)$,
2. $\alpha < \beta < \text{card}(A)$ implies $A_\alpha \subseteq A_\beta$,
3. $A = \bigcup\{A_\alpha : \alpha < \text{card}(A)\}$,
4. each collection $\{X_a, p_{ab}, A_\alpha\}$ is an inverse system with limit X_α,
5. if $\alpha < \beta < \text{card}(A)$ then there exists a mapping $q_{\alpha \beta} : X_\beta \to X_\alpha$,
6. $\lim X$ is homeomorphic to $\lim \{X_\alpha, q_{\alpha \beta}, \alpha < \beta < \text{card}(A)\}$,
7. if the mappings p_{ab} are monotone, then the mappings $q_{\alpha \beta}$ are monotone.

Proof: The proof consists of several steps. Step 1 is from [7, pp. 238–239, Hilfssatz]. For the sake of the completeness we give the proof of Step 1.

Step 1: Let ν be any finite subset of A. There exists a $\delta(\nu) \in A$ such that $\delta \leq \delta(\nu)$ for each $\delta \in \nu$. For each $B \subseteq A$ there exists a set $F_1(B) = B \bigcup \{\delta(\nu) : \nu \subset B \text{ and } \nu \text{ is finite}\}$. Put $F_{n+1} = F_1(F_n(B))$, and

$$F_\infty(B) = \bigcup\{F_n(B) : n \in \mathbb{N}\}.$$

It is clear that

$$F_1(B) \subseteq F_2(B) \subseteq \ldots \subseteq F_n(B) \subseteq \ldots$$

The set $F_\infty(B)$ is directed since each finite subset ν of $F_\infty(B)$ is contained in some $F_n(B)$ and, consequently, $\delta(\nu)$ is contained in $F_\infty(B)$. If B is finite, then $\text{card}(F_\infty(B)) = \aleph_0$. If $\text{card}(B) \geq \aleph_0$, then we have $\text{card}(\{\delta(\nu) : \nu \in B\}) \leq \text{card}(B)\aleph_0$. We infer that $\text{card}(F_1(B)) \leq \text{card}(B)\aleph_0$. Similarly, $\text{card}(F_n(B)) \leq \text{card}(B)\aleph_0$. This means that $\text{card}(F_\infty(B)) \leq \text{card}(B)\aleph_0$. Thus

$$\text{card}(F_\infty(B)) \leq \text{card}(B)\aleph_0.$$

Suppose that $\text{card}(A) > \aleph_0$. Put $\Omega = \text{card}(A)$. Hence, $A = \{a_\alpha : \alpha < \Omega\}$. Put $B_\alpha = \{a_\mu : \mu < \alpha < \Omega\}$. We have a transfinite sequence $\{B_\alpha : \alpha < \Omega\}$ such that

a) $\text{card}(B_\alpha) < \text{card}(A)$,
b) $\alpha < \beta < \Omega$ implies $B_\alpha \subseteq B_\beta$,
c) $A = \bigcup\{B_\alpha : \alpha < \Omega\}$.

Put $A_\alpha = F_\infty(B_\alpha)$.
Step 2: Assertions 1-3 follow from Step 1.

Step 3: Assertion 4 follows from the fact that each A_α is directed subset of A.

Step 4: Let us prove 5. From assertion 2 it follows that there exists a continuous mapping $q_{\alpha\beta} : X_\beta \rightarrow X_\alpha$ since each point $x \in X_\beta$ induces a collection $\{x_a : a \in A_\alpha\}$ which satisfies $p_{ab}(x_b) = x_a$, i.e., $\{x_a : a \in A_\alpha\}$ is a point of X_α.

