ON RADIAL LIMIT FUNCTIONS FOR ENTIRE SOLUTIONS OF SECOND ORDER ELLIPTIC EQUATIONS IN R ${ }^{2}$

André Boivin* and Peter V. Paramonov ${ }^{\dagger}$

Abstract
Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in \mathbf{R}^{2}, we consider entire solutions of the equation $L u=0$ for which

$$
\lim _{r \rightarrow \infty} u\left(r e^{i \varphi}\right)=: U\left(e^{i \varphi}\right)
$$

exists for all $\varphi \in[0,2 \pi)$ as a finite limit in \mathbf{C}. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seem new even for harmonic functions.

1. Introduction and Main Results

Let

$$
L v=c_{11} v_{x_{1} x_{1}}+2 c_{12} v_{x_{1} x_{2}}+c_{22} v_{x_{2} x_{2}}
$$

be an homogeneous partial differential operator of order two with constant complex coefficients in \mathbf{R}^{2} satisfying the ellipticity condition

$$
c_{11} \xi_{1}^{2}+2 c_{12} \xi_{1} \xi_{2}+c_{22} \xi_{2}^{2} \neq 0
$$

for all $\left(\xi_{1}, \xi_{2}\right) \neq(0,0), \xi_{1}, \xi_{2} \in \mathbf{R}$.

[^0]Let λ_{1}, λ_{2} be the (complex) roots of the characteristic equation $c_{11} \lambda^{2}+$ $2 c_{12} \lambda+c_{22}=0$. It follows from the ellipticity condition that $\lambda_{1}, \lambda_{2} \notin \mathbf{R}$. We define

$$
\partial_{1}=\frac{\partial}{\partial x_{1}}-\lambda_{1} \frac{\partial}{\partial x_{2}}, \quad \partial_{2}=\frac{\partial}{\partial x_{1}}-\lambda_{2} \frac{\partial}{\partial x_{2}} \quad \text { if } \lambda_{1} \neq \lambda_{2}
$$

or

$$
\partial_{1}=\frac{\partial}{\partial x_{1}}-\lambda_{1} \frac{\partial}{\partial x_{2}}, \quad \partial_{2}=\frac{\partial}{\partial x_{1}}+\lambda_{1} \frac{\partial}{\partial x_{2}} \quad \text { if } \lambda_{1}=\lambda_{2}
$$

We then have the following decomposition of L :

$$
L v= \begin{cases}c_{11} \partial_{1}\left(\partial_{2}(v)\right), & \text { if } \lambda_{1} \neq \lambda_{2} \\ c_{11} \partial_{1}^{2}(v), & \text { if } \lambda_{1}=\lambda_{2}\end{cases}
$$

We also introduce the following new coordinates:

$$
z_{1}=\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}\left(x_{1}+\frac{1}{\lambda_{2}} x_{2}\right), \quad z_{2}=\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}}\left(x_{1}+\frac{1}{\lambda_{1}} x_{2}\right) \quad \text { if } \lambda_{1} \neq \lambda_{2}
$$

or

$$
z_{1}=\frac{1}{2}\left(x_{1}-\frac{1}{\lambda_{1}} x_{2}\right), \quad z_{2}=\frac{1}{2}\left(x_{1}+\frac{1}{\lambda_{1}} x_{2}\right) \quad \text { if } \lambda_{1}=\lambda_{2}
$$

The following "orthogonality" relations then are easily obtained:

$$
\begin{array}{ll}
\partial_{1} z_{1}=1 & \partial_{1} z_{2}=0 \tag{1}\\
\partial_{2} z_{1}=0 & \partial_{2} z_{2}=1 .
\end{array}
$$

Finally, we identify $z=x_{1}+i x_{2}$ in \mathbf{C} and $x=\left(x_{1}, x_{2}\right)$ in \mathbf{R}^{2} and, for $s=1$ and 2 , we define $T_{s}(z)=z_{s}$ (which are linear nondegenerate transformations of \mathbf{R}^{2}).

For any set E in \mathbf{R}^{2}, denote by $L(E)$ the family of all functions v, each defined on its own neighbourhood Ω_{v} of E, such that $L v=0$ in Ω_{v} in the classical sense. We note that for E open, one can take $\Omega_{v}=E$ for all v. Functions in $L(E)$ and $L\left(\mathbf{R}^{2}\right)$ are called L-analytic on E and L-entire respectively.

It is well known that (for E open) each function $v \in L(E)$ is realanalytic on E, and that each continuous function v satisfying $L v=0$ on E in the distributional sense is in $L(E)$. From these facts, using (1), one can prove the following well known result [1, Chapter IV, $\S 6,(4.77)]$ (see also [5] for a simple direct proof).

