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ALMOST EVERYWHERE CONVERGENCE
AND BOUNDEDNESS OF CESÀRO-α ERGODIC

AVERAGES IN Lp,q-SPACES

F. J. Mart́ın-Reyes and M. D. Sarrión Gavilán

Abstract
Let (X, µ) be a σ-finite measure space and let τ be an ergodic
invertible measure preserving transformation. We study the a.e.
convergence of the Cesàro-α ergodic averages associated with τ
and the boundedness of the corresponding maximal operator in
the setting of Lp,q(w dµ) spaces.

1. Introduction

Let (X,F , µ) be a σ-finite measure space and let T be a positive linear
operator on some Lorentz space Lp,q(µ), 1 < p ≤ ∞ and 1 ≤ q ≤ ∞
or p = q = 1 (see [7] for the definition of the Lp,q spaces). For ev-
ery f ∈ Lp,q(µ) and every α ∈ (0, 1], the Cesàro-α averages of the
sequence {T if}∞i=0 and the corresponding Cesàro-α maximal operator
are defined by

Rn,αf =
1
Aαn

n∑
i=0

Aα−1
n−i T

if and Mαf = sup
n∈N

|Rn,αf |,

where Aαn = (α+1)···(α+n)
n! and Aα0 = 1 (see [20] or [6] for the properties

of the coefficients Aαn).
Observe that Rn,1f is the usual average 1

n+1

∑n
i=0 T

if . In this case,
α = 1, and assuming that T is a positive linear contraction on some
Lp(µ), p > 1, M. Akcoglu [1] proved that the averages Rn,1f converge
a.e. for all f ∈ Lp(µ). R. Irmisch [8] generalized Akcoglu’s theorem to
the Rn,α averages, 0 < α < 1. His theorem is the following:
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Theorem A [8]. Let α and p be such that 0 < α ≤ 1 and αp > 1. Let
T : Lp(µ) → Lp(µ) be a positive linear contraction. Then there exists
C > 0 such that ∫

X

|Mαf |p dµ ≤ C

∫
X

|f |p dµ

and Rn,αf converges a.e. for all f ∈ Lp(µ).

In the limit case αp = 1, Y. Deniel [5] gave an example showing that
the theorem does not hold for the functions f in L1/α(µ). This left
open the question of knowing what can be said if αp = 1. Broise, De-
niel and Derriennic [3] obtained that if αp = 1 then a restricted weak
type inequality holds for operators defined by composition with a mea-
sure preserving transformation. As a consequence, the a.e. convergence
of the averages Rn,αf is established for functions f in the Lorentz-
space L1/α,1(µ), which is contained in L1/α(µ). More precisely, they
obtained the following result.

Theorem B [3]. Let (X,M, µ) be a probability measure space and
assume that τ : X → X is a measure preserving transformation. Let
Tf = f ◦ τ . Then the maximal operator Mα applies the Lorentz space
L1/α,1(µ) into L1/α,∞(µ). Furthermore, the sequence Rn,αf converges
a.e. for all f ∈ L1/α,1(µ).

Moreover, in the same paper, they proved that if 0 < α < 1, τ is
ergodic and f /∈ L1/α,1(µ), then there exists a function g with the same
distribution function as f such that the averages Rn,αg do not converge
a.e. Notice that if α = 1 then L1/α,1(µ) = L1(µ) and therefore, in
this case, Theorem B is nothing but the well known weak type (1, 1)
inequality for the ergodic maximal operator and the a.e. convergence of
the usual averages for functions in L1(µ).