Step 5: It is obvious that there exists a mapping $H : \lim X \rightarrow \lim \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\}$ since each $x = (x_a : a \in A) \in \lim X$ induces a collection $\{x_a : a \in A_\alpha\}$ on each A_α. Thus we have the mappings $H_\alpha : \lim X \rightarrow X_\alpha$, for each $\alpha < \text{card}(A)$. The mappings H_α induce a continuous mapping $H : \lim X \rightarrow \lim \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\}$. It remains to prove that H is 1-1 and onto. Let us prove that H is 1-1. Let $x, y \in \lim X$ and $x \neq y$. There exists an $a \in A$ such that $x_a \neq y_a$. From Step 1 it follows that there is an A_α such that $a \in A_\alpha$. Now, $x_a \neq y_a$ implies $H_\alpha(x) \neq H_\alpha(y)$ (see Step 5). This means that $H(x) \neq H(y)$. Hence H is 1-1. In order to complete the proof it suffices to prove that H is onto. Let $y = (y_\alpha : \alpha < \text{card}(A))$ be any point of $\lim \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\}$. Then $y_\alpha \in X_\alpha$. Thus, y_α is a thread in X_α, i.e., $y = (x_a, a \in A_\alpha)$. We infer that for each $a \in A$ there exists a point $x_a \in X_\alpha$. It is readily to seen that $p_{ab}(x_b) = x_a$. Thus, $(x_a : a \in A)$ is a thread in $\lim X$ such that $H(x) = y$.

Step 6: Let us prove 7. If the mappings p_{ab} are monotone, then from Lemma 28 it follows that the mappings $q_{\alpha\beta}$ are monotone.

Now we shall prove the main theorem of this section which is a generalization of Theorem 15.

Theorem 18. Let $X = \{X_a, p_{ab}, A\}$ be an inverse system of continuous images of arcs with monotone bonding mappings. If $\text{cf}((\text{card}(A)) \neq \omega_1$, then $X = \lim X$ is a continuous image of an arc if and only if each proper subsystem $\{X_a, p_{ab}, B\}$ of X with $\text{cf}(\text{card}(B)) = \omega_1$ has the limit which is a continuous image of an arc.

Proof: The “only if part”. If X is a continuous image of an arc, then for each subsystem $\{X_a, p_{ab}, B\}$ there exists a natural projections $f_a : X \rightarrow \lim \{X_a, p_{ab}, B\}$. Hence, $\lim \{X_a, p_{ab}, B\}$ is a continuous image of an arc.
I. Lončar

The “if” part. By Theorem 17 there exists a well-ordered inverse system \(\{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\} \) such that \(X \) is homeomorphic to \(\lim \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\} \). If \(\text{cf}(\text{card}(A)) \leq \omega_0 \), then we have an inverse subsequence of \(\{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\} \) which is a cofinal subsystem of \(\{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(A)\} \). By Theorem 14 \(X \) is a continuous image of an arc. Now, suppose that \(\text{cf}(\text{card}(A)) > \omega_1 \). By Theorem 17 it suffices to prove that each subsystem of \(\{X_\alpha, p_{\alpha\beta}, B\} \) of \(X = \{X_\alpha, p_{\alpha\beta}, A\} \) has the limit which is a continuous image of an arc.

We shall use the transfinite induction on \(\text{card}(B) \). If \(\text{card}(B) \leq \omega_0 \), then we use Theorem 14. If \(\text{card}(B) = \omega_1 \), then \(\text{lim} \{X_\alpha, p_{\alpha\beta}, B\} \) is a continuous image of an arc by assumption of Theorem. Let now \(\{X_\alpha, p_{\alpha\beta}, B\} \) be a subsystem of \(\{X_\alpha, p_{\alpha\beta}, A\} \) such that \(\text{card}(B) > \omega_1 \).

Suppose that Theorem is true for each subsystem of the cardinality \(< \text{card}(B) \). By Theorem 17 there exists a well-ordered inverse system \(\{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(B)\} \) such that \(\text{lim} \{X_\alpha, p_{\alpha\beta}, B\} \) is homeomorphic to \(\text{lim} \{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(B)\} \). Since each \(X_\alpha \) is the limit of a subsystem of the cardinality \(< \text{card}(B) \), we have the inverse system \(\{X_\alpha, q_{\alpha\beta}, \alpha < \beta < \text{card}(B)\} \) which satisfies the conditions of Theorem 15. Thus, \(\text{lim} \{X_\alpha, p_{\alpha\beta}, B\} \) is a continuous image of an arc. By the transfinite induction the proof is complete.

