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FLUCTUATIONS OF BROWNIAN MOTION
WITH DRIFT

JOoserPH G. CONLON* AND PEDER OLSEN**

Abstract

Consider 3 dimensional Brownian motion started on the unit
sphere {|z| = 1} with initial density p. Let p; be the first hit-
ting density on the sphere {|z| = ¢t + 1}, ¢ > 0. Then the linear
operators Tt defined by T; p = p¢ form a semigroup with an in-
finitesimal generator which is approximately the square root of the
Laplacian. This paper studies the analogous situation for Brow-
nian motion with a drift b, where b is small in a suitable scale
invariant norm.

Chapter 1. Introduction

In two previous papers [CR], [CO] we studied the Dirichlet problem
for an elliptic equation on a domain in R3. Let Bg be the ball of radius R
in R? centered at the origin, 0 < R < co. Consider the problem

(=A=b(z) - Vu(z) = f(x), € Bg,
(1.1)
u(z) =0, x € 0Bg.

A function ¢ : R® — C is said to be in the Morrey space Mg,
1 <p<gq< oo, if |g|P is locally integrable and there is a constant C
such that

(12 [ 1ol do < criqrern,
Q

for all cubes @ C R3. Here |Q| denotes the volume of Q. The norm of
g, |19llq.p is defined as the minimum C for which (1.2) holds. In [CR] we
proved the following:
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Theorem 1.1. Suppose 1 <r <p <gq, 1 <p <3, and |b| € M},
f € M2, for some q with ¢ > 3/2. Then there exists ¢ > 0 depending
only onr, p, q such that if ||b||s , < € then the Dirichlet problem (1.1) is
solvable. Further, there is a constant C' depending only on r, p, q such
that the solution u of (1.1) satisfies the inequality,

lulloe < CR*/9)|£]lg,r.

The condition ||bls, small for some p, 1 < p < 3, includes the two
important cases when |b(x)| = €/|z| and |b] € L3(R3), ||bllz = ¢,
€ < 1. Theorem 1.1 is a perturbative result. Writing the solution of
(1.1) as a perturbation series in b one can show that the series converges
if [|bl|s,p, <« 1. Observe also that Theorem 1.1 is a scale invariant the-
orem. The result for general R can be obtained by a scaling argument
from the result for a particular value of R. Since all the results in this
paper have the same scaling property we shall take R = 1/4 from here
on.

It is well known [SV] that the solution of the Dirichlet problem (1.1)
has a representation as an expectation value with respect to Brownian
motion with drift b. Let Xy(t), t > 0, denote the drift process started
at time 0. If Xy,(0) € By let 7 be the minimum time ¢ such that
Xp(t) € 0By /4. Then the solution u of (1.1) is given by

(@) = E, UO F(Xu(8) dt} . xeBy,

where E, denotes that the expectation value is taken conditioned on
Xp(0) = z. Theorem 1.1 tells us therefore something about the behavior
of the diffusion process Xy (t) when ||bljs, < 1. It gives us similar
estimates on the expected time the diffusion spends in a subset of By /4
before exiting OB, /4 to those one has for standard Brownian motion.

In [CO] we proved a nonperturbative version of Theorem 1.1, allowing
b to be only locally in a Morrey space M;’ with small norm. A key
ingredient in the proof of this theorem was the fact that the fluctuations
of Xp(t) did not increase as ¢ increases, provided ||bl|s, < 1. To be
specific, suppose 0 < p < 1/2; and the process Xy(t) starts on the
sphere 0B(1_,)/4 with initial density function f, and f,p is the first
hitting density on the sphere 0By ,4. It is evident, by conservation of
probability, that the average value of f is the same as the average value
of fop, Avf = Avf,p. In [CO] we proved the following:
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Theorem 1.2. Suppose 0 < p < 1/2 and 1 < p < 3. Consider f
and f,p to be functions on the unit sphere S, with f € L*(S). Then for
d > 0 there exists €, depending only on p, p, & such that, if ||b|lz, < €
and || f — Avf|2 < 8|Avf]|, one has f,» € L*(S) and || fop — Avfpbll2 <
§|Avfyb

It is easy to see that Theorem 1.2 holds uniformly in p as p — 0 for the
case of Brownian motion, b = 0. Since b with ||b||3, < 1 is perturbative
to Brownian motion it is natural to expect a similar uniformity when
Ibl|s,p is small. In this paper we prove a uniform version of Theorem 1.2.
We cannot however use the L? norm to measure the oscillation of f and
fo,b. We must use a finer norm which weights high Fourier modes more
than low Fourier modes. This subtlety is closely related to the extra
complication in the proof of Theorem 1.2 over Theorem 1.1. To prove
Theorem 1.1 one shows that a certain integral operator is bounded on
Morrey spaces. To prove Theorem 1.2 one needs to know that this same
integral operator is bounded on a weighted Morrey space, where the
weight of a point z € By /4 decreases as x gets close to 0By 4.

To define our new norm on functions f with domain S, let Ag be
the Laplace operator on the unit sphere. For k& = 1,2,..., let E} be
the L? projection operator onto the space spanned by the eigenfunctions
of —Ag with eigenvalues A\? satisfying 281 < X\ < 2F. Let Ej be the
projection onto the constant function. For f : S — C and v > 0 we
define | f]|s., by

12,0 = sup 2" || Ep.f 2.
k>0
We then have the following:

Theorem 1.3. Suppose 0 < p < 1/2, 1 < p < 3, and v > 0 is
sufficiently small, depending only on p. Then for 6 > 0 there exists € > 0
depending only on p, § such that if |b||s , < € and || f—Avf||2,, < |Avf],
one has || foo — Avfopll2 < 0lAvf, bl

We consider the relationship between the proof of Theorem 1.1 and
the proof of Theorem 1.2. Let Gp be the Dirichlet Green’s function for
—A on By, whence Gp is given explicitly by the formula,

1 1 1
drjz —y|  167ly| [z —g[’

GD(xay) =

where ¥ is the reflection of y in B, /4. Let T' be the integral operator
on functions with domain By /4 given by

(13)  Tf()= /B b(z) - V.Gp(z.y) f(y) dy, =€ Byja.
1/4
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It was shown in [CR| that Theorem 1.1 is a consequence of the fact
that T is a bounded operator on the Morrey space M with norm,
IT||, satisfying ||| < C|bls, for some constant C' depending only
onp,q,r.

For g a function with domain 0B, ,4 let v(y) = Pg(y), y € B1,4, be
the solution of the Dirichlet problem,

Av(y) =0, Y € By,

v(y) =g(y), y € IBiya.
The function v is given explicitly by the Poisson formula,

1 1/16 — |y|?
(1.4) Pg(y) = —/ ——————g(x)dr, y €& Byyy.
T JoBi 4 ly — x[3 Y

We can formally define an integral operator (Q on the functions g by
(15) Qo) = [ dyGole.)I~1)"b-TPy), € Buya
Biy

where T is given by (1.3). This operator induces an operator on functions
with domain S as follows: Let f : S — C and denote also by f the
function with domain 9B, /4 naturally induced by f. Consider now the
function Q, f with domain 0B(;_ /4 defined by

(1.6) Quf(z) =Qf(z), z€IBu_p)

We can think of (),f as a function with domain S, whence @, is an
operator on functions with domain S. In [CO] we proved that @, is a
bounded operator on L?(S), 0 < p < 1/2, with norm ||Q,| satisfying
1Q,ll < C|bll3,p for some constant C' depending only on p, p, provided
IIblls,, < € for some € depending only on p. Theorem 1.2 is a consequence
of this fact.

Observe that the proof of Theorem 1.2 must be more difficult than
the proof of Theorem 1.1 since in the definition of ), one assumes that
the inverse (I —T)~! exists. To prove Theorem 1.3 we need to know not
only that @, is bounded on L?(S) for 0 < p < 1/2 but also to have a
bound which is uniform as p — 0. Let (,) denote the scalar product on
L?(S). In section 2 we prove the following:
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Theorem 1.4. Let 0 < p < 1/2, 1 < p < 3. Then there exists C,
€ > 0 depending only on p, such that

[(£; Qo) < C|Ib

3.0l fl12llg]l2,

provided ||b|ls, <e€, f, g € L*(S).