As we see, the Lorentz space L1/α,1(µ) plays a key role in the study of
the convergence of the averages Rn,α. Therefore, it is interesting to study
the behaviour of these averages on the Lorentz spaces Lp,q. In this way
we arrive to the goal of this paper: to characterize the boundedness of
the ergodic maximal operator Mα on Lp,q(ω dµ)-spaces and to study the
a.e. convergence of the averages Rn,αf , f ∈ Lp,q(ω dµ), associated with
operators Tf = f ◦ τ where τ is an ergodic invertible transformation, ω
is a positive measurable function and the measure µ is preserved by τ .
Also, we remark that we only consider measures ν of the form dν = ω dµ
because it is known [11] that, if τ is an invertible measurable and
non singular transformation with respect to a finite measure ν, i.e.,
ν(E) = 0 ⇒ ν(τ−1E) = 0, and the averages Rn,1f converge a.e. for
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every f ∈ Lp(dν), then the measure ν is equivalent to a finite measure µ
which is preserved by τ . Having into account that the a.e. convergence
of the averages Rn,αf , 0 < α < 1, implies the a.e. convergence of the
averages Rn,1f (see [20]), the above result remains valid for the case
0 < α < 1.

It is worth noting that the problem we are going to consider here was
studied in [12] in the setting of Lebesgue spaces Lp(ω dµ) = Lp,p(ω dµ)
and for more general operators. Keeping in mind Brunel’s theorem [4],
one could expect that the boundedness of the maximal operator Mα
in Lp(ω dµ) is equivalent to the uniform boundedness in Lp(ω dµ) of
the averages, but this is not the case if 0 < α < 1, as it was shown in
[12]. However, one can consider a countable family of a kind of Cesàro-α
averages for which the equivalence holds. In this paper we prove that the
equivalence holds also in the Lorentz spaces Lp,q(ω dµ) and characterize
in terms of the weight ω the boundedness of Mα in Lp,q-spaces. The
results that we obtain in the case α = 1 can be considered as particular
cases of those ones obtained by P. Ortega in [16] for the averages Rn,1f ,
f ∈ Lp,q(ω dµ).

In order to introduce the kind of Cesàro averages to be considered we
need to state some definitions and results.

Definition 1.1 (Definition 4.1 in [12]). If B is a measurable subset
and x ∈ ∪∞

j=0τ
−jB we define

nB(x) = inf{k ≥ 0 : τkx ∈ B}

and

LB(x) =




sup{j ≥ 1 : τ−1x, . . . , τ−jx /∈ B},
if {j ≥ 1 : τ−1x, . . . , τ−jx /∈ B} �= ∅

0, otherwise.

Observe that LB(x) can take the value +∞.

Definition 1.2 (Definition 4.2 in [12]). If B is a measurable subset
we define the average RB,αf as

RB,αf(x) =




(AαnB(x))
−1

∑nB(x)
i=0 Aα−1

nB(x)−iT
if(x), if x ∈ ∪∞

j=0τ
−jB

0, otherwise.

Notice that

(1.1) sup
B∈F

|RB,αf(x)| ≤ Mαf(x).
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It has been proved in [12, Proposition 4.5] that the equality holds
taking the supremum over a certain countable family B of sets. In what
follows we introduce this family.

Definition 1.3 (Definition 2.8 in [9]). Let k be a natural number.
The measurable set B ⊂ X is said to be the base of an (ergodic) rectangle
of length k + 1 if τ iB ∩ τ jB = ∅ whenever i �= j, 0 ≤ i, j ≤ k. In such
a case the set R = ∪ki=0τ

iB will be called an (ergodic) rectangle with
base B and length k + 1.

The bases of ergodic rectangles have the following nice property:

Proposition 1.1 (Corollaries 2.12 and 2.13 in [9]). Let (X,F , µ)
be a σ-finite measure space which is nonatomic if µ(X) < ∞ and let τ
be an ergodic, invertible measure preserving transformation from X onto
itself. Then for every nonnegative integer k there exists a countable
family of bases of ergodic rectangles of length k+1, {B(k)

n : n ∈ N}, such
that

X = ∪nB(k)
n .

We shall denote by B to the family {τk(B(k)
n ) : k, n ∈ N}.

As a consequence of Proposition 1.1 we obtained in [12] that the fam-
ily B is enough to obtain the equality in (1.1).

Proposition 1.2 (Proposition 4.5 in [12]). With the above nota-
tions and assumptions we have that

sup
B∈B

|RB,αf(x)| = Mαf(x) for almost every x ∈ X.

The paper is organized as follows: we state the main results in section 2
while we establish in section 3 some results for the Cesàro maximal
operator in the integers which are necessary ingredients in the proof
of the theorems. Finally, in section 4 we give the proofs of our results.