Corollary 19. Let \(X \) be a locally connected continuum. The following conditions are equivalent:

a) \(X \) is a continuous image of an arc.

b) If \(f : X \to Y \) is a continuous mapping and \(\text{cf}(\text{w}(Y)) = \omega_1 \), then \(Y \) is a continuous image of an arc.

Proof: a) \(\Rightarrow \) b). Obvious.

b) \(\Rightarrow \) a). By Theorem 31 there exists an inverse system \(X = \{X_\alpha, p_{\alpha\beta}, A\} \) such that \(X_\alpha \) are metric locally connected continua, \(p_{\alpha\beta} \) are monotone mappings and \(X \) is homeomorphic to \(\text{lim} X \). If \(Y = \{X_\alpha, p_{\alpha\beta}, B\} \) is any subsystem of \(\{X_\alpha, p_{\alpha\beta}, A\} \) with \(\text{cf}(\text{card}(B)) = \omega_1 \), then there exists a natural projection \(P : X \to \text{lim} Y \). By b) it follows that \(\text{lim} Y \) is a continuous image of an arc since \(\text{w}(\text{lim} Y) = \aleph_1 \). Applying Theorem 18 we complete the proof.

Corollary 20. Let \(X \) be a locally connected continuum such that \(\text{w}(X) > \aleph_{\omega_1} \). The following conditions are equivalent:

a) \(X \) is a continuous image of an arc.

b) If \(f : X \to Y \) is a continuous mapping and \(\text{w}(Y) = \aleph_1 \), then \(Y \) is a continuous image of an arc.
4. Appendix

Theorem 21 [15, Theorem 4]. If X is a connected IOK and X contains no nondegenerate metric subcontinuum, then X is hereditarily locally connected.

Theorem 22 [17, Theorem]. If X is a continuum containing no non-degenerate metric subcontinuum, then X is finitely Suslinian if and only if X is a continuous image of an arc.

We say that $X = \{X_a, p_{ab}, A\}$ is σ-directed if for each sequence $a_1, a_2, \ldots, a_k, \ldots$ of the members of A there is an $a \in A$ such that $a \geq a_k$ for each $k \in \mathbb{N}$.

Theorem 23 [8, Theorem 9.8]. If X is the limit of a σ-directed inverse system of finitely Suslinian continua, then X is finitely Suslinian.

Theorem 24 [8, Theorem 9.9]. Let $X = \{X_a, p_{ab}, A\}$ be a σ-directed inverse system of rim-finite continua with surjective bonding mappings. Then $X = \lim X$ is a rim-finite continuum.

Theorem 25. Let $X = \{X_a, p_{ab}, A\}$ be a σ-directed inverse system of compact spaces with surjective bonding mappings and limit X. Let Y be a metric compact space. For each surjective mapping $f : X \to Y$ there exists an $a \in A$ such that for each $b \geq a$ there exists a mapping $g_b : X_b \to Y$ such that $f = g_b p_b$.

Proof: Let B be a countable basis of Y and let V be a collection of all finite subfamilies of B which cover X. Clearly, card(V) = \aleph_0. Hence, $V = \{V_n : n \in \mathbb{N}\}$. For each V_n $f^{-1}(V_n) = \{f^{-1}(U) : U \in V_n\}$ is a covering of X. There exists an $a(n) \in A$ such that for each $b \geq a(n)$ there is a cover V_{nb} of X_b with $P_b^{-1}(V_{nb}) \prec f^{-1}(V_n)$. From the σ-directedness of A it follows that there is an $a \in A$ such that $a \geq a(n)$, $n \in \mathbb{N}$. Let $b \geq a$. We claim that $f(p_b^{-1}(x_b))$ is degenerate. Suppose that there exists a pair u, v of distinct points of Y such that $u, v \in f(p_b^{-1}(x_b))$. Then there exists a pair x, y of distinct points of $p_b^{-1}(x_b)$ such that $f(x) = u$ and $f(y) = v$. Let U, V be a pair of disjoint open sets of Y such that $u \in U$ and $v \in V$. Consider the covering $\{U, V, Y \setminus \{u, v\}\}$. There exists a covering $V_n \in V$ such that $V_n \prec \{U, V, X \setminus \{u, v\}\}$. We infer that there is a covering V_{nb} of X_b such that $p_b^{-1}(V_{nb}) \prec f^{-1}(V_n)$. It follows that $p_b(x) \neq p_b(y)$ since x and y lie in the disjoint members of the covering $f^{-1}(V_n)$. This is impossible since $x, y \in p_b^{-1}(x_b)$. Thus, $f(p_b^{-1}(x_b))$ is degenerate. Now we define $g_b : X_b \to Y$ by $g_b(x_b) = f(p_b^{-1}(x_b))$. It is
clear that \(g_b p_b = f \). Let us prove that \(g_b \) is continuous. Let \(U \) be open in \(Y \). Then \(g_b^{-1}(U) \) is open since \(p_b^{-1}(g_b^{-1}(U)) = f^{-1}(U) \) is open and \(p_b \) is quotient (as a closed mapping).