In order to prove Theorem 1.3 we need to know more detailed proper-
ties of (), than those given in Theorem 1.4. In particular we must know
that if @), acts on a slowly varying function g then the slowly varying
component of (),g has norm bounded linearly in p as p — 0. We also
need to know that if g is highly oscillatory then the slowly varying com-
ponent of Q,g has small norm. These properties of (), are summarised
in the following:

Theorem 1.5. Let 0 < p < 1/2, 1 < p < 3. Then there exists C, e,
1 > 0 depending only on p such that ||b||s, < € implies that

(Ew f, QpErg)| < Cl[bllsp || Ex f 2]l Erglle min[p2*, 1] min[27* =9 1]

0<k, K < oo.

We prove Theorem 1.5 in section 3. Theorem 1.3 is a simple conse-
quence of Theorems 1.4 and 1.5. It is proved in section 4.

Chapter 2. Configuration Space Localization

To prove Theorem 1.4 we shall modify the proof in [CO] so that the
estimates are uniform in p as p — 0.

Define an operator A on functions g with domain Sy ,4 = {|z| = 1/4}
by

(2.1) Ag(y) = [b(y)|?Pg(y), |yl <1/4.

Proposition 2.1. A is a bounded linear operator from L2(51/4) to
L2(31/4). There is a constant C' depending only on p > 1 such that

1/2
1Al < Cl[b]32
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We shall prove Proposition 2.1 by following the general lines of the
proof of Theorem 1.2 of [CR]. If a function u is defined on the sphere Sy /4
then Aw is defined on the ball By /4. Let Qg be a cube with side of length 1
and for n = 1,2,... let @, be the dyadic subcubes of Q¢ with side of
length 27". We define ug, as follows:

ug, =0 if Qn N Sy/4 is empty,

uQ, = |Qn|_2/3/ |u(x)|dz, otherwise.
Qnmsl/4

For ¢ € R3 let Qp(&) be the unit cube centered at & with corresponding
dyadic subcubes @,,(£). We then have the following:

Lemma 2.1. There exists a universal constant C' such that

(2.2) /B Au(y)[? dy
1/4

DY ugzn(a/ ()|b(y)|dy'

Bia n=0 Qu(e)cQo(® @nle
Proof: We have from the definition (2.1) that

1

L 1oy
Auy) = bl g [ T
167 31/4

ly —z[3

u(zx) dz.
We estimate Au(y) in the annulus
1 —m 1 —(m+1)
R, = y:Z(l—Q )§|y|<1(1—2 Yp, m=0,1,2,....
Thus

Au(y)| < C by /223 9 /S ()| de,
n=0

1yan{lz—y|<2-"—1}

for some universal constant C. Choosing a > 0 and applying the Schwarz
inequality to the RHS of the previous expression we have

| Au(y)[”

< Co [b(y)| 27217y " 22@en l/ lu(z)|dz|
n=0 S

1/an{lz—y[<27 "1}
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for some constant C,, depending only on . Thus

[ auwPa =Y [ 1P
Bi/a m=0" Bm

<co 3 wmmpsn [ g

0<n<m<oo B

2
S1/an{lz—yl<2-n-1}

Let U, = USS_,, Ry, n > 0. Then it is clear from the previous expression
that if a < 1 there is a constant C, depending only on « such that

[ Py <. an
Biy

n=0

where

2
an =/ dy|b(y)| [22"/ |U($)|d$] :
U, S1/an{lz—y|<27"~1}

n

It is clear now that there exists a universal constant C' such that
m<C[ d Y O s nxo
Bia Qu(e)cQu(e) Qn(®)
The result follows then from the last two inequalities. B

Next we shall show that for fixed £ the RHS of (2.2) is bounded by
the L? norm of w.

Lemma 2.2. Let Qq be a cube in R® with side of length 1 and dyadic
subcubes Q,, with side of length 2™, n=1,2,.... Then there is a con-
stant C' depending only on p > 1 such that

(2.3) SO @, /Q b(y)| dy < C [blla.p [[ull2

n=0 Q,CQo

Evidently Proposition 2.1 follows from Lemma 2.1 and Lemma 2.2.
Observe that for fixed n one has

S, / bwldy< Y ud, [bls,2 2"
QnCQo @n QnCQo
<Clbls, 3 () ? de

QnCQo ’ @nNS1/4

< Cbllsp [lull3,
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for some universal constant C. In order to do the summation with respect

to n in (2.3) we need to resort to a Calderon-Zygmund decomposition.
First we have

Lemma 2.3. Let Q' be a cube in R® with side of length 27 "<, where
ng: s a nonnegative integer. Suppose for some € > 0 one has |Q|° ug <
|Q'|F ug: for all dyadic subcubes Q of Q'. Then if € is sufficiently small
there exists a constant C' depending only on p > 1 such that

Sy [ 1Dy < C by Q1
Qcq’ Q

Proof: We have for fixed n > ng,

QTI,CQ/ n
< 26(nmnas2, > b(y)| dy
{Qn:QnCQ, QuNSy a0} ¥ On
<o, [ ()| dy
Q'N{y:1>|y|>1-2-"+/3}

1-1/p
< 26("_”62’)51%, meas (Q’ N{y:1>yl>1- 2_”\/3})

I b

< CQG("L—TLQ/)E UEQ’ (2—2nQ, Q—n) 171/P||b| . |Ql|1/p_1/3

=C|blzp \Q/P/?’ ué, 2(71_”@’)(65‘1'1/?—1)’

where C' is a universal constant.
If we now choose ¢ to satisfy € < (1 —1/p)/6, then we have

(o9}
Sy [ )y < C bl QP Y 20 na oot
QCQ’ Q n=ng/

< Gy [Ibllsp QP udy,

where the constant C,, depends only onp > 1. B
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Let Qo be a unit cube in R®. We make a Calderon-Zygmund decom-
position of Qg based on the criterion in Lemma 2.3. In particular we
define a sequence of families F; of dyadic subcubes of Qo, j =0,1,2,...
as follows: Fy = {Qo}. Let G; C Qg be defined as

G1={z € Qo : |Q uq < |Qol" ug,
for all dyadic subcubes @ of Qg with z € Q}.

Then there is a unique finite family F7 of disjoint dyadic subcubes of Qg
such that

U @=@Qu\Gi.

QeF

Proceeding by induction as in section 2 of [CR], we can construct sets
G; and families F;, j > 1, with the properties

(a) U2, G; = Qo.

(b) Ungk Q= QO\U?:1 Gj-

(c) For any Q € Fp let Q € Fr_1 be the unique dyadic subcube
containing ). Then

|QIF uq > QI uq-

It is clear now from Lemma 2.3 that there is a constant C' depending
only on p > 1 such that

S 3w, [ Ildy<Clbla, Y S 0P v,

n=0 QnCQo Jj=0 QEF;

The proof of Lemma 2.2 will be complete if we can show

Lemma 2.4. There exists a constant C' depending only on p > 1 such
that

(2.4) SN QI ug < Cllull3.