Proposition 1. Let D be any domain in \mathbf{C} and L be as above.

1. If D is simply connected and if $\lambda_{1} \neq \lambda_{2}$, then

1a) $v \in L(D)$ if and only if there exist f_{1} holomorphic in $T_{1}(D)$ and f_{2} holomorphic in $T_{2}(D)$ such that

$$
v(z)=f_{1}\left(T_{1}(z)\right)+f_{2}\left(T_{2}(z)\right)=f_{1}\left(z_{1}\right)+f_{2}\left(z_{2}\right)
$$

for all $z \in D$. In particular, L-entire functions u are of the form $u(z)=f_{1}\left(z_{1}\right)+f_{2}\left(z_{2}\right)$ where f_{1}, f_{2} are entire holomorphic functions.
1b) There exist in $\mathbf{C} \backslash\{0\}$ a fixed analytic branch $\log \left(z_{1} z_{2}^{\nu}\right)$ of the multivalued function $\log \left(z_{1} z_{2}^{\nu}\right)$ and a nonzero complex constant C_{L} depending only on L such that

$$
\Phi_{L}(z)=C_{L} \log \left(z_{1} z_{2}^{\nu}\right)
$$

is a fundamental solution of L, where $\nu=1$ if $\operatorname{sgn}\left(\operatorname{Im} \lambda_{1}\right) \neq$ $\operatorname{sgn}\left(\operatorname{Im} \lambda_{2}\right)$, and $\nu=-1$ otherwise.
2. If $\lambda_{1}=\lambda_{2}$, then

2a) $v \in L(D)$ if and only if there exist g_{1} and g_{2} holomorphic in $T_{2}(D)$ such that
$v(z)=T_{1}(z) g_{1}\left(T_{2}(z)\right)+g_{2}\left(T_{2}(z)\right)=z_{1} g_{1}\left(z_{2}\right)+g_{2}\left(z_{2}\right)$
for all $z \in D$. In particular, L-entire functions u are of the form $u(z)=z_{1} g_{1}\left(z_{2}\right)+g_{2}\left(z_{2}\right)$ where g_{1}, g_{2} are entire holomorphic functions.

2b) $\Phi_{L}(z)=C_{L} \frac{z_{1}}{z_{2}}$ is a fundamental solution of L, where C_{L} is a nonzero complex constant depending only on L.
3. If $\left\{v_{n}\right\} \subset L(D)$ and $\left\{v_{n}\right\}$ converges uniformly to v on compact subsets of D as $n \longrightarrow \infty$, then $v \in L(D)$.

We just note that 1 b) and 2 b) follow from 1a) and 2a) respectively, and from the definition of fundamental solution. It is not difficult to check that if $\operatorname{sgn}\left(\operatorname{Im} \lambda_{1}\right) \neq \operatorname{sgn}\left(\operatorname{Im} \lambda_{2}\right)\left(\right.$ respectively $\left.\operatorname{sgn}\left(\operatorname{Im} \lambda_{1}\right)=\operatorname{sgn}\left(\operatorname{Im} \lambda_{2}\right)\right)$, then the increment of the polar argument of $\left(z_{1} z_{2}\right)$ (respectively $\left(z_{1} / z_{2}\right)$) around the origin is zero, and thus some analytic branch of the function $\log \left(z_{1} z_{2}\right)$ (respectively $\left.\log \left(z_{1} / z_{2}\right)\right)$ exists in $\mathbf{R}^{2} \backslash\{(0,0)\}$.

Example 1. For the Laplacian $L=\Delta$, one has $\lambda_{1}=i, \lambda_{2}=-i$, $z_{1}=z / 2, z_{2}=\bar{z} / 2$ and

$$
\begin{aligned}
& \partial_{1}=\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}=: 2 \frac{\partial}{\partial z} \\
& \partial_{2}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}=: 2 \frac{\partial}{\partial \bar{z}} \\
& \Phi_{\Delta}(z)=\frac{1}{4 \pi} \log \left(\frac{z \bar{z}}{4}\right)
\end{aligned}
$$

For the Bitsadze operator

$$
L=\frac{\partial^{2}}{\partial \bar{z}^{2}}=\frac{1}{4}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+2 i \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}\right)
$$

one gets $\lambda_{1}=\lambda_{2}=-i, z_{1}=\bar{z} / 2, z_{2}=z / 2$ and

$$
\partial_{1}=2 \frac{\partial}{\partial \bar{z}}, \quad \partial_{2}=2 \frac{\partial}{\partial z}, \quad \Phi_{L}(z)=\frac{1}{\pi} \frac{\bar{z}}{z}
$$

In order to formulate our main results (Theorems 1 and 2), we need the following characterization of radially constant solutions of the equation $L v=0$.