We finish this section with some notations that we shall use throughout
the paper. The letter C will mean a positive constant not necessarily
the same at each occurrence and if 1 < p < ∞ then p′ will stand for the
conjugate exponent of p, i.e., p + p′ = pp′. We shall also denote by B
the family {τk(B(k)

n ) : k, n ∈ N}, where {Bkn : n ∈ N} are fixed families
given by Proposition 1.1. If u is a positive function on X the Lp,q norm
of f with respect to u dµ is denoted by ‖f‖p,q;u dµ or simply ‖f‖p,q;u. If
a is a positive function on the integers then ‖f‖p,q;a stands for the Lp,q
norm of the function f on the integers with respect to the measure ν
given by ν({n}) = a(n). Finally, if u is a function on X and x ∈ X then
ux is the function on Z given by ux(i) = u(τ ix).
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2. Main results

Let (X,F , µ) be a σ-finite measure space which is non atomic if
µ(X) < ∞. Let τ : X → X be an invertible ergodic measure pre-
serving transformation and let Mα and Rn,α be the Cesàro-α ergodic
maximal operator and the Cesàro-α averages, respectively, associated
with the operator T defined by composition with τ , i.e., Tf = f ◦ τ .

In Theorem 2.1 we characterize the boundedness of Mα from Lp,q(v dµ)
to Lp,∞(u dµ), 1 ≤ q ≤ p < ∞, where u and v are positive measurable
functions, and we prove that if this boundedness holds then the aver-
ages Rn,αf converge a.e. for all f ∈ Lp,q(v dµ). As in the case p = q which
was studied in [12], the boundedness of Mα is not only equivalent to the
uniform boundedness from Lp,q(v dµ) to Lp,∞(u dµ), 1 ≤ q ≤ p < ∞, of
the countable family of Cesàro-α averages {RB,α : B ∈ B} introduced in
section 1, but also to a condition on the pair (u, v) that we introduce in
the next definition.

Definition 2.1. A pair (u, v) of positive measurable functions on
X verifies the condition A+

p,q;α(τ) (or belongs to the class A+
p,q;α(τ)),

0 < α ≤ 1, 1 < p < ∞ and 1 ≤ q ≤ ∞ or 1 = p = q, if there exists a
positive constant C such that for a.e. x ∈ X

(2.1) ‖χ[0,r]‖p,q;ux‖χ[r,k](vx)−1Aα−1
k−. ‖p′,q′;vx ≤ CAαk ,

for all natural numbers r and k with 0 ≤ r ≤ k, where Aα−1
k−. stands for

the function defined on the integer numbers by Aα−1
k−. (i)=Aα−1

k−i χ(−∞,k](i).
(Keep in mind that the Lp,q norms used in this definition are on Z.)

The condition that we give in Definition 2.1 is equivalent to the ones
obtained changing [0, r] and [r, k], with r and k natural numbers, by
[j, j + r] and [j + r, j + k], respectively, j being every integer number.

If u = v, we shall only say that u satisfies or verifies A+
p,q;α(τ).

Finally, we observe that in the case p = q and u = v = ω the A+
p,q;α(τ)

condition coincides with the condition (3) of Theorem 4.6 in [12] and in
the case α = 1 it is just the condition A+

p,q(τ) introduced by P. Ortega
in [16].

Now we can state Theorem 2.1 which characterizes the weak type
boundedness on certain Lorentz-spaces.
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Theorem 2.1. Let (X,F , µ), τ and B be as above. Let 0 < α ≤ 1,
1 ≤ q ≤ p < ∞ and u and v be positive measurable functions. The
following statements are equivalent:

(i) There exists a positive constant C such that

‖Mαf‖p,∞;u ≤ C‖f‖p,q;v,

for every function f on Lp,q(v dµ).
(ii) There exists a positive constant C such that

sup
B∈B

‖RB,αf‖p,∞;u ≤ C‖f‖p,q;v,

for every function f on Lp,q(v dµ).
(iii) The pair (u, v) satisfies the condition A+

p,q;α(τ).
Furthermore, if any of the above conditions is satisfied, then, for every

f ∈ Lp,q(v dµ), the averages Rn,αf converge almost everywhere.