7=0 QE]'-J'
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Proof: We shall assume without lost of generality that ||u]|e < oo.
Hence there exists an integer ¢ > 1 such that F; is empty, whence

Let us consider a particular @ € F;, 0 < j <t — 1. It is evident that

Qc |J Gm.

m=j+1

We wish to estimate the ratio |Q NG, N Sy/4]/|Q|?/3 for m > j+1. We
have now

t
QP ug = / OEDS / ju dx
QNS1/4 i—m

QNGiNSy/4

- Y 0wz Y e () w

Qe]:mfvaCQ Qe]'—mfvaCQ

> 23(777,7‘]-71)6 ug Z |Q|2/3
QEFm-1,QCQ

t
QnJGinSiu

i=m

> ¢3(m—i—1)e uo

)

for some universal constant ¢ > 0. We conclude therefore that
QN G N S1yal /|QPP < 7t 3mmd e,

Next we write

2
QP2 = Q3 / |u|dx]
QNS1/4

r 2
t

e > ul da
m:j+1 QﬂGmmS1/4

t t

2
S P A V “'d””] |
QNGmNS1/a

m=j+1 m=j+1
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for any positive sequence a,,. We choose a,, to be given by

) 1/2
am = [(3/2°D1Q N G 01 Syl /1QPP]

Then, in view of the last two inequalities we have

[ ¢ 9\ 3(m—i—1)e 2
e <c Y (3) QNG,unS1l ! [ / |u|dx] ,
QNGmNS1 /4

m=j5+1

for some constant C' depending only on € > 0. We conclude then that

23 2 t 9 3(m—j—1)e )
Y QPPuy <C D (—) / |u)? da.
@ 3 GmNS1/4

QEF; m=j+1

Now if we sum this last inequality with respect to 7 and use the fact that
the sets G; are disjoint we obtain the inequality (2.4). ®

We return now to the operator ), of (1.6). The proof in section 4 of
[CO] that Q, is a bounded operator on L? had three ingredients. The
first stage was to show that the function b-V Pg with domain B, 4 is in

an appropriate Morrey space, This Morrey space, M2 2(81 /4), is defined
to be the set of functions h : By,4 — R such that

/ (1/4 — [yl)"|h(y)|" dy < CTIQ2>73,
QNBy 4

on all cubes Q. The norm of A, ||Al3/2,,, is the minimum C satisfying the

previous inequality. It was shown in [CO] that b-V Pg is in Mf/2(31/4)
provided r satisfies /(2 — r) < p. We see now how this follows from
Proposition 2.1. By the Harnack inequality there is a constant C' such
that

(1/4 = lyN)[b(y) - VPg(y)| < C[b(y)||Pg(y)|

= C|b(y)|"/? |Ag(y)], |y < 1/4.

Hence for any cube ) one has

/ (1/4 — [y))"[b(y) - VPg()]" dy
QNBy 4

/31/4 Ag(y)|2dy] " UQIb(y)T/@‘” dy}

T T r/2 —2r
< CIA|" llglls I3/ Q=273

1-r/2
<C

< Cillgllz Ibll5, 1QI>2.

3,p
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If follows that if /(2 —r) < p the function b-V Pg is in M;/*(By/4) and
b VPgll3/2,- < Clbllsp [|gll2

for some constant C' depending only on p > 1.

The second stage was to prove that, for T' the integral operator given
by (1.3), the function (I — T)~'b - VPg is also in MS/Q(BIM). Thus
the perturbation due to the integral operator T is small in the sense
that it preserves the space in which b-V Pg lies. We shall do something
analagous here. For y € R? let us define a vector n(y) by

n(y) =0 if b(y) = 0.
=Db(y)/|b(y)| otherwise.

Evidently one has |n(y)| < 1 for all y € R3. Let Ty, be the integral
operator on functions with domain By /4 which has kernel

|b(x)|1/2n(:r) : VEGD(xuy)|b(y)|l/2v T,y e Bl/4~
Then we may formally write
(I=T)""b-VPy(y) = [b(y)|"*(I = Teym) ' [b|'"*n-VPy(y), y€ By

2
Let L weight

such that

(By/4) be the weighted L? space of functions h : By — C

AR / (1/4— [y])? h(y) [ dy < oo.
By

From Proposition 2.1 and Harnack the function |b|'/?n - VPg is in this
space.

Proposition 2.2. The operator Ty, 1is bounded on the space
Lfveight(Bl/4) and there exists a constant C' > 0 depending only onp > 1
such that

[Tsymll < C[bl|s,p-

Remark 2.1. It is interesting to compute the information that the
results of Olsen [O] give about the operator Tyyy,. If we apply Theorem 2
of [O] then

|Tsymh(z)| <T flz), z¢€ Bl/47
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where f(y) = |b(y)|*/?|h(y)| and g(z) = |b(x)|*/?/27. Then if we assume
h is in L?(By/4) we have in the notation of Theorem 2 of [O] p = 3/2,
r =3/2,v = 6, and u, ¢ can be taken slightly larger than 2, 1 respectively.
Hence Ty, f € M! where

171+1+1 1*1+2+ . 1
t v o7 6 3 3 S

1_1+1 1 _1+1+2 1_1 1
s v q 6 3 g 6

Now if s = 2 then Tyymh is also in L2(B1/4). Evidently s = 2 implies
q = 3/2 which implies ¢/(2 —q) = 3 whence we need to have b € L3(R3).
We can do better than this by combining various theorems of [O].

Proposition 2.3. The operator Ty, 1is bounded on the space
L2(31/4) and there exists a constant C' > 0 depending only on p > 1
such that

[Tsymll < Cblls,p-

Proof: We have
b(x)1/2/ Ib(y)ll/th(de
Biy

Ts mh <
| Yy (l‘)| — o |$—y|2

’ 1/(]/ 1/q
_ Ib(a)2 @)’ | h@)l"
= o R e —yP Y
Bl/4 y B1/4 y

where 1/¢ +1/¢' = 1. We choose ¢’ in the range 2 < ¢’ < 2p whence
g < 2. Consider now the function gi(x) defined by

)[4 /2
gmﬂ=A3-MlL—@

e le—yP

Now |b|?/2 is in the Morrey space M;Z;];,. Hence by Theorem 9 of [O]

g1 is in M! where
1/t=q'/6—1/3, s=1t(2p/q)/(6/q)=tp/3,

and ||g1]es < C||b||§i£2 for some constant C' depending only on p, ¢'.

Next let g(x) be given by

_ ()] :

g(z) = W gl(x)q/q .
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Then

(25) Tnh(e)] < [T, lhl5)] "

By Holder’s inequality for Morrey spaces, Lemma 11 of [O], we have that
g is in M3 since

q/6+q/qd't=q/6+ (¢/q)]d'/6 —1/3] = 1/3,
q/2p+q/qd's=q/2p+ (¢/d")(3/p)ld' /6 — 1/3] = 1/p.
Furthermore,

2 4 _
22 gu |14 < co |bl|4,

3,p < ||b

lg

Now |h|? is in the space L%/ (Bi/4). Hence by Corollary 3 of [O] Tj |h[?
is also in the space LQ/Q(B1/4) provided 2/q < p. Furthermore

1Ty 1712/ < Crllg

sl [h]?]l2/q < CLCH IS, (1113,

for some constant Cy depending only on ¢, p. Now from (2.5) and the
previous inequality we conclude that

1 ’
| Taymh]lz < C17 Y |[bl|s, [|All2.

The result follows since if p > 1 the two inequalities 2 < ¢’ < 2p, 2/q < p
can be simultaneously satisfied. In fact g can be chosen in the range

1 1
3<< min[p/2,1—-1/2p]=1-1/2p. N
q

Remark 2.2. Theorem 9 of [O] was originally proved in [A]. A dif-
ferent proof was given in [CF].

The proof of Proposition 2.3 gives us an important insight into how the
proof of Proposition 2.2 should go. We shall follow the lines of the proof
of Theorem 1.2 of [CR] and Proposition 2.1 of [CO], but the Calderon-
Zygmund decomposition will be based on taking averages of |h(y)|?. Let
Qo be a unit cube and forn =1,2,... @, be the dyadic subcubes of Qg
with side of length 27". Let d(Q,,) be given by

d(Qn) = Sup{d(z,aBl/4) 1T € Qn}-
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For n = 0,1,2,... define an operator S,, on functions A with domain
31/4 by

22n

Suh(z) = 2o /Q oo A=W RO )y, 2 € QN By

Let T, be the operator given by

TQO Z|b 1/25 h ), $€B1/4.