Proposition 2. Let $J=\left\{z \in \mathbf{C}: \varphi_{1}<\arg z<\varphi_{2}\right\}, \varphi_{1}<\varphi_{2} \leq$ $\varphi_{1}+2 \pi$ denote an (infinite) open sector with vertex at 0 . Let $v \in L(J)$ and assume that $v(z)=v\left(r e^{i \varphi}\right)=v\left(e^{i \varphi}\right)$ does not depend on r.

1. If $\lambda_{1} \neq \lambda_{2}$, then there exist $\alpha, \beta \in \mathbf{C}$ and a fixed analytic branch $\log \left(z_{1} / z_{2}\right)$ of $\log \left(z_{1} / z_{2}\right)$ in J such that, for $z \in J$,

$$
v(z)=\alpha \log \frac{z_{1}}{z_{2}}+\beta
$$

$$
\begin{equation*}
=\alpha \log \left(\frac{\cos \varphi+\frac{1}{\lambda_{2}} \sin \varphi}{\cos \varphi+\frac{1}{\lambda_{1}} \sin \varphi}\right)+\beta=: v_{12}^{*}\left(e^{i \varphi}\right) . \tag{2}
\end{equation*}
$$

2. If $\lambda_{1}=\lambda_{2}$, then there exist $\alpha, \beta \in \mathbf{C}$ such that, for $z \in J$,

$$
v(z)=\alpha \frac{z_{1}}{z_{2}}+\beta
$$

$$
\begin{equation*}
=\alpha\left(\frac{\cos \varphi-\frac{1}{\lambda_{1}} \sin \varphi}{\cos \varphi+\frac{1}{\lambda_{1}} \sin \varphi}\right)+\beta=: v_{1}^{*}\left(e^{i \varphi}\right) . \tag{3}
\end{equation*}
$$

(For this case, $J=\mathbf{C} \backslash\{0\}$ is also allowed.)

Example 2. For $L=\Delta$, one has $v_{12}^{*}\left(e^{i \varphi}\right)=\alpha \varphi+\beta, \varphi_{1}<\varphi<\varphi_{2}$, and for $L=\partial^{2} / \partial \bar{z}^{2}, v_{1}\left(e^{i \varphi}\right)=\alpha e^{-2 i \varphi}+\beta$, where α and β are any complex constants.

Theorem 1. Let u be an entire solution of the equation $L u=0$ such that

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} u\left(r e^{i \varphi}\right)=: U\left(e^{i \varphi}\right) \tag{4}
\end{equation*}
$$

exists and is finite for all $\varphi \in[0,2 \pi)$. Then
A) U is of Baire class 1 on $S=\left\{e^{i \varphi}: \varphi \in[0,2 \pi)\right\}$; that is, U is a pointwise limit on S of a sequence of continuous functions on S.
B) There is an open set $I=\cup_{j=1}^{\infty} I_{j}$, where the I_{j} are disjoint open arcs on S (and $I_{j}=\emptyset$ is possible for some j, but $I_{j} \neq S$) with the following properties:
B1) I is everywhere dense on S;
B2) On each $I_{j}, U\left(e^{i \varphi}\right)$ is of the form $v_{12}^{*}\left(e^{i \varphi}\right)$ if $\lambda_{1} \neq \lambda_{2}$ (respectively of the form $v_{1}^{*}\left(e^{i \varphi}\right)$, if $\lambda_{1}=\lambda_{2}$), (see (2) and (3));
B3) The limit (4) is uniform on each compact subset of each I_{j}.
Conversely, let U be a function defined on S and I be an open subset of S with $I=\cup_{j=1}^{\infty} I_{j}$, where the I_{j} are disjoint open arcs. If (A), (B1) and (B2) above are satisfied, then there exists an L-entire function u with the properties:
a) $\lim _{r \rightarrow \infty} u\left(r e^{i \varphi}\right)=U\left(e^{i \varphi}\right)$ for each φ;
b) The limit in (a) holds uniformly on each compact subset of I_{j} for each j.
Moreover, if U_{1} is of Baire class 1 on S and $U_{1}\left(e^{i \varphi}\right)=\partial U\left(e^{i \varphi}\right) / \partial \varphi$ on I, then the function u can be chosen such that (a) and (b) are satisfied and

$$
\lim _{r \rightarrow+\infty} \frac{\partial u\left(r e^{i \varphi}\right)}{\partial r}=0, \quad \lim _{r \rightarrow+\infty} \frac{\partial u\left(r e^{i \varphi}\right)}{\partial \varphi}=U_{1}\left(e^{i \varphi}\right)
$$

for all $\varphi \in[0,2 \pi)$.