In the single weight case we have the following theorem which gives
the equivalence between the strong type and the weak type boundedness
of Mα.

Theorem 2.2. Let (X,F , µ), τ , B and α be as in Theorem 2.1. Let
1 < p < ∞, 1 < q < ∞ and ω be a positive measurable function. The
following statements are equivalent:

(i) There exists a positive constant C such that

‖Mαf‖p,∞;ω ≤ C‖f‖p,q;ω,

for every function f on Lp,q(ω dµ).
(ii) There exists a positive constant C such that

sup
B∈B

‖RB,αf‖p,∞;ω ≤ C‖f‖p,q;ω,

for every function f on Lp,q(ω dµ).
(iii) There exists a positive constant C such that

‖Mαf‖p,q;ω ≤ C‖f‖p,q;ω,

for every function f on Lp,q(ω dµ).
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(iv) There exists a positive constant C such that

sup
B∈B

‖RB,αf‖p,q;ω ≤ C‖f‖p,q;ω,

for every function f on Lp,q(ω dµ).
(v) ω satisfies the condition A+

p,q;α(τ).
(vi) ω satisfies the condition A+

p;α(τ), i.e., ω satisfies the condi-
tion A+

p,p;α(τ).

As we said above, we need some notation and several previous results
for the proof of these theorems. The next section is devoted to state
them.

3. Previous results

The results that we are going to need are those ones which charac-
terize the boundedness of the maximal operator m+

α associated with the
Cesàro-α averages of functions on the set of the integer numbers.

Definition 3.1. Let 0 < α ≤ 1. If a is a real-valued function on Z,
we define the Cesàro-α maximal function m+

αa by

(3.1) m+
αa(i) = sup

n≥0

1
Aαn

∣∣∣∣∣∣
n∑
j=0

Aα−1
n−ja(i + j)

∣∣∣∣∣∣ , i ∈ Z.

Definition 3.2. A pair (u, v) of positive functions on Z verifies the
condition A+

p,q;α(Z) (or belongs to the class A+
p,q;α(Z)), 0 < α ≤ 1,

1 < p < ∞ and 1 ≤ q ≤ ∞ or 1 = p = q, if there exists a positive
constant C such that

(3.2) ‖χ[r,s]‖p,q;u‖χ[s,k]v
−1Aα−1

k−. ‖p′,q′;v ≤ CAαk ,

for every integer numbers r, s and k with r ≤ s ≤ k.

Lemma 3.1 ([18]). Let u and v be two positive functions on Z. Let
1 ≤ q ≤ p < ∞ and 0 < α ≤ 1. Then the following statements are
equivalent:

(i) There exists a positive constant C such that

‖m+
αa‖p,∞;u ≤ C‖a‖p,q;v,

for every function a defined on Z.
(ii) The pair (u, v) satisfies the condition A+

p,q;α(Z).

In the case of equal weights we have:
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Lemma 3.2 ([18]). Let ω be a positive function defined on Z. Let
1 < p < ∞, 1 < q < ∞ and 0 < α ≤ 1. Then the following statements
are equivalent:

(i) There exists a positive constant C such that

‖m+
αa‖p,∞;ω ≤ C‖a‖p,q;ω,

for every function a defined on Z.
(ii) There exists a positive constant C such that

‖m+
αa‖p,q;ω ≤ C‖a‖p,q;ω,

for every function a defined on Z.
(iii) ω satisfies the condition A+

p,q;α(Z), i.e., the pair (ω, ω) satisfies
the condition A+

p,q;α(Z).

(iv) ω satisfies the condition A+
p;α(Z), i.e., ω satisfies A+

p,p;α(Z).

Lemma 3.1 and Lemma 3.2 are particular cases of Theorems 2.7 and
2.16 in [18], respectively.

The next result states a relationship between the classes A+
p;α(Z) and

the classical ones A+
p (Z) = A+

p;1(Z); it gives also the analogue in our
setting of the implication ω ∈ A+

p (Z) ⇒ ω ∈ A+
p−ε(Z) (see [15], [19],

[13] and [10]).