Then Jensen’s inequality implies there is a universal constant C' such
that if Qp(&) is the unit cube centered at &,

(2.6) / (1/4 — [2])? [Tagmh (x)|? da
By
2
<C d¢ (1/4_|$|)2‘TQ0(5)h($)‘ da.
By Qo(§)NB1/4

Hence it is sufficient to prove Proposition 2.2 with the operator Tiym,
replaced by Tg,. The key lemma analagous to Lemma 2.4 of [CR] is

Lemma 2.5. Let Q' C Qg be an arbitrary dyadic subcube of Qo with
side of length 27"’ . Suppose 1 < p < 3 and q > 1 satisfies the inequality
1/2<1/q<1—1/2p. For Q a dyadic subcube of Qo and h a function
with domain By, let hg be given by

1/q

1 q q
ho = [@ /Q o A G

Then there are constants C, € > 0 depending only on p and q such that
(2.7) QY hg < 1Q'[V9F* he

or all dyadic subcubes Q) o implies the inequality
for all dyadi beubes Q of Q' implies the i lu

2

[ e S b@ skt o< GBI, Q.
Q'NByya

7L=7LQ/
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Proof: We have

2

oo 00 k
Z Sph(z)| <2 Z Skh(z) Z Sph(x).
n=ng k:nQ/ n=ng/

It follows from Holder’s inequality that

1/q'

/Q (1/4 = [y))? [h(y)|" dy] Uq[ /Q b)) dy] 7

nMNB1/4

22n
th(x) < m

where 1/¢+1/¢' = 1. Since 1/q < 1—1/2p implies ¢'/2 < p we conclude
that
1/2
Suh() < Bl 1Qul/ ho, [d(@n). @€ Qu,

whence

(28)  (1/4— |z)Sah(x) < B3 1Qnl 0 h,, @€ Q.

3,p
Now if we use (2.7) we have from the previous inequality

k k
(1/4—la)) S Suh(z) <132 S 1QulYC he,,

’I’L:’I’LQ/ n:nQ/
k
1/2 3e(n—npHr
< |Iblls/ Q" 0hg > 2%nnen)
n:nQ/
< Ce|bl3/2 1Q'Y/0 hg 23 t—ner)

for some constant C. depending only on ¢ > 0. Hence

2

e [ A | 3 @) Sk da
NBy /4

n:nQ/

<20l Q1 gy 30 20 [ (14 al) ()| Suha) do.

k=ng Q'NB1/a
For m an integer let F,, be the set

Ep = {x eR?: 2™ < |b(2)] < 27”}.
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For m, k integers and k > ng- let a,, 1 be given by
ami= Y (B 0Qul [ (12 1)) (o) dy
QLCQ’ Qr
Then we have
(2100 Y 23€<k*n@/>/ (1/4 — |z|) [b(z)|Sph(z) dz
k:’I’LQl QlﬁBl/4

oo

oo
S Z Z 236(k—nQ/)2m+2k Um -

m=—oo k,:nQ/

There are two estimates on a,, ; which we use. The first follows from
(2.7). Thus from (2.8) we have

Ui <Y 1B N Qul bl 2752 he,,
QrCQ’

and then (2.7) implies that
A < B 01 Q| [bl5] 27°/221/2789 0 mahg

The second estimate is obtained by using the fact that |E,,, N Qx| < |Qk|.
Thus

o €27 [ (1740 ) () .

If we again apply (2.8) we have that
ami <27 37 1Q P/ he.

If follows now that for any a, 0 < a < 1, we have

o0 oo

Z Z 236(}(377’7,(9/) gm-+2k -

m=-—00 k:nQ/

o0

s e _ 1/2 «
< Z Z 93e(k—ng )2n+2k[2 BkHbHS,/p |Q/|5/6hQ/}

m=—00 k=ngy

-«
(12 N Q| bl 277472 20/25) 0 ma |
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For any o > 0 one can find sufficiently small ¢ > 0 such that the sum
with respect to k above converges. Thus there is a constant C, > 0
depending only on «, € and

CRTID DD DS ET

m=—o0 k:an

oo
< Calbll521Q1° hg Y 2™, N QT
m=—oo
Let mg be an arbitrary integer. Evidently one has
mo mo
Z 2m|Em ﬂQl‘l_a < ‘Q/‘l—a Z om _ 2|Q/|1—a2mo.
m=—oo m=—oo
Using the fact that
277 |Ey N Q' < 27 b5, |Q'["77%,

it follows that if o > 0 satisfies (1 — a)p > 1 then

oo

D0 2MEn QT < Calblff, QP gmaliter),
m=mo+1

for some finite constant C,. Hence, setting A = 20 it follows that

oo

Z 2m|Eme/|1—a

< 2|Q/|1—a/\ + Cy /b |§$*a)|Q/|(1—p/3)(1—a))\(1+ap—p).

Q/‘—1/3.

The RHS of the last inequality is minimised when A ~ ||b||s,
We conclude therefore that

o0
Y. 2" ER Q'Y < Callblls, QPP

for some finite constant C,. Putting this last inequality together with
(2.9), (2.10), and (2.11) we conclude that

2
o)

— |z])? z)|'/? wh(x T
S, (14D 2 B@M s

1/2 1/2 o —«
< C?|bll3/2 Q"6 hey|[bll3/2 Q1Y hey |Iblls, Q22

= C?|bl13,|Q'| hdy,

for some constant C' depending only on p and ¢. B
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Proposition 2.2 follows now from (2.6) and Lemma 2.5 just in the same
way as Theorem 1.2 of [CRY] follows from Lemma 2.4 of [CR]. Next we
consider the third stage in section 4 of the proof that the operator @,
is bounded on L?. Let K, be an operator on functions h : By;y — C
defined by

(1 - p)7

|

(212)  K,h(x) = /B dy Gp(z,y) b)Y hy), |z =
1/4

where 0 < p < 1/2.

Proposition 2.4. For 0 < p < 1/2, K, is a bounded operator from
L3 cigni(Biya) to L*(0B_/4) and the norm of K, satisfies an inequality

|K,| < C Hb||3p, where the constant C' depends only on p > 1.

Proof: We write the operator K, as a sum

Kp = Z K ,My
n=0
where
Kpoh(a) = [ dy Gp (. ) [b(w)] "/ hly),
Byjan{lz—yl<ip}
/ dy Gp(z,y)[b(y)["/* h(y),
1/4m{lp2” 1<|a: y‘< 92"}
n=12,....
Evidently
b 1/2 h

|, oh(z)] < / LSOy

Bijanq{lz—yl<ip} |z — vy

1/2 1/2
bl )P
= [/{lx—y|<%p} |z —y| y‘| l/31/4ﬂ{|x—y<%p}x yl

by the Schwarz inequality. Since b € M;’ there is a universal constant C'
such that

/{ WL, < ¢ bjlsp.

lz—y|< 2 ,o} |1' y|

)
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Hence

h 2
/ 1K, oh(z)|? da < C||b||37pp/ dx/ |h(y)] dy
lz|=%(1—p) {z|=L(1-p)} {\:c_y|<%p}|x —y|

<Cilblay s [ (o) dy
{1/4=1y|>p/20}NB1 /4

< Co|lblls, /B (1/4 — [y h(w)|? dy
1/4

= Ca |[bllsp 123 weigne

where C7 and C5 are universal constants. Hence we have shown that
K, is a bounded operator and that

1/2 1/2
1K 0ll < C3/% IbI|3/2.

Next we consider K, , for n > 1. We use the fact that there is a
universal constant C' such that if |z| = (1 — p)/4, then

1. 1.
Gp(z,y) <Cﬂ(1/4—|y|)/(p2”)3,yeBl/m{gp?" '<lo—yl < & }

Applying the Schwarz inequality as we did before we have
(K nh(2)]
1/2

Cip 1/2 om
< bl | [ (/A=) ()P dy|
(p2") Bijan{ip2n—1<|z—y|<Lp2n}

for some universal constant C;. Hence there is a universal constant Cs
such that

/ K () dir < Cal[bllap 272" 1112 ergne.
|z|=%(1—p)

It follows that K, ,, is a bounded operator and
1/2 1/2 o—n
IKpnll < G bl 27", n>1.