Let K be a compact set in S. Let $R P(K)$ (respectively $R U(K)$) denote the set of all functions g on K for which there exists $u=u_{g} \in L\left(\mathbf{R}^{2}\right)$ such that $u\left(r e^{i \varphi}\right) \longrightarrow g\left(e^{i \varphi}\right)$ for each $\varphi \in K$ (respectively $u\left(r e^{i \varphi}\right) \longrightarrow g\left(e^{i \varphi}\right)$ uniformly on K) as $r \rightarrow \infty$.

Theorem 2.

a) For each compact set K in $S, g \in R P(K)$ if and only if g is of Baire class 1 on K and there exists a countable family of disjoint open arcs $\left\{I_{j}\right\}_{j=1}^{\infty}$ in K such that $K \backslash \cup_{j=1}^{\infty} I_{j}$ is nowhere dense in S and on each I_{j}, g is of the form $v_{12}^{*}\left(e^{i \varphi}\right)$ (when $\lambda_{1} \neq \lambda_{2}$) or $v_{1}^{*}\left(e^{i \varphi}\right)$ (when $\lambda_{1}=\lambda_{2}$) (see Proposition 2). In particular, $R P(K)$ consists of all Baire class 1 functions on K if and only if K has an empty interior on S.
b) Let K be a compact set in $S, K \neq S$. Then $g \in R U(K)$ if and only if $g \in C(K)$ and g is of the form $v_{12}^{*}\left(e^{i \varphi}\right)$ (when $\lambda_{1} \neq \lambda_{2}$) or $v_{1}^{*}\left(e^{i \varphi}\right)$ (when $\lambda_{1}=\lambda_{2}$) in each connected component of the interior of K in S. In particular, $R U(K)=C(K)$ if and only if K is nowhere dense in S. If $K=S$, then $R U(K)$ contains only constant functions.

2. Proofs

We first establish the following uniqueness theorem for L-analytic functions.

Lemma 1. Let D be any domain in \mathbf{C} and $v \in L(D)$. If the set $G_{v}=\left\{z=x_{1}+i x_{2} \in D \mid \nabla v(z):=\left(\partial v(z) / \partial x_{1}, \partial v(z) / \partial x_{2}\right)=(0,0)\right\}$ has at least one accumulation point inside D, then v is constant in D.

Proof: From Proposition 1 and equations (1), one has $\partial_{1} v=f_{1}^{\prime}\left(z_{1}\right)$ for $\lambda_{1} \neq \lambda_{2}$ and $\partial_{1} v=g_{1}\left(z_{2}\right)$ for $\lambda_{1}=\lambda_{2}$, where f_{1}^{\prime} and g_{1} are holomorphic on $T_{1}(D)$ and $T_{2}(D)$ respectively. By assumption, $f_{1}^{\prime}=0$ on $T_{1}\left(G_{v}\right)$ (respectively $g_{1}=0$ on $T_{2}\left(G_{v}\right)$). It thus follows from the uniqueness theorem for holomorphic functions that $f_{1} \equiv$ const in $T_{1}(D)$ (respectively $g_{1} \equiv 0$ in $\left.T_{2}(D)\right)$. An analogous study of $\partial_{2} v$ completes the proof of Lemma 1.

Proof of Proposition 2: We shall consider only the case $\lambda_{1} \neq \lambda_{2}$, the proof for the case $\lambda_{1}=\lambda_{2}$ being similar. Let $v \in L(J), v=v\left(e^{i \varphi}\right)$. Let $v_{0}(z)=\log \left(z_{1} / z_{2}\right)$ be some fixed analytic branch of $\log \left(z_{1} / z_{2}\right)$ in J. Simple calculations show that $\partial v_{0}(z) / \partial \varphi \neq 0$ and $\partial v_{0} / \partial r \equiv 0$ in J. Fixing some $\varphi_{0} \in\left(\varphi_{1}, \varphi_{2}\right)$, we can thus find α and β in \mathbf{C} such that $v-\alpha v_{0}-\beta=0$ and $\partial\left(v-\alpha v_{0}-\beta\right) / \partial \varphi=0$ on the ray $\left\{\arg z=\varphi_{0}\right\}$. It thus follows that $\nabla\left(v-\alpha v_{0}-\beta\right)=0$ on the ray $\left\{\arg z=\varphi_{0}\right\}$. Lemma 1 now gives the desired result.

Proof of Theorem 1: The scheme of the proof is analogous to that of A. Roth $[\mathbf{7}]$ (see also [3, Chapter IV, §5A]). The main new tools are some recent results in approximation theory ($[\mathbf{6}]$ and $[\mathbf{2}]$).