Theorem 26. Let \(X = \{X_a, p_{ab}, A\} \) be a \(\sigma \)-directed inverse system of compact spaces with limit \(X \). A closed subspace \(Y \) of \(X \) is metrizable if and only if there exists an \(a \in A \) such that \(p_a \mid Y : Y \to p_a(Y) \) is a homeomorphism for each \(b \geq a \).

Proof: Consider the inverse system \(Y = \{p_a(Y), p_{ab} \mid p_b(Y), A\} \) with limit \(Y \) and the identity mapping \(i : Y \to Y \). Apply Theorem 25.

Theorem 27 [3, Corollary 3]. Let \(X = \{X_a, p_{ab}, A\} \) be a \(\sigma \)-directed inverse system of hereditarily locally connected continua \(X_a \). Then \(X = \lim X \) is hereditarily locally connected.

The following lemma follows from Theorem 10 and Corollary on p. 69 of [14]. See also [12, Lemma 3.5].

Lemma 28. Let \(X = \{X_a, p_{ab}, A\} \) be an inverse system of compact spaces with monotone bonding surjections, \(X = \lim X \), \(Y \) be a compact space and \(m_a : Y \to X_a \), \(a \in A \), be monotone surjections such that \(m_a = p_{ab} m_b \) for any \(a, b \in A \), \(a \leq b \). Moreover, let \(m : Y \to X \) denote the map induced by \(m_a \), \(a \in A \). Then \(m \) is also a monotone surjection. Moreover, each projection \(p_a : X \to X_a \), \(a \in A \), is a monotone surjection.

Let \(X = \{X_a, p_{ab}, A\} \) be an inverse system. For each infinite subset \(\Delta_0 \) of \((A, \leq) \) we define sets \(\Delta_n \), \(n = 0, 1, \ldots \), by the inductive rule \(\Delta_{n+1} = \Delta_n \bigcup \{m(x, y) : x, y \in \Delta_n\} \), where \(m(x, y) \) is a member of \(A \) such that \(x, y \leq m(x, y) \). Let \(\Delta = \bigcup \{\Delta_n : n \in \mathbb{N}\} \). It is clear that \(\text{card}(\Delta) = \text{card}(\Delta_0) \). Moreover, \(\Delta \) is directed by \(\leq \) [8, Lemma 9.2]. For each directed set \((A, \leq) \) we define

\[
A_\sigma = \{\Delta : \emptyset \neq \Delta \subset A, \text{card}(\Delta) \leq \aleph_0 \text{ and } \Delta \text{ is directed by } \leq\}.
\]

Then \(A_\sigma \) is \(\sigma \)-directed by inclusion [8, Lemma 9.3]. If \(\Delta \in A_\sigma \), let \(X^\Delta = \{X_b, p_{ab}, \Delta\} \) and \(X_\Delta = \lim X^\Delta \). If \(\Delta, \Gamma \in A_\sigma \) and \(\Delta \subseteq \Gamma \), let \(p_{\Delta \Gamma} : X_\Gamma \to X_\Delta \) denote the map induced by the projections \(p_\delta^\Gamma : X_\Gamma \to X_\delta \), \(\delta \in \Delta \), of the inverse system \(X^\Gamma \). Now, we have the following theorem.