Now the boundedness of K, follows from the Minkowski inequality

1/2 1/2 —n 1/2 1/2
1K, < ST Kl < G2 bl Y 27 =202 b|ly2. =
n=0

n=0
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Proof of Theorem 1.4: Suppose g is in L2(831/4). Then from Propo-

sition 2.1 and Harnack the function h(y) = |b(y)|'/?n(y) - VPg(y) is in
L? (Bi/4) and

weight

1/2
Al weighe < C D132 llgll2,

where C' is a constant depending only on p > 1. By Proposition 2.2 the
function u defined by u = (I — Tiym) ™ 'h is in L3, (B1/4) and

[lw]]2,weight < C1 || 2|2, weight

for some constant C7 depending only on p > 1 provided ||b||s, is suf-
ficiently small. Finally we have (),g = K,u. Hence Proposition 2.4
and the previous two inequalities tells us that ¢, is a bounded operator
from L?(0By)4) to L*(0B(1_,)/4) provided ||bl|s, is sufficiently small
and ||Q,|| < C||b||s,, for some constant C' depending only on p > 1.

Chapter 3. Fourier Space Localisation

Our first goal is to prove a version of Theorem 1.5 which takes account
of the location of g in Fourier space.

Theorem 3.1. Suppose f, g are in L*(S). Then there exists ¢ > 0
and a constant C' > 0 depending only on p > 1 such that ||bl|s, < ¢
implies

(3.1) (f. QpErg)| < Clbllsp I fll2 || Brgllz p2°, 0 <k < co.

We can prove Theorem 3.1 by slightly modifying the proof of The-
orem 1.4. The main point to observe is that the quantity 2* in the
estimate (3.1) replaces the weighting factor in the L? norm of Proposi-
tion 2.2. We shall therefore need to apply Proposition 2.3 here instead
of Proposition 2.2. First we define an operator which is analogous to
the operator A of (2.1). Thus for 0 < p < 1/2let A,f(y) be defined on
functions f with domain 0B(;_,/4 by

(32) A, f(y) = [b(y)]/> / f(@)Gp(e,y)de, |y| < 1/4.
P Jizl=(1-p)/a

It is evident that
lim A, f(y) = Af(y), Iyl <1/4.

The following proposition is therefore a generalization of Proposition 2.1.
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Proposition 3.1. For 0 < p < 1/2, A, is a bounded linear operator
from L2(0B(1—p)/a) to L*(Bi,4). There is a constant C' depending only

onp>1 such that | A, < C|b]y/7.

Proof: Let U, be the spherical shell

= {us 3@ =302 <l < 1}

and x, be the characteristic function of the set i/,. Let us first consider
the operator K, defined by

Ko f(y) = xp(y) Apf(y), y € Bija.

We show that K, is bounded by arguing as in Proposition 2.4. Thus we

write
o0
K, = E :Kpmv
n=0
where

Ky 0 (1) = xo(0) ()] /2 f(@)Gp(z,y) de,

p /{w—i(l—p), le—y|<p}

4
Ko () =, ) b) 2 [ F(#)Gp(a,y) do,
PJ{|z|=1(1-p), p2n ' <|z—y|<p2" }
n > 1.
We have now from the Schwarz inequality that
_ flz 2
Koo ) < Co, )bl [ [f@P
{lel=2(-p). la—yl<p} 1T — ¥l

for some universal constant C. Hence

- b
Koot @3 <Cpt [ wisep [ WL,
=4 (1-p) le—yl<p [T =Yl

4

< Crbllsp lIF113
1/2 \13211/2
for some constant C1. We conclude that [|[K,ol < C;’"[/b[j3;. To
estimate K, ,, for n > 1 we use the bound

n 1 n— n
Gp(z,y) < Cp/(p2")%, ol = 7(1=p), p2"7 " <|o—y| < p2",
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where C' is a universal constant. Hence we have

Ky f(y)]?

1

< Cixp(W)IbW) 53

- |f ()] dz,
(p2n)? /{w =1(1-p), p2n=1<|z—y|<p2"}

for some universal constant C. Hence

C
1K fE < s [ dels@ [ byl dy.
P lz|=1(1—p) U,n{p2n=1<|z—y|<p2n}

We have now

/ Ib(w)| dy
Upn{p2n—1t<|z—y|<p2m}

1-1/p p
< meas [Z/lp N{p2" 1<z —y| < p2”}] [/ [b(y)[* dy]
\

z—y|<p2m
< C(p*2°")' VP |Ibllay (0277

= C|[bllsp p?2°+/7),

for some universal constant C. From the last two inequalities we conclude
that there is a universal constant C; such that

1Kyl < C2 o322 n=/02 0 > 1,

Hence

3,p 3.,p

(33) Kl <2 |bllyy > 2 -z < 02 b1y
n=0

for some constant Cs depending only on p > 1.
Next we consider the operator Ag defined by

Ao f(y) =1 = x,(¥)] Ay f(y), y € Biya

It is easy to see that there is a universal constant C such that

1
Gp(z,y) < Cp(1/A=ly)/lx —yl*, y € Bia\lhp, 2| = 7(1-p).



108 J. G. CoNLON, P. OLSEN

Furthermore for y € By/4\U, one has 1/4 — |y| < Cy [1(1 — p) — |y]] for
a suitable constant Cy. Hence the operator Ag has a kernel which is
bounded by a constant times the kernel of A. Applying Proposition 2.1
we conclude that Ag is bounded and ||Ag| < 021/2 ||b||1/2. Since A, =

3,p
Ao + K, the result follows from this last inequality and (3.3). ®

Proposition 3.1 enables us to pull out the factor p in the inequal-
ity (3.1). Next we address the problem of how to pull out the factor
2% in (3.1). The factor occurs due to the effect of the gradient in the
expression V(PEyg). Suppose y = (y1,v2,y3) € R3. We shall want to
show that

0
i

(3.4) Yl 5~ PErg(y) ~ 2" Phi(y), |yl <1/4, 1<i<3,
where h; is an L? function on 0B, /4 With norm comparable to g. Fur-
thermore we shall need to show that h; is approximately concentrated
in Fourier space on the range of Ey. To do this we introduce polar co-
ordinates (r,0,¢) on the ball, 0 <r < 1/4,0< 80 <m 0< ¢ < 27. We
may also assume that ¢ = 3 in (3.4) and the representation
10

— =cosf— —sinf- —.

Y3 or r
Let Y7, (0, ¢) be the spherical harmonics on the unit sphere. Thus ¢ is
a nonnegative integer, m is an integer satisfying —¢ < m < £ and

_AS }/&m = E(K + 1) Yem,

10
Y =mYom.
i Jy ¢ e,

Now the Poisson kernel applied to the boundary data Y ,, yields
P}/@,m (T7 97 QD) = (47’)Z }/&m (97 QD)

Thus

0 0
[y|=— P Yo (r,0,0) = £(41)  cos 0 Yy 1 (6, @) — (47) sin 0= Yy (6, ).
Oys ' ’ o0
Let Ppm(z), £ = 0,1,2,..., 0 < m < { be the associated Legendre
functions. Then one has [M, p. 495], for m > 0,

(20 + 1)(0 — m)1]M?

47 (0 4 m)! Py m(cos 0)e=,

Yi4m(0,0) = 0tme
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where |04 ¢| = 1. If we use the relations
(204 1)z Pp(2) = (0 +m)Pr_1 m(2) + (€ + 1 — m) Pryq m(2),
(22 — 1)6% Prm(z) =l —m~+1)Pryim(z) — (€+m+1)zPp n(2),
to be found in [H, p. 289,290], we may conclude that

o8 0Yym (0, ) = { (L4 m)(t —m) ] 1/2

(2¢0+1)(2¢-1)

(C+14+m)(f+1-m)]"?
{ (2€ + 3)(2€+ 1) }

sinHQYgﬂn(G,np) =—(l+m+1) [

(K—i—m)(ﬁ—m)rﬂ
90

(2¢+1)(2¢—-1)

m —m 1/2
e—m [(4+1+ )(C+1 )}

201 3)(20—1)

Hence we have shown that
0 —1
|y|6_ysp)/€,m(ra95<p) =/{|ar PYZ—Lm(TaHaQP) —|—b7’ PY@+17m(T707g0) )

where a, b are constants which are bounded by 16 in absolute value. It
is easy now to state a rigorous version of (3.4).