Let $u \in L\left(\mathbf{R}^{2}\right)$ satisfy (4), then A) is a consequence of $\lim _{n \rightarrow \infty} u\left(n e^{i \varphi}\right)=$ $U\left(e^{i \varphi}\right)$. Using a decreasing sequence of nested intervals and condition (4), one can prove that for each nonempty sector $J^{\prime \prime}$ with vertex at the origin, there exists a nonempty sector $J^{\prime}=\left\{\varphi_{1}^{\prime}<\arg z<\varphi_{2}^{\prime}\right\} \subset J^{\prime \prime}$ with $\varphi_{1}^{\prime}<\varphi_{2}^{\prime} \leq \varphi_{1}^{\prime}+2 \pi$ such that u is bounded on J^{\prime} (see [3, p. 164]). Fix any φ_{1} and φ_{2} with $\varphi_{1}<\varphi_{2}$ and $\left[\varphi_{1}, \varphi_{2}\right] \subset\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right)$. Let $u_{n}(z)=u\left(2^{n} z\right)$. We claim that the sequence $\left\{u_{n}(z)\right\}_{n=1}^{\infty}$ converges uniformly on compact subsets of the "closed" sector $J=\left\{\varphi_{1} \leq \arg z \leq \varphi_{2}\right\}$. From (4), it will follow that the limit function v does not depend on r. Since $v \in L(J)$ (see 3 of Proposition 1), Proposition 2 will give us B) in our theorem (see [3, p. 166] for more details). To prove the claim, it suffices to establish that $\left\{u_{n}\right\}$ converges uniformly on the compact set $K=\left\{\varphi_{1} \leq\right.$ $\left.\arg z \leq \varphi_{2}, 1 \leq|z| \leq 2\right\}$. In order to prove this last assertion, it is enough to check that $\left|\nabla u_{n}\right|$ is uniformly bounded on K and to use AscoliArzela's theorem. Notice that $\sup \left\{\left|u_{n}(z)\right| \mid z \in J^{\prime}, n \geq 1\right\}<+\infty$, and $d:=\operatorname{dist}\left(K, \partial J^{\prime}\right)>0$ (here and in the sequel, ∂E is the boundary of a set $E)$. Denote by Φ the fundamental solution of L, which is found in Proposition 1, and set $B(a, \delta)=\{z \in \mathbf{C}| | z-a \mid<\delta\}$, where $a \in \mathbf{C}$ and $\delta>0$. Fix $\psi \in C_{0}^{\infty}(B(0, d))$ such that $\psi=1$ in $B(0, d / 2)$. Now fix $z_{0} \in K$ and put $\psi_{0}(z)=\psi\left(z-z_{0}\right)$. Then $\psi_{0}=0$ outside the ball $B\left(z_{0}, d\right) \subset J^{\prime}$ and $\psi=1$ on $B\left(z_{0}, d / 2\right)$. One has ($\left.[\mathbf{6}, \mathrm{p} .255]\right) u_{n} \psi=\Phi * L\left(u_{n} \psi\right)$, so that in $B\left(z_{0}, d / 2\right)$, we can write (in the case $\lambda_{1} \neq \lambda_{2}$)

$$
u_{n}(z)=\Phi *\left(L u_{n} \psi+a_{11} \partial_{1} u_{n} \partial_{2} \psi+a_{11} \partial_{2} u_{n} \partial_{1} \psi+u_{n} L \psi\right)(z)
$$

Since $\psi L u_{n} \equiv 0$ and $a_{11} \partial_{s} u_{n} \partial_{3-s} \psi=a_{11} \partial_{s}\left(u_{n} \partial_{3-s} \psi\right)-u_{n} L \psi(s=1$ and 2), we obtain that, in $B\left(z_{0}, d / 2\right)$,

$$
\begin{aligned}
u_{n} & =\Phi *\left(a_{11} \partial_{1}\left(u_{n} \partial_{2} \psi\right)+a_{11} \partial_{2}\left(u_{n} \partial_{1} \psi\right)-u_{n} L \psi\right) \\
& =a_{11}\left(\partial_{1} \Phi\right) *\left(u_{n} \partial_{2} \psi\right)+a_{11}\left(\partial_{2} \Phi\right) *\left(u_{n} \partial_{1} \psi\right)-\Phi *\left(u_{n} L \psi\right)
\end{aligned}
$$

Now the desired uniform estimate for $\left|\nabla u_{n}\left(z_{0}\right)\right|$ can be obtained by making trivial estimates in the formula

$$
\begin{aligned}
\nabla u_{n}\left(z_{0}\right)=a_{11}\left[\left(\nabla \partial_{1} \Phi\right) *\left(u_{n} \partial_{2} \psi\right)+\left(\nabla \partial_{2} \psi\right)\right. & \left.*\left(u_{n} \partial_{1} \psi\right)\right] \\
& \left.-(\nabla \Phi) *\left(u_{n} L \psi\right)\right)\left.\right|_{z=z_{0}}
\end{aligned}
$$

The proof for the case $\lambda_{1}=\lambda_{2}$ is similar.

