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HILBERT-VALUED FORMS AND BARRIERS
ON WEAKLY PSEUDOCONVEX DOMAINS

Vincent Thilliez

Abstract
We introduce an alternative proof of the existence of certain Ck

barrier maps, with polynomial explosion of the derivatives, on
weakly pseudoconvex domains in Cn. Barriers of this sort have
been constructed very recently by J. Michel and M.-C. Shaw,
and have various applications. In our paper, the adaptation of
Hörmander’s L2 techniques to suitable vector-valued functions al-
lows us to give a very simple approach of the problem and to
improve some aspects of the result of Michel and Shaw, regarding
the explosion of the barrier and the regularity assumption on the
domain.

Introduction and statement of results

Let Ω be a bounded weakly pseudoconvex domain in Cn with Lip1

boundary ∂Ω and let Ω∗ be a bounded domain with Lip1 boundary such
that Ω̄ ⊂ Ω∗. Put U = Ω∗\Ω̄. The aim of the present paper is to give a
simple proof of the following theorem.

Main Theorem. Let k be a positive integer. There exist functions
w1, . . . , wn belonging to Ck(Ω× Ū) and satisfying the following proper-
ties:

(1) For any ζ in Ū and any j = 1, . . . , n the function wj(·, ζ) is
holomorphic in Ω.

(2) For any (z, ζ) in Ω× Ū , one has

n∑
j=1

wj(z, ζ)(zj − ζj) = 1.

Keywords. Barrier maps, weakly pseudoconvex domains, Ck estimates.
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(3) There exists a constant Ck, depending only on k, Ω and Ω∗, such
that the estimate

|D`
ζwj(z, ζ)| ≤ Ck dist(z, ∂Ω)−((n+1)k+n2+5n+2)

holds for any j = 1, . . . , n, any derivation D`
ζ of order ` ≤ k with

respect to ζ, and any (z, ζ) in Ω× Ū .

It is essential to remark that a quite similar result has been obtained
previously by Joachim Michel and Mei-Chi Shaw [8]. However, the proof
in [8], using the powerful machinery from [7], seems much more technical
than ours. It also requires the boundary of Ω to be C2-smooth, while
we require only Lip1 regularity. Moreover, the article [8] yelds Ck func-
tions wj(z, ζ) having their growth controlled by dist(z, ∂Ω)−(ank

2+bn)

(for suitable an, bn) instead of dist(z, ∂Ω)−(ank+bn) as in statement (3).
So our version of the theorem improves the main result in [8] with respect
to both aspects. It should be also pointed out that a so-called “barrier
map” such as (w1, . . . , wn) has many applications, for which we refer the
reader to [8], [9], [10], [11]. Of course, our improved barrier allows one
to obtain, more or less mechanically, some improvements of these appli-
cations too (see e.g. the estimates for the solution of ∂̄ on annuli given by
Theorem 2 in [8]). The essential trick of our proof of the main theorem
consists in “hiding” the parameter ζ ∈ U by means of Hörmander-type
L2 techniques applied to square-integrable functions taking their values
in a Sobolev space Hm(U). We organize this as follows. Section 1 gath-
ers some properties of Hilbert-valued differential forms needed in the
rest of the paper. In section 2, a classical homological device leads to a
Hm(U)-valued barrier map. Then Ck regularity and estimates for the
barrier are obtained by elementary arguments, for a suitable choice of m.

1. The ∂̄-operator for Hilbert-valued forms

1.1. Notations. Throughout this section, H will denote a complex
separable Hilbert space, 〈· | ·〉H its inner product (with the convention
that 〈h | h′〉H is linear with respect to h′) and ‖ · ‖H the corresponding
norm. It is assumed that there exists a conjugation, in other words an
antilinear isometric involution h ∈ H 7→ h̄ ∈ H (the notation h̄ should
cause no confusion). For (h, h′) ∈ H ×H, put

B(h, h′) = 〈h̄ | h′〉H.