Lemma 3.1. Let g be square integrable on the sphere OB 4, such
that Exg = g for some k > 1. Then for any i, 1 < i < 3, there exist
functions hy, h_ on 0By ,4 such that

0
vl 5, Pow) =2 4y Ph-(y) +2°(1/4ly]) Phe(y), Iyl <1/4,
and the functions hy, h_ satisfy

(Ex + Exy1)hy = hyy (Ep +Ep_1)h_ =h_,

[hsll2 < Cllgll2, [h—[l2 < Clligll2,

where C' is a universal constant.
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Proof of Theorem 3.1: Consider the function hy on By /4 defined by
hi(y) = 27" b(y)|'* n(y) - VPEg(y).

In view of Lemma 3.1 and Proposition 2.1 the function hy, is in L*(By 4)
and
1/2
17ell> < C IbIIS 1 Bgllo-

3,p
Next by Proposition 2.3 if ||bl|s, is sufficiently small then u; = (I —
Teym) ' hy is also in L?(By,4) and
Jukll2 < Cy[|hkl2

for some constant C; < 2. Observe now that

(f,QpErg) = p2¥ (A, f,ur),

where A, is the operator (3.2). The result follows now from the last two
inequalities and Proposition 3.1. &

Next we wish to prove a version of Theorem 1.5 which takes account
of both the location of f and g in Fourier space.

Theorem 3.2. Suppose f, g are in L*(S). Then there exists € > 0
and constants n, C > 0 depending only on p > 1 such that ||bl|s, < €
mmplies

[(Ei f,QpExg)| < C|Ibllsp | B fll2 [ Brgll2 2779, 0 <k, ¥ < oo,

Evidently Theorem 3.2 is implied by Theorem 1.4 if k < k' so we shall
assume that k¥ > k’. The basic fact we want to use is that
the function P(Exg)(y), y € Bi4 falls off rapidly from the boundary,
ly| = 1/4. In fact a simple computation shows that the function is essen-
tially concentrated on the shell 1(1—27%) < |y| < 2. We need to define

a norm which is sensitive to this fact. For h: By — C, k=0,1,2,...
and § > 0 we define a norm ||hlj2,x,s by

1/2
|Pll2,k,5 = sup [22“5/ |h(y)|2dy1 ,
0<r<k Uy

where U,.;, are spherical shells given by

1 _ 1
o= {u: j0 -2 <yl < 3},

1 1
Urje = {y i 277) < |yl < e 2’“12’“)}, 1<r<k.

Observe that if k = 0 then one just gets back the L? norm of h.
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Lemma 3.2. Suppose g is square integrable on 0B,y and A is the
operator defined by (2.1). Then for k = 0,1,2,..., and any 6 > 0 the
function AEyg(y) has norm satisfying

1/2
IAELg|2.15 < Csp |12 Erglla,

where the constant Cs, depends only on 6 >0, p > 1.

Proof: Evidently

(3.5) [fmmmﬁws/ AEg(y)? dy < Cp |lg1I2
0,k

By

by Proposition 2.1. Next for 1 < r < k observe that if y € U, then

Pg(y) = Prgr(y)

where the operator P, acts on functions with domain {|y|=1(1—-2"~127%)}
and gives the solution of the Dirichlet problem. Thus u(y) = P.h(y)
satisfies

1
Au(y) = 0) |y‘ < Z(l - 27"—1 2_k)a

uly) = hly), Iyl = 31— 2 2h),

It is easy to see that the function g, has L? norm bounded as ||g,|2 <
exp[—c2"] ||g||2 for some positive constant ¢ > 0. Now applying Theo-
rem 1.4 again we have that

/'mmmW@smMs@mwwﬂm@
Uy

The result follows now from this last inequality and (3.5). W

Next we need to show that the operator Ty, is a bounded operator
on the space determined by || ||2,5,6. As before we shall define two
spaces associated with this norm. First the space L} 5(By/4) is defined
by h € L 5(Bys) if |hlla,x,s < oo, with norm given by || [l2x,s. The
weighted space L 5 eigni (B1/4) is defined as all h such that the function
fly) = (1/4 — |y|)h(y) has finite norm | fll2,x,s < oo0. The weighted
norm of h is then given by ||hl|2,x,6 weight = ||fll2,k,6. We have now two
theorems analagous to Propositions 2.2, 2.3.
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Proposition 3.2. There exists § > 0 such that the operator Tyym is
bounded on the space Liﬁ)weight (Bi/4) and there exists a constant C > 0
depending only on 6, p > 1 such that || Tsym|| < C'[|b]|3,p.

Proposition 3.3. There exists § > 0 such that the operator Tyym
s bounded on the space L%75(Bl/4) and there ezists a constant C' > 0
depending only on 6, p > 1 such that || Tsym|| < C'[|b]|3,p.

Proof: We shall first prove Proposition 3.3. Let us suppose x € Uj, k.
Then

Ib()]"/? & Ib(y)[/2|h(y)]
| Taymh(@)] < =5 — Z/M—Ia:yIQ dy

< Tymhi () + C b(z)[ /2 /B Ib(y)[? ()] dy
1/4

where C'is a universal constant and
hi(y) = h(y), v € Up—1kUUk,

=0, otherwise.

By the Minkowski inequality we have then

1/2
l/ Tsymh(:v)|2d:c] < || Tsymha|l2
Uk

1/2
/ Ib(z)| dz [ / |b(y>|1/2|h<y>|dy] .
By By

Evidently ||hy]lo < 27(F=2)9|

1/2 1/2
1/2 2
/B b2 h(y |dy<ZV |dy] mew dy]
1/2
< Z [ / |dy] 25 ||h g

< Zmeas (1 1/p)/2 Hb||1/2 270 ||h||27k75

+C

< CZ ||bH1/2 ||h||2,k,6 o(s—k)(1-1/p)/2 936

< Cu I3y 1Allzx.s 27+
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provided § < (1 —1/p)/2. Now from Proposition 2.3 and the last four
inequalities we conclude that

1/2
[/ |Tsymh($)|2d$] < Cbllsp 2]k, 27",
U,k

where the constant C' depends only on p > 1 and § > 0.

We can easily deal with the case of the integral of Ty,mh over Uy i, by
observing that

/ |Tsymh(z)|? dx
Uo, i

by Proposition 2.3. Thus we are left to deal with integrals over U, with
1 <r <k —1. Define the function h;(y) by

1/2
< [[Tsymhll2 < Cbllsp

|hll2 < Cs |Ibll3p [|Rll2,k,6

hl(y) = h(y)7 (BS us,ka s2>2r— 1,

=0, otherwise.

Next for s < r — 2 and integer n satisfying 2 <n <k —r 44 let g5 ()
be the function

b@)Y2 .
gs,n(l') = 2—22 |b(y)‘1/2 |h(y)| dy
i Us rN{2 "< |z—y|<2—n+1}

Then we have the inequality
r—2 k—r+4
Tmh(@)] < [T @)+ 5 S gon(@), @ € Upp.
s=0 n=2
It follows by the Minkowski inequality that

1/2 1/2
(3.6) l/u Tsymh(x)|2dx1 g/ |Tsymh1(x)|2dx]

T,

r—2 k—r+4

£33 ([ st -

s=0 n=2
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By Proposition 2.3 we have

1/2
[/umwwﬁ S
u7‘,k

(3.7)
< Cbllzp ]2

< Cubllp |hll2es 277

Observe next that for any z,
4n

gs’n(l')Q dz < —/ |b(x)| dx
/z/z,.,m{|x—z<2n} (2m)2 Ju, o {la—z<2-}

2
V |wwwwﬁ.
Us oN{|z—y|<2—+2}

From Holder’s inequality we have

/ Ib(z)| da
Ur ;N{|z—2z|<2— "}

< meas [Uyj, N {|z — 2| < 27"}] et l/
|

r—z|<2™™

1/p
|b(x)|P dx]