Let us now prove the second part of Theorem 1. Let $I=\cup_{j=1}^{\infty} I_{j}, U$, U_{1} be as in (the second part of) Theorem 1. Put $I_{0}=S \backslash I$, and for $j=0,1, \ldots$ let $J_{j}=\left\{z \in \mathbf{C} \backslash\{0\} \mid e^{i \arg (z)} \in I_{j}\right\}$. Finally set $F_{0}=$ $\left\{z \in J_{0}| | z \mid \geq 1\right\}, F_{j}=\left\{z \in J_{j} \mid \operatorname{dist}\left(z, \partial J_{j}\right) \geq 1\right\}, j=1,2, \ldots$, and $F=\cup_{j=0}^{\infty} F_{j}$. Notice that each F_{j} and F are closed subsets of \mathbf{C} and that the $F_{j}(j \geq 0)$ are pairwise disjoint. We note that if they are infinitely many F_{j}, they are pushed to ∞ (i.e. they are eventually outside any fixed compact set). It follows that there exist pairwise disjoint neighbourhoods Ω_{j} of $F_{j}, j=0,1, \ldots$, with $\Omega_{j} \subset J_{j}$ for $j \geq 1$.

We first want to show that there exists a neighbourhood Ω_{0}^{\prime} of F_{0}, $\Omega_{0}^{\prime} \subset \Omega_{0}$, and a function $f \in C_{\mathrm{loc}}^{1}\left(\Omega_{0}^{\prime}\right)$ such that

$$
\begin{align*}
& \lim _{r \rightarrow \infty} f\left(r e^{i \varphi}\right)=U\left(e^{i \varphi}\right) \\
& \lim _{r \rightarrow \infty} \frac{\partial f\left(r e^{i \varphi}\right)}{\partial \varphi}=U_{1}\left(e^{i \varphi}\right) \tag{5}\\
& \lim _{r \rightarrow \infty} \frac{\partial f\left(r e^{i \varphi}\right)}{\partial r}=0
\end{align*}
$$

for each $e^{i \varphi} \in I_{0}$. The proof of this elementary fact is included for completeness.
Let $\left.A_{0}=\{|z|<2\}, A_{s}=\left\{2^{s-1}<|z|<2^{s+1}\right\}\right), s=1,2, \ldots$, and let $\left\{\chi_{s}\right\}_{s=0}^{\infty}$ be a partition of unity on \mathbf{C} subordinate to $\left\{A_{s}\right\}_{s=0}^{\infty}$ such that $\chi_{s}(z)=\chi_{s}(|z|)$ and $\left|\nabla \chi_{s}\right| \leq c / 2^{s}$, where c is a constant independent of s. Since U and U_{1} are of Baire class 1 on S, there exist sequences of continuous functions $\left\{V_{s}\right\},\left\{W_{s}\right\}$ on S such that $V_{s}\left(e^{i \varphi}\right) \longrightarrow U\left(e^{i \varphi}\right)$ and $W_{s}\left(e^{i \varphi}\right) \longrightarrow U_{1}\left(e^{i \varphi}\right)$, for all $e^{i \varphi} \in S$ (and thus in particular for all $e^{i \varphi} \in I_{0}$). In addition we can choose the continuous functions V_{s} and W_{s} so that they are bounded by $2^{s / 2}$.

Since V_{s} and W_{s} are uniformly continuous on S, there exists $\delta_{s}, 0<$ $\delta_{s}<2^{-s}$, such that $\left|e^{i \varphi}-e^{i \varphi_{0}}\right|<\delta_{s}$ implies $\left|V_{s}\left(e^{i \varphi}\right)-V_{s}\left(e^{i \varphi_{0}}\right)\right|<1 / 2^{s}$ and $\left|W_{s}\left(e^{i \varphi}\right)-W_{s}\left(e^{i \varphi_{0}}\right)\right|<1 / 2^{s}$.