Theorem 29 [8, Theorem 9.4]. If \(X = \{X_a, p_{ab}, A\} \) is an inverse system, then \(X_\sigma = \{X_\Delta, p_{\Delta \Gamma}, A_\sigma\} \) is a \(\sigma \)-directed inverse system and \(\lim X \) and \(\lim X_\sigma \) are canonically homeomorphic.
Theorem 30. Let X be a compact space. There exists a σ-directed inverse system $X = \{X_a, p_{ab}, A\}$ of compact metric spaces X_a and surjective bonding mappings p_{ab} such that X is homeomorphic to $\lim X$.

Proof: See [6, pp. 152, 164]. ■

Theorem 31. If X is a locally connected compact space, then there exists an inverse system $X = \{X_a, p_{ab}, A\}$ such that each X_a is a metric locally connected compact space, each p_{ab} is a monotone surjection and X is homeomorphic to $\lim X$. Conversely, the inverse limit of such system is always a locally connected compact space.

Proof: See [6, p. 163, Theorem 2]. ■

Theorem 32 [11, Corollary 2.9]. If X is a hereditarily locally connected continuum, then there exists a σ-directed inverse system $X = \{X_a, p_{ab}, A\}$ such that each X_a is a metrizable hereditarily locally connected continuum, each p_{ab} is a monotone surjection and X is homeomorphic to $\lim X$.

Let X be a non-degenerate locally connected continuum. A subset Y of X is said to be a cyclic element of X if Y is connected and maximal with respect to the property of containing no separating point of itself. A cyclic element of locally connected continuum is again a locally connected continuum. We let

$L_X = \{Y \subset X : Y$ is a non-degenerate cyclic element of $X\}$.

Lemma 33 [8, Lemma 2.2]. If C is a connected subset of X and $Y \in L_X$, then $C \cap Y$ is connected (possibly void).

Lemma 34 [8, Lemma 2.3]. If $f : X \to X'$ is a monotone surjection, then for each $Y' \in L_{X'}$ there exists $Y \in L_X$ such that $Y' \subseteq f(Y)$. In particular, L_X is non-empty if $L_{X'}$ is non-empty.

Let Z be a cyclic element of X. For each component J of $X \setminus Z$, let $\text{Bd}(J) = \{z_J\}$. We define a mapping [8, p. 5] $\rho : X \to Z$ such that $\rho(x) = x$ if $x \in Z$ and $\rho(x) = z_J$ if $x \in J$.

The mapping ρ is a monotone continuous retraction. It is called the canonical retraction of X onto Z.
Theorem 35 [8, Theorem 2.7]. Let Y be a cyclic locally connected continuum and $S=(Y_\gamma,f_{\gamma\gamma'},\Gamma)$ an inverse system such that $Y=\liminv S$ and each bonding mapping $f_{\gamma\gamma'}$ is a monotone surjection. For each $\gamma \in \Gamma$, let Z_γ be either a cyclic element of Y_γ or a one-point subset of Y_γ. Let $\rho_\gamma : Y_\gamma \to Z_\gamma$ denote the canonical retraction if Z_γ is non-degenerate, and otherwise let ρ_γ be the constant map. Suppose that some Z_{γ_0} is non-degenerate, and that $Z_\gamma \subseteq f_{\gamma\gamma'}(Z_{\gamma'})$ for all $\gamma \leq \gamma' \in \Gamma$. Let $g_{\gamma\gamma'} = \rho_\gamma \circ (f_{\gamma\gamma'}|Z_{\gamma'})$ for all $\gamma \leq \gamma' \in \Gamma$. Then each $g_{\gamma\gamma'} : Z_{\gamma'} \to Z_\gamma$ is a monotone surjection and $Y = \liminv(Z_\gamma,g_{\gamma\gamma'},\Gamma)$.

Acknowledgement. The author is grateful to the referee for his help and valuable suggestions.

References

5. T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 95 pp.

Fakultet organizacije i informatike
Pavlińska 2
42000 Varaždin
CROATIA

e-mail: iloncar1@vz.tel.hr
iloncar@foi.hr

Primera versió rebuda el 8 de juny de 1998,
darrera versió rebuda el 18 de maig de 1999