Lemma 3.3 (Lemma 2.4 in [12]). Let ω be a positive function on
Z. Let 0 < α ≤ 1 and p > 1. We have:

(1) If ω ∈ A+
p;α(Z) with a constant C, then there exists ε > 0, which

depends only on C, such that ω ∈ A+
p−ε,α(Z). Furthermore, ω is

also an A+
p (Z)-weight with the same constant C.

(2) If αp > 1 and ω ∈ A+
αp(Z), then ω is also in A+

p;α(Z).

For the proof, just look at the corresponding proof in [14] and write
it in the setting of the integer numbers.

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1: The proof of this theorem follows the idea of
the proof of Theorem 3 in [16]. For the proof of (ii) ⇒ (iii) we shall need
the following lemma which is based on Lemma 10 in [16]. Its proof is
similar to Ortega‘s lemma and will be omitted.
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Lemma 4.1. Let 0 < α ≤ 1, s, k ∈ N with s ≤ k and let B be a
measurable set. For every x ∈ B and n ∈ Z, let Hxn = {i ∈ [s, k] :
v−1(τ ix)Aα−1

k−i > 3n}. Let G be the collection of all decreasing sequences
in Z ∪ {−∞} with at most 2k−s+1 different terms and at least one term
in Z. If γ = {γn} ∈ G, let GBγ be the set defined as follows

GBγ =


x ∈ B : Hxn = ∅ if γn = −∞ and

2γn <
∑
j∈Hx

n

v(τ jx) ≤ 2γn+1 if γn �= −∞


 .

Then {GBγ }γ∈G is a countable family of pairwise disjoint sets and
∪γ∈GGBγ = B.

The implication (i) ⇒ (ii) is clear.

Proof of (ii) ⇒ (iii): Let r, k ∈ N with r ≤ k and let {B(k)
n }n∈N be

the sequence of bases of ergodic rectangles of length k + 1 associated
with X and k by Proposition 1.1. For fixed Bi = B

(k)
i , let {GBi

γ }γ∈G be
the decomposition of Bi for s = r given by Lemma 4.1 and, for every
(n0, n1, . . . , nk) ∈ Z

k+1 and every γ ∈ G, let us consider the set

Hγn0,n1,... ,nk
= {x ∈ GBi

γ : 2nj < v(τ jx) ≤ 2nj+1, j = 0, 1, . . . , k}.

It is clear that the sets Hγn0,n1,... ,nk
are measurable and pairwise disjoint

sets with union equals GBi
γ .

We will prove that for fixed (n0, n1, . . . , nk) and γ, and almost every
x ∈ Hγn0,n1,... ,nk

, the pair (u, v) satisfies condition (2.1) with a constant C
independent of Hγn0,n1,... ,nk

. Then, since ∪(n0,n1,... ,nk)H
γ
n0,n1,... ,nk

=
GBi
γ , ∪γGBi

γ = Bi and ∪iBi = X, we shall have that condition (2.1)
is satisfied for almost every x ∈ X with a constant C independent of x
and, therefore, the pair (u, v) satisfies the condition Ap,q;α(τ).

We shall start proving that given Hγn0,n1,... ,nk
, then for every measur-

able subset E of Hγn0,n1,... ,nk
we have

(4.1)
∥∥∥χ∪r

j=0τ
jE

∥∥∥
p,q;u

∥∥∥∥∥∥
k∑
j=r

χτjEv
−1Aα−1

k−j

∥∥∥∥∥∥
p′,q′;v

≤ CAαkµ(E),

with a constant C independent of E and Hγn0,n1,... ,nk
.
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The proof of (4.1) is based on (ii) and uses the following inequality

(4.2)

∥∥∥∥∥∥
k∑
j=r

χτjEv
−1Aα−1

k−j

∥∥∥∥∥∥
p′,q′;v

≤ Cµ(E)1/p
′ ∥∥χ[r,k]ω

−1Aα−1
k−.

∥∥
p′,q′;ω

,

where ω is the function defined on Z by ω(j) = 2njχ[r,k](j) and the
constant C is independent of E and Hγn0,n1,... ,nk

.