Since by assumption I_{0} is nowhere dense in S, there exist open neighbourhoods N_{s} of $I_{0}, s=0,1, \ldots$, such that $N_{s}=\cup_{k \geq 1} I_{s k}$ is the union of finitely many open arcs $I_{s k}$ whose closures are disjoint and each $I_{s k}$ is of length less than δ_{s}.
Now for each $s \geq 0$, define $\Omega_{0}^{s}=N_{s}^{(\varphi)} \times\left(2^{s-1}, 2^{s+1}\right)^{(r)}$ and $\Omega_{0}^{s k}=$ $I_{s k}^{(\varphi)} \times\left(2^{s-1}, 2^{s+1}\right)^{(r)}$ in the (φ, r)-plane. We further require that the N_{s} $(s \geq 0)$ be chosen such that $\Omega_{0}^{s} \subset \Omega_{0}$.
We note that, by construction, V_{s} and W_{s} are almost constant on each of the sets $I_{s k}$. Fix $\varphi_{s k} \in I_{0} \cap I_{s k}$. For $z=r e^{i \varphi} \in \Omega_{0}^{s k}$, let $f_{s k}(z):=$
$\alpha_{s k} \varphi+\beta_{s k}$, where $\alpha_{s k}, \beta_{s k} \in \mathbf{C}$, are chosen such that $f_{s k}\left(e^{i \varphi_{s k}}\right)=$ $V_{s}\left(e^{i \varphi_{s k}}\right)$ and $\partial f_{s k} / \partial \varphi=\alpha_{s k}=W_{s}\left(e^{i \varphi_{s k}}\right)$, so that $\left|\alpha_{s k}\right| \leq 2^{s / 2}$.

Let f_{s} be the function defined on Ω_{0}^{s} which is equal to $f_{s k}$ on $\Omega_{0}^{s k}$. And let $f=\sum_{s=0}^{\infty} f_{s} \chi_{s}$. Then f is well-defined on some neighbourhood Ω_{0}^{\prime} of F_{0}. It is not too difficult to see that f satisfies (5). In the sequel, we identify Ω_{0} and Ω_{0}^{\prime}.

Using the localization scheme of Vitushkin (similarly to [4, Lemma 2.2(8), Corollary 6.3]), one can prove that for each $R>0$, there exists $\left\{f_{n}^{R}\right\} \subset L\left(F_{0}^{R}\right)$, where $F_{0}^{R}=F_{0} \cap\{|z| \leq R\}$, such that $f_{n}^{R} \longrightarrow f$ in $C_{\text {jet }}^{1}\left(F_{0}^{R}\right)$ as $n \rightarrow+\infty$ (see [4] and [2, section 2.1]; in our particular case, since the interior of F_{0} is empty and the union of all the lines in $\mathbf{C} \backslash F_{0}$ is everywhere dense, we only need a very simple part of the localization scheme).
Let us now consider the Banach space
$V=\left\{g \in C^{1}\left(\mathbf{R}^{2}\right) \mid\|g\|:=\sup _{z \in \mathbf{R}^{2}}\left\{\max \{|g(z)|,|\nabla g(z)|\}\left(1+|z|^{2}\right)\right\}<\infty\right\}$
with norm $\|\cdot\|$. This space satisfies the conditions (1)-(4) of [2]. From the fact that V is locally equivalent to the space $C^{1}\left(\mathbf{R}^{2}\right)$ and from the approximation properties of f on F_{0}^{R} mentioned above, it follows also that there exists a locally finite family of balls covering F_{0} such that for each ball B in this family and for each $\varepsilon \geq 0$, there exists g such that $L g=0$ on some neighbourhood of $F_{0} \cap \bar{B}$ and $\|f-g\|_{F_{0} \cap \bar{B}}<\varepsilon$ i.e. f is approximable locally on F_{0} in the norm of V by (local) L analytic functions. Theorem 2 in [2] now states that this is equivalent to global approximation, that is, for each $\varepsilon>0$, there exists an L-analytic function g on (all of) F_{0} such that $\|f-g\|_{F_{0}}<\varepsilon$.
Denote by $\mathbf{R}_{\infty}^{2}=\mathbf{R}^{2} \cup\{\infty\}$ the one-point compactification of \mathbf{R}^{2}. Since $\mathbf{R}_{\infty}^{2} \backslash F_{0}$ is connected and locally connected (that is, F_{0} is a $R K L$-set in the terminology of [2] (the letters stand for Roth-KeldyshLavrentieff)), we can use an analog of Runge's theorem obtained in [2, Theorem 1] to approximate in the norm of $V L$-analytic functions on F_{0} by L-entire functions. We thus conclude that we can find an L-entire function h such that $\|f-h\|_{F_{0}} \leq 1$. Using the estimate

$$
\begin{equation*}
|\partial \psi(z) / \partial \varphi|<|\nabla \psi(z)||z| \tag{6}
\end{equation*}
$$

this gives that (5) is satisfied when h is substituted for f.
Now define $v(z)=h(z)$ in Ω_{0} and $v(z)=U\left(e^{i \arg (z)}\right)$ in $\cup_{j=1}^{\infty} \Omega_{j}$. Then $v \in L(\Omega)$, where $\Omega=\cup_{j=0}^{\infty} \Omega_{j}$ is a neighbourhood of F, and F is a $R K L$-set. Thus again by [2, Theorem 1], we can find $u \in L\left(\mathbf{R}^{2}\right)$ with $\|v-u\|_{F} \leq 1$. It suffices to notice, using (6) with $\psi=u-v$, that u is the desired L-entire function. Theorem 1 is proved.