S C ||b||3 D 2(T—/€—2n)(1_1/p) 2_71(3/])—1)‘

Similarly we have

2
V |wW%w4sU ““4
Us 1N{|z—y|<2— "2} Uy 1N{|z—y|<2-n+2}

/ |h(y)|2 dy § C|‘bHS,pQ(SikiQn)(l*l/l’)2*71(3/1)71)
U xN{|z—y| <22}

/ ) d
us,kﬂ{lz_y‘<27n}

The last three inequalities imply then that

/ gs,n(x)2 dr < C ”b”g’p 24n 2(r—k—2n)(1—1/p) 2—n(3/p—1)
Ur i

2(s—k—2n)(1—1/p) 2—n(3/p—1)/ ‘h(y)|2 dy
Us k

< C||b||:237p272r6 Hh”37]676272(1677”771)(171/;7)2(577’)(171/;7726)'
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It follows then from the previous inequality and (3.6), (3.7) that if
d < (1—1/p)/2 then

|fl2,r,5 277

1/2
V |Tsymh<x>2dx] < bl
ur,k

for some constant C' depending only on § and p > 1. This completes the
proof of Proposition 3.3. Proposition 3.2 follows in an exactly analogous
way from Proposition 2.2. &

Next let us consider the operator K, defined by (2.12). Let f be a
function in L? (0B(1-py/4). We define the function M, f(y), y € By,4 by

/w_i(lp) f(@)K h(x) de = /31/4 G - |y|> h(y) M, f(y) dy,

for h € L3 iz (Bi/a)- Explicitly we have

-1
M= [ de@Gole o) (1)

In view of Proposition 2.4 we see that M, is a bounded operator from
L*(0B(1_p)/1)) to L*(By4). Furthermore there is a constant C' depend-
ing only on p > 1 such that

(3.8) 1M, < C|Ibl|}?

provided 0 < p < 1/2. We shall need to more accurately estimate the
effect of M, on a function f which is concentrated in a band of Fourier
space. In particular we have the following:

Proposition 3.4. Suppose k, k' are nonnegative integers and
0 < p < 1/2. Then there exists § > 0 and a constant C depending
only on p > 1 such that for f € L2(aB(1_p)/4),

/u M, Ep f(y)* dy < Cllblla,y | B fll3 2725+,
0,k

Proof: In view of the inequality (3.8) we may assume that k > k. We
shall first show that we may also assume 2% > p. This will follow from
the inequality

50 IF1I3 (27° /).

(3.9) /u M, ()2 dy < C[bl
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Observe that it is sufficient to prove (3.9) under the condition 27% < p/2.
In that case we write

(3.10) M, f(y) = Z gn(y); Y € Uk,
n=0

where

= dzf(z)Gp(z,y)|by)|[/? (1/4 — -1
w)=f L TG 1/~ )

/ daf(x)Gp(z,y)by)|"* (1/4 [y~
{lel=4(1-p).2"~*p<lz—y|<2"p}

dn (y) -

Since 27% < p/2 we have

Cp 1/2
n < b x)| dz
90)| < 5yl /{|x|_i<1p>,zy|<znp}'f( )
(3.11) Cip . 1/2
b(y)|/? 2d
< (p2n)2| )| -/{|I|—%(1—p),|w—y<2"p}|f(x)| €L

n=0,1,2,...

for some universal constants C';, C7 by the Schwarz inequality. This last
inequality implies

[ loatwlay
Uo, i
C12P2/ 2
< Gir dal @) | b(y)] dy.
(P2")* Jlei=1 -} Uo x"{la—y|<2" p}

Now if we estimate

/ Ib(y)| dy
Up,xN{|z—y|<2mp}

1/p|

1—
< meas [Upe N {lz = 9l <2} [blla (270)777

< Cbls,p (27p) HH/P27HO=1E),
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we can conclude that

1/2
(3.12) [ /u |gn<y>|2dy]

< Cul[bllsly 1 £lla (27%/p) /P2 g/

3,p

for some universal constant Cy. Hence from (3.10) and the Minkowski
inequality it follows that (3.9) holds with § = (1 —1/p)/2.

We can assume now that 275 > p, k > k’. Let fi (z) be the function
fk:’ _ 2—4k’(_AS + 22k/)2Ek’f7
where Ag is the Laplacian on the unit sphere. Evidently there is a

universal constant C' such that ||fi/||2 < C|Ey f||2. Furthermore Ej f
can be written in terms of f/ by

Ek/f(x) = / Hk/(CE, :L'/)fk/ (.II) d.TI,
lz’|=%(1~p)

where Hy (x,2') is the kernel of the operator 2% (—Ag 4 22¥")=2 Tt is
well known [CH] that there are constants C, ¢ > 0 such that

0 < Hp(x,2') < C 2% exp|—clz — 2/|/27¥].

Again we write

MyEwf(y) =Y gn(y), y €Uk,

n=0

where

90(y) :/ ,
{lz|=3(1=p), |z’ |=1(1—p), |2’ —y|<2~*"}

dz da' Hy (x,2) fir (@) G p (2, y) [b(y)|/* (1/4 = |y)) 7,

gn(y) :/ , ,
{|3f|=%(1—P)7|x’|=i(1—p)72"71’k <|z’—y|<2n—k }

dz da'Hy (x,2) fio (@) G p (2, y) Ib(y)| /2 (1/4 = |y)) 7,
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if n > 1. Observe now that

/ dzHy (z,2')Gp (z, y)(1/4 — Jy]) !
leol=4(1-p)

<o [ dx Gp(z,y)(1/4— y) ™ < C1 2%
lz|=%(1—p)
for some universal constant C;. Hence

(313) lgo(y)] < C1 22 / da'| i (a')| [b(y) /2.
{l2'|=2(1=p),Jo’ —yl<2=+'}

Now if 2" 17+ < 2" —y| < 27%’“/, n > 1, then one easily sees that
/ deHy (z,2)Gp(z,y)(1/4 — y|) " < € 22K =3,
lz|=%(1—p)

for some universal constant Cy. Hence if n > 1 we have the inequality

(3.14)  |gn(y)l

<e | da| o ()| ()] .

{12/1=% (1= p).Ja'—yl <20~}

We can now bound the integrals of |g,(y)|?* over Uy j exactly as in (3.12)
by using the inequalities (3.13), (3.14). There is therefore a universal
constant C; such that

1/2
[ / gn<y>2dy]
Uo,x

<0 ||b||;1:,7/p2 | fl|o 2K =W=1/P)/2 9=n(3=1/p)/2 1y > .

Since || frr|l2 < C || Ey f||2 the result follows as before. ®
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Proof of Theorem 3.2: Let h(y) = |b(y)|*/?n(y)-VPErg(y), y € Bia.
Then from the Harnack principle and Lemma 3.2 it is easy to see that h
is in the space Lz,&,weight (B1/4) for every 6 > 0 and

1/2
|25, weight < Csplbll3: [ Eeglla,

where the constant Cj, depends only on §, p > 1. Now by Proposi-
tion 3.2 one sees that if ||b||s, is sufficiently small then the function

€(y) = (1/4 =y — Toym) "' h(y) is in L 5(B1/4) and

Ibl|3"2 || Exgll2,

[1€]12,%,6 < Csp b3,

for some suitable constant Cs ). Observe next that

(B £.QuErg)| =

/ £(y)M,Ex £(y) dy
By

1/2
/ |MpEk/f<y>|2dy] .
Ur i

" 1/2
2
< 2:% [ /M k) dy]

If we use now Proposition 3.4 we have that

k 1/2
‘<Ek;/f7 QpEk9>’ < ZQ_T(S”g”?,k,é /M |MpEk’f(y)|2 dy]
r=0 ke
k—k'
—T 1/2 (k=K' —1)8'
<277 Ela ks CHPID 32| By fllg 27 (k=m0
r=0

k
—r 1/2
+ > 270 E s CY2 b B £l
r=k—k’+1

1/2 —(k—k
2 1€l b5 || Ere fll2 27 B R09

<Ci|b

< Oy |bllsp | Exgllz | Ew fll2 27 * 2

for constants C7, Co depending only on p > 1 provided we choose
0 < 0 < ¢’ appropriately. B
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The proof of Theorem 1.5 will be complete if we can prove:

Theorem 3.3. Suppose f, g are in L*(S). Then there exists € > 0
and constants n, C > 0 depending only on p > 1 such that if ||b||s, < €
then

|(Bu £.QuBrg )| <CIBlay |1 B 12 |1 Euglla 25 2757, 0 < b, B <oc,

The main work to be done to prove this last proposition is to show that
Proposition 3.4 also holds for the operator A, defined by (3.2). Thus we
have the following:

Proposition 3.5. Suppose k, k' are nonnegative integers and
0 < p < 1/2. Then there exists § > 0 and a constant C depending
only on p > 1 such that for f € L2(8B(1_p)/4),

J.