Proof of 4.2: Using the definitions of ‖ ‖p′,q′;v and Hγn0,n1,... ,nk
, we

have that, for q′ < ∞,

∥∥∥∥∥∥
k∑
j=r

χτjEv
−1Aα−1

k−j

∥∥∥∥∥∥
p′,q′;v

=


q′∫ ∞

0

(∫
{x∈X:

∑k

j=r
χτjE(x)v−1(x)Aα−1

k−j
>y}

v(x) dµ(x)

)q′/p′
yq

′−1 dy




1/q′

=


q′ ∫ ∞

0


 k∑
j=r

∫
{x∈τjE:v−1(x)Aα−1

k−j
>y}

v(x) dµ(x)



q′/p′

yq
′−1 dy




1/q′

=


q′

∫ ∞

0


∫

E

∑
{j∈[r,k]:(vx)−1(j)Aα−1

k−j
>y}

vx(j) dµ(x)



q′/p′

yq
′−1 dy




1/q′

≤


q′

∫ ∞

0


∫

E

∑
{j∈[r,k]:2−njAα−1

k−j
>y}

2nj+1 dµ(x)



q′/p′

yq
′−1 dy




1/q′

= 21/p′µ(E)1/p
′


q′

∫ ∞

0


 ∑

{j∈[r,k]:2−njAα−1
k−j
>y}

2nj



q′/p′

yq
′−1 dy




1/q′

= 21/p′µ(E)1/p
′ ∥∥χ[r,k]ω

−1Aα−1
k−.

∥∥
p′,q′;ω
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and, for q′ = ∞,

∥∥∥∥∥∥
k∑
j=r

χτjEv
−1Aα−1

k−j

∥∥∥∥∥∥
p′,∞;v

= sup
y>0

y


∫

E

∑
{j∈[r,k]:(vx)−1(j)Aα−1

k−j
>y}

vx(j) dµ(x)




1/p′

≤ sup
y>0

y


∫

E

∑
{j∈[r,k]:2−njAα−1

k−j
>y}

2nj+1 dµ(x)




1/p′

= 21/p′µ(E)1/p
′ ∥∥χ[r,k]ω

−1Aα−1
k−.

∥∥
p′,∞;ω

.

This finishes the proof of (4.2).

Now, using an argument of duality, we obtain that there exists ω′ ≥ 0
with ‖ω′‖p,q;ω = 1 such that

(4.3)

‖χ[r,k]ω
−1Aα−1

k−. ‖p′,q′;ω ≤ C

+∞∑
j=−∞

χ[r,k](j)ω−1(j)Aα−1
k−j ω

′(j)ω(j)

= C

k∑
j=r

ω′(j)Aα−1
k−j .

It follows from (4.2) and (4.3) that

(4.4)

∥∥∥∥∥∥
k∑
j=r

χτjEv
−1Aα−1

k−j

∥∥∥∥∥∥
p′,q′;v

≤ Cµ(E)1/p
′
k∑
j=r

ω′(j)Aα−1
k−j .

Let f be the function defined on X by

(4.5) f(x) =
k∑
j=r

ω′(j)χτjE(x).
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For this function, the inequality

(4.6) ‖f‖p,q;v ≤ Cµ(E)1/p

can be proved as in [16]. We have also that

(4.7) ∪rj=0τ
jE ⊂


x ∈ X : RB,αf(x) >

1
Aαk

k∑
j=r

ω′(j)Aα−1
k−j


 ,

where B = τk(Bi) (the proof is given below).
Using (4.7) and the weak type boundedness of the operator RB,α with

a constant C independent of B, we obtain

(4.8)

∫
∪r

j=0τ
jE

u dµ ≤ C
(Aαk )

p(∑k
j=r ω

′(j)Aα−1
k−j

)p ‖f‖pp,q;v

≤ C
(Aαk )

p(∑k
j=r ω

′(j)Aα−1
k−j

)pµ(E),

where we have used (4.6) for the last inequality. Finally, (4.8) together
with (4.4) give (4.1).