Proof of Theorem 2: Part (a) of Theorem 2 trivially follows from Theorem 1, since it suffices to extend g from K to S by setting $g=0$ on $S \backslash K$.

Suppose that $K \neq S$. The necessity in (b) is also a simple consequence of the proof of Theorem 1. To obtain the sufficiency in (b), we consider the closed set $F=\left\{z=r e^{i \varphi} \in \mathbf{C} \mid e^{i \varphi} \in K, r \geq 1\right\}$ and the function $f(z)=f\left(r e^{i \varphi}\right):=g\left(e^{i \varphi}\right)$ on the $R K L$-set F.
An elementary proof (using only well known facts from one-dimensional real analysis) shows that for each $\varepsilon>0$, there exists a finite number of disjoint open arcs I_{j}, whose union $I=\cup I_{j}$ contains K, and a function h_{ε} on I such that h_{ε} has the form v_{12}^{*} (or v_{1}^{*}) (see Proposition 2) on each I_{j}, and

$$
\sup \left\{\left|g\left(e^{i \varphi}\right)-h_{\varepsilon}\left(e^{i \varphi}\right)\right| \mid e^{i \varphi} \in K\right\}<\varepsilon
$$

Thus $f(z)$ is approximable uniformly on F by functions $h_{\varepsilon}(z)=$ $h_{\varepsilon}\left(e^{i \arg (z)}\right) \in L(F)$.

The end of the proof is now similar to that of Theorem 1 . We just need to take the following new approximation space:

$$
V=\left\{\psi \in C\left(\mathbf{R}^{2}\right) \mid\|\psi\|=\sup _{z \in \mathbf{C}}(|\psi(z)|(1+|z|))<\infty\right\} .
$$

Finally, if $K=S$, then $u=u_{g}$ must be bounded in \mathbf{R}^{2}, and hence $|\nabla u|$ is also bounded (see the beginning of the proof of Theorem 1). Then, considering $\partial_{1} u$ and $\partial_{2} u$ and using Proposition 1, we reduce the proof to an application of Liouville's Theorem for holomorphic functions.

References

1. A. V. Bitsadze, "Boundary-value problems for second order elliptic equations," North-Holland Series in Applied Mathematics and Mechanics 5, North-Holland, Amsterdam, 1968.
2. A. Boivin and P. V. Paramonov, Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions, Sb. Math. 189(4) (1998), 481-502.
3. D. GaiEr, "Lectures on Complex Approximation," Birkhäuser, Boston Basel Stuttgart, 1987.
4. P. V. Paramonov, On harmonic approximation in the C^{1}-norm, Math. USSR-Sb. 71(1) (1992), 183-207.
5. P. V. Paramonov and K. Yu. Fedorovski, On C^{1}-approximation of functions by polynomial solutions of homogeneous elliptic
equations of second order on compact sets in \mathbf{R}^{2}, Dep. in VINITI 2965-B96 (1996), 1-15. (In Russian).
6. P. V. Paramonov and J. Verdera, Approximation by solutions of elliptic equations on closed subsets of Euclidean space, Math. Scand. 74 (1994), 249-259.
7. A. Roth, Approximationseigenschaften und strahlengrenzwerte meromorpher und ganzer funktionen, Comment. Math. Helv. 11 (1938), 77-125.

André Boivin:	Peter V. Paramonov:
Department of Mathematics	Mechanics and Mathematics Faculty
University of Western Ontario	Moscow State (Lomonosov) University
London (Ontario)	119899 Moscow
CANADA N6A 5B7	RUSSIA
e-mail: boivin@uwo.ca	e-mail: petr@paramonov.msk.ru

Peter V. Paramonov:
Mechanics and Mathematics Faculty 119899 Moscow
e-mail: petr@paramonov.msk.ru

Primera versió rebuda el 10 de març de 1998, darrera versió rebuda el 23 de juny de 1998

[^0]: Keywords. Elliptic operator, L-entire functions, radial limit functions.
 *The first author was partially supported by NSERC (Canada).
 ${ }^{\dagger}$ The second author was supported by RFBR (grants No 96-01-01240 \& 96-15-96846).