Proof: We proceed in the same way as in Proposition 3.4. By Propo-
sition 3.1 we can assume that k£ > k’. Next we show that one may also
assume 27% > p. This follows from the inequality

(3.15) /u .

Observe that it is sufficient to prove (3.15) under the condition 27% <
p/2. In that case we write

2 7
ApEk'f(y)’ dy < C'||bllzp | Ex fl3 9—2(k—k")8_

2
Aol )] dy < C By 1713 27 /).

A W)= gn(y), v €U,
n=0

where
4

goly) =2 / daf(2)Cp(z,y)b(y)[ 2,
PJ{|z|=3(1—p),|lz—y|<p}
4

gn(y) =2 / 4z f(2)Cp(x,y)b(y)[/% 0> 1.
PJ{|z|=1(1—p),2n"1p<|z—y|<2"p}

Since 27% < p/2 we have

b(y)[*/? dz.
o) /{u_iu_p),z_manp}'f(“")' s

lgn (y)] <
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Since this last inequality is exactly the same as (3.11) we can conclude
that the theorem holds in the case of 2=F < p. To deal with the case of
27k > p we proceed again as in Proposition 3.4. The functions g,, are
now defined by

4
go(y) = -
P J{|z|=4(1-p), |2’ =% (1—p),|2'—y|<2—*"}
dz da’ Hy (z,2") fir (2')Gp (2, y)|b(y)|*/2,
4
ww =5 [
P J{jxl=t(1—p) |2/ |=1(1—p),2n—1=F <|a/ —y|<2n =K}

dx da' Hy (x, 2') fir (2') G p (2, y) b (y)| /2,
if n > 1. Evidently one has

4
_ / d(EHk/((E,x/)GD(irvy)
P Jlz|=L1-p)

4 221@' ,
< ¢ / deD(xay) < C(1 22k ;
P Jel=ta-p)

for some universal constant C;. Similarly

4 /
—/ dxHy (z,2))Gp(x,y) < Cy 22K =37
P Jiai=101-p)

for some universal constant Cy if 2"~ 1=F < |o/ —y| < 277F p > 1.
Now, using these last two estimates the proof of the theorem is identical
to the proof of Proposition 3.4. B

Proof of Theorem 3.3: Let h(y) = |b(y)|*/*n(y)- VPEyg(y), y € B /4.
From Lemmas 3.1, 3.2 it follows that h is in the space L%)é(Bl/zl) for every
6 >0 and

1/2
IBll2.s < Cplibllsy 2 | Bxglla,
where the constant Cj, depends only on §, p > 1. Now by Proposi-
tion 3.3 one sees that if ||b||3, is sufficiently small then the function

f(y) = (I - Tsym)ilh(y) is in L%,(S(Bl/4) and

1/2
(3.16) I€ll2.6.6 < Copllbl35 2 | Ergll,
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for some suitable constant Csj,. Observe next that

(Bt QuBva)| = |o [ € ABf) dy .

Biy

The rest of the proof follows now from (3.16) and Proposition 3.5 in
exactly the same way as Theorem 3.2 follows from Proposition 3.4. B

Chapter 4. Proof of Theorem 1.3

We first define the density f, 1 in terms of the density f. To do this
we consider the Dirichlet problem

(A+b(y) - V)u(y) =0, y € By,
v(y) =g(y), y € IByy.

Formally v(y) is given by the formula

v(y) = Pg(y) + Qg(y), y € Biya,

where P is the Poisson integral (1.4) and Qg is defined by (1.5). Now
v can be represented in terms of the diffusion process Xy (t) by the ex-
pression

v(y) = By[g(Xu(7))], v € B,

where 7 is the first hitting time on dB;/, for the process started at
Xb(0) = y. It is clear then that if we regard the density f as a function
on 0B(1_,)/4 and the density f, 1, as a function on 9B, 4, then

/ f(y)v(y) dy /normalisation
OB(1-p)/4

= / fob(y)g(y) dy /normalisation,
8By 4

where the normalisations are chosen so that the measures are probability
measures. It follows therefore, on going back to regarding f and f,1 as
functions on the unit sphere S that

<fp,bvg>:<f7ppg+ng>7 96L2(5)7

where P,g(y) = Pg(y), y € 0B _,)/a- Hence f,1 = Py f + Q) f, where
P? and @, are the formal adjoints of F,, (), respectively.
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We can analyse the operator P, precisely since we know its eigen-
functions. In fact if ¥7,,(0,¢), 0 < 0 <7, 0 < ¢ < 27, is a spherical
harmonic and we take g = Y}, then Pg(y) = (4y)'Yi,m (0, ¢), y € Bi/4.
Hence

(4.1) PYim=(0—-p) Y.

It follows in particular that P, is selfadjoint, whence P, = P;. We also
have that P,1 = P,Yy o = 1. Hence for any f € L?*(S) we have that

(4.2) 1Pof = Avfll2 < (1= p)[lf — Avfll2-

Theorem 1.2 follows from (4.2) and the fact that |Q,|| < C|b
where C' depends only on p, p. In fact

|3,p

1o = Avfpplla = 1B f + Qpf — Avflla
SIPof = Avfllz + [1Q, fl2
<A =p)lIf = Avfllz + ClIblls pllfl2-

Suppose now ||f — Avflla < d|Avf|. Then ||f|l2 < (1 + 0)|Avf|. Hence
the last inequality yields

1foo = Avfppllz < (1= p)d|Avf] + C|blls,(1 + 0)|Av ]|
=[1—p+Clblsp1+51)]6lAvS, b,

since Avf = Avf, . Theorem 1.2 follows from the last inequality by
choosing ||b||3,, sufficiently small.

Theorem 1.3 follows by a similar argument from Theorem 1.5. Since
Y, is an eigenfunction of —Ag with eigenvalue I(I +1),1 =0,1,2,...
it follows from (4.1) that there is a universal constant ¢ > 0 with

)

(4.3) IBuPofll2 < {1 — cmin[p2®, 1]} By fll2, k> 1.

The inequality (4.3) plays the same role in the proof of Theorem 1.3 as
(4.2) plays in the proof of Theorem 1.2. By the Minkowski inequality we
have

1Bk fopllz = | ExPof + ExQ fll2

< ExPpfllz + 1 ELQpf|l2-
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Theorem 1.5 yields an appropriate estimate on || EQ f||2, which when
combined with (4.3) proves Theorem 1.3. To see this let us assume
|f — Avf|l2., < 6|Avf|. Then

(4.4) |Erflla < S|Avf|/2YF, kE=1,2,....

Now, for some ¢ satisfying ||Exg|2 = 1,

(4.5) IEQ5fll2 = (f,QuErg) < Y (B f,QuErg)l.

k’=0

Hence from Theorem 1.5 and (4.4) we have,

1E:Qp fll2 < C |[bllsp| Avf| min[p2", 1]277

k
+ " Cllblls,p 5 Avfl2~* minfp2¥, 1]2705+)
k'=1

+ 3 Clblls,dAvfi2" minp2", 1].
k'=k+1

Note that the first term on the right in the last inequality comes from
the k' = 0 term on the right in (4.5). Hence if n > v we have that

|EQ; fllz < Clbllsp| Avf| min[p2*, 1]
{2-““ + 62—+ g=nk f[o(n=v) _ 7] 4 s9=v(k+D) /[ 2—”]} .
We conclude that
IELQ} fll2 < C(6)|[bll3,p6] Avf|min[p2*, 127, k> 1,

where the constant C'(d) depends only on 4. Combining this last inequal-
ity with (4.3) we have that

1Ex fpbll2 < {1+ [C(8)IIblls,, — ] min[p2*, 1]}6|Avf[27"%, &k >1.

The theorem follows now by choosing |/b||3, sufficiently small so that
CO)bllsp < e
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