In order to prove (4.7) we observe that if B = τk(Bi), then
nB(x) = k − j for x ∈ τ jE, 0 ≤ j ≤ r. Therefore, for fixed j, 0 ≤ j ≤ r,
and for each x = τ jy with y ∈ E, we have

RB,αf(x) =
1

Aαk−j

k−j∑
s=0

Aα−1
k−j−sf(τ j+sy)

=
1

Aαk−j

k∑
s=j

Aα−1
k−s f(τ sy)

≥ 1
Aαk−j

k∑
s=r

Aα−1
k−s f(τ sy)

=
1

Aαk−j

k∑
s=r

Aα−1
k−sω

′(s)

≥ 1
Aαk

k∑
s=r

ω′(s)Aα−1
k−s .

Consequently, (4.7) holds and, hence, the proof of (4.1) is finished.
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Notice that (4.1) can be written in the following way

(4.9)
∫
E

r∑
j=0

u(τ jx) dµ(x)




1/p

q′∫ ∞

0


∫

E

∑
j∈Hx

y

v(τ jx) dµ(x)



q′/p′

yq
′−1 dy



1/q′

≤ CAαkµ(E),

where Hxy is defined by Hxy = {j ∈ [r, k] : v−1(τ jx)Aα−1
k−j > y}. Now,

using (4.9), we shall obtain

(4.10)
∫

E

r∑
j=0

u(τ jx) dµ(x)



p′/p∫

E


q′∫ ∞

0


 ∑
j∈Hx

y

v(τ jx)



q′/p′

yq
′−1 dy



p′/q′

dµ(x)

≤ C (Aαk )
p′
µ(E)p

′

and this will finish the proof.

Keeping in mind (4.9), it is clear that (4.10) will follow from

(4.11)
∫
E


q′ ∫ ∞

0


 ∑
j∈Hx

y

v(τ jx)



q′/p′

yq
′−1 dy



p′/q′

dµ(x)

≤ C


q′ ∫ ∞

0


∫

E

∑
j∈Hx

y

v(τ jx) dµ(x)



q′/p′

yq
′−1 dy




1/q′

.

Consequently, it remains to prove (4.11). This is what we do now.
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Proof of (4.11): We have

∫
E


q′ ∫ ∞

0


 ∑
j∈Hx

y

v(τ jx)



q′/p′

yq
′−1 dy



p′/q′

dµ(x)

≤
∫
E


q′

∞∑
n=−∞

∫ 3n+1

3n


 ∑

{j∈[r,k]:v−1(τjx)Aα−1
k−j
>3n}

v(τ jx)



q′/p′

yq
′−1 dy



p′/q′

dµ(x)

=C

∫
E


q′

∞∑
n=−∞

∫ 3n

3n−1


 ∑

{j∈[r,k]:v−1(τjx)Aα−1
k−j
>3n}

v(τ jx)



q′/p′

yq
′−1 dy



p′/q′

dµ(x).

Then, since E is a subset of GBi
γ , we obtain

∫
E


q′ ∫ ∞

0


 ∑
j∈Hx

y

v(τ jx)



q′/p′

yq
′−1 dy



p′/q′

dµ(x)

≤ C

∫
E

[
q′

∞∑
n=−∞

∫ 3n

3n−1
2(γn+1)q′/p′yq

′−1 dy

]p′/q′
dµ(x)

= C

[
q′

∞∑
n=−∞

∫ 3n

3n−1

(∫
E

2γn dµ(x)
)q′/p′

yq
′−1 dy

]p′/q′

≤ C


q′

∞∑
n=−∞

∫ 3n

3n−1


∫
E

∑
{j∈[r,k]:v−1(τjx)Aα−1

k−j
>3n}

v(τ jx) dµ(x)



q′/p′

yq
′−1 dy



p′/q′

≤ C


q′ ∫ ∞

0


∫

E

∑
j∈Hx

y

v(τ jx) dµ(x)



q′/p′

yq
′−1 dy



p′/q′

.

Consequently, (4.11) is proved and, hence, the proof of (ii) ⇒ (iii) is
finished.
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Proof of (iii) ⇒ (i): Let L ∈ N and let Mα,L be the truncated maximal
operator defined by

Mα,Lf(x) = sup
m≤L

1
Aαm

m∑
i=0

Aα−1
m−i|f(τ ix)|, x ∈ X.

Let f be a nonnegative measurable function defined on X and let
L and N be natural numbers and λ a positive real number. Let
Oλ = {x ∈ X : Mα,Lf(x) > λ}. Then,

(4.12)

∫
Oλ

u(x) dµ(x) =
∫
X

1
N + 1

N∑
j=0

χτ−jOλ
(x)u(τ jx) dµ(x)

=
∫
X

1
N + 1

∑
{j∈[0,N ]:Mα,Lf(τjx)>λ}

ux(j) dµ(x)

≤
∫
X

1
N + 1

∑
{j∈[0,N ]:m+

α (fxχ[0,N+L])(j)>λ}

ux(j) dµ(x),

where m+
α is the maximal operator associated with the Cesàro averages

of order α of functions on Z.
The condition A+

p,q;α(τ) is the same as saying that the pairs (ux, vx)
satisfy the condition A+

p,q;α(Z) for almost every x ∈ X with a constant
independent of x. Hence,

(4.13)
∑

{j∈Z:m+
α (fxχ[0,N+L])(j)>λ}

ux(j) ≤ C

λp
‖fxχ[0,N+L]‖pp,q;vx .

Then (4.13) and (4.12) imply

(4.14) u(Oλ) =
∫
Oλ

u(x) dµ(x)

≤ C

λp

∫
X

1
N + 1

‖fxχ[0,N+L]‖pp,q;vx dµ(x).

Now, using the definitions of the Lp,q-norm and Minkowski’s integral
inequality, we obtain

(4.15) u(Oλ)

≤ C

λp
1

N + 1


q

∫ ∞

0


∫

X


 ∑
{j∈[0,N+L]:fx(j)>y}

vx(j)


 dµ(x)



q/p

yq−1 dy



p/q

.
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Since τ preserves the measure µ, the right-hand side of (4.15) equals to

C

λp
1

N + 1

(
q

∫ ∞

0

(
(N + L + 1)

∫
X

v(x)χ{z:f(z)>y}(x) dµ
)q/p

yq−1 dy

)p/q

=
C

λp
N + L + 1
N + 1

‖f‖pp,q;v.

Consequently, we have

u(Oλ) ≤ Cλ−p(N + L + 1)(N + 1)−1‖f‖pp,q;v.

Letting N tend to ∞ and then letting L tend to ∞, we obtain

u
(
{x : M+

α f(x) > λ}
)
≤ C

λp
‖f‖pp,q;v,

that is,

‖M+
α f‖p,∞;u ≤ C‖f‖p,q;v.

This finishes the proof of (iii) ⇒ (i).

Remark 1. We remark that the implications (i) ⇒ (ii) and
(ii) ⇒ (iii) in Theorem 2.1 hold also for 1 < p < ∞ and 1 < q < ∞.

Finally, assume that one of the conditions (i), (ii) and (iii) holds. In or-
der to prove that the averages Rn,αf converge a.e. for all f ∈ Lp,q(v dµ),
it is enough to establish the convergence for a dense subset of Lp,q(v dµ).
We can take the subset D = Lr(µ) ∩ Lp,q(v dµ), r > 1/α. The set D
is clearly dense and, in virtue of Irmish’s theorem, the averages Rn,αf
converge a.e. for all f ∈ D.

Proof of Theorem 2.2: The implications (i) ⇒ (ii), (iii) ⇒ (iv),
(iv) ⇒ (ii) and (iii) ⇒ (i) are clear. The equivalence between (v) and (vi)
is contained in Lemma 3.2. The implication (ii) ⇒ (v) is contained in
Theorem 2.1 (see the above remark). Finally, the fact that ω ∈ A+

p,α(τ)
implies ω ∈ A+

p−ε,α(τ) for some ε > 0 with p − ε > 1 (Lemma 3.3, (1)),
Theorem 2.1 ((iii) ⇒ (i)) and Marcinkiewicz’s interpolation theorem al-
low us to prove that (vi) ⇒ (iii).
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