Then B is clearly a continuous bilinear symmetric form on H. Now let
q be an integer, q ≥ 0. Denote by Λ(0,q) the space of (0, q)-forms on Cn.
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Any element η of Λ(0,q) ⊗H can be written

η =
∑
Q

dz̄Q ⊗ ηQ

where the summation is performed for all Q = (j1, . . . , jq), 1 ≤ j1 <
· · · < jq ≤ n, with the standard meaning dz̄j1 ∧ · · · ∧ dz̄jq for dz̄Q, and
with each ηQ belonging to H. Thus the inner product 〈· | ·〉H, as well as
the Hilbert norm ‖ · ‖H, extends naturally to Λ(0,q)⊗H by means of the
formula

〈η | η′〉H =
∑
Q

〈ηQ | η′Q〉H.

Let Ω be as in the introduction. We denote by L2(Ω;H, loc) the space
of locally square-integrable H-valued functions in Ω (see [2] for the main
facts about such spaces), endowed with the topology of L2-convergence
on compact subsets of Ω. The corresponding space of H-valued (0, q)-
differential forms L2(Ω; Λ(0,q) ⊗ H, loc) will be written L2

(0,q)(Ω;H, loc)
for short. When H = C, this is the familiar space of (0, q)-forms with
locally square-integrable coefficients used in Hörmander’s L2 theory for
∂̄. At last, for any map f : Ω −→ H, any h in H and z in Ω, we put

(1.1.1) fh(z) = 〈h | f(z)〉H.
Obviously, if f belongs to L2(Ω;H, loc), then fh belongs to L2(Ω;C, loc).

1.2. A ∂̄-operator. The process to define ∂̄ on H-valued L2 spaces
is the same as for usual L2 spaces. Let D(Ω;H) be the space of C∞, com-
pactly supported, H-valued functions in Ω, endowed with its standard
(LF) topology. For any f belonging to L2(Ω;H, loc) and any j = 1, . . . , n
we define ∂f/∂z̄j as the continuous linear form on D(Ω;H) such that〈

∂f

∂z̄j
, ϕ

〉
= −

∫
Ω

B

(
f(z),

∂ϕ

∂z̄j
(z)
)
dV (z) for all ϕ ∈ D(Ω;H).

Here dV denotes the standard Lebesgue measure and 〈·, ·〉 is the dual-
ity bracket. If there exists a function gj in L2(Ω;H, loc) such that the
equality∫

Ω

B(gj(z), ϕ(z)) dV (z) = −
∫

Ω

B

(
f(z),

∂ϕ

∂z̄j
(z)
)
dV (z)

holds for any ϕ in D(Ω;H) (for instance, this is straightforward when f
is C1), then ∂f/∂z̄j identifies with gj . Hence it is possible to define

∂̄f =
n∑
j=1

dz̄j ⊗
∂f

∂z̄j
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as an element of L2
(0,1)(Ω;H, loc). This definition extends in a purely

algebraic way to higher degrees, giving rise to a ∂̄-complex on
L2

(0,q)(Ω;H, loc) spaces. We describe now some basic rules about this
complex.

1.3. Lemma. Let f be a function belonging to L2(Ω;H, loc) and
such that ∂̄f belongs to L2

(0,1)(Ω;H, loc). Then for any h in H and any
j = 1, . . . , n, one has, in the sense of notation (1.1.1),

∂fh
∂z̄j

=
(
∂f

∂z̄j

)
h

in L2(Ω;C, loc).

Thus if ∂̄f equals zero, the function fh is holomorphic (in the usual
sense) in Ω.

Proof: For any ψ in D(Ω;C) and any z in Ω, one has

fh(z)
∂ψ

∂z̄j
(z) =

〈
∂ψ

∂z̄j
(z)h | f(z)

〉
H

=
〈
∂ψ

∂z̄j
(z)h̄ | f(z)

〉
H

= B

(
f(z),

∂(ψ ⊗ h̄)
∂z̄j

(z)
)
,

hence
〈
∂fh
∂z̄j

, ψ

〉
equals

〈
∂f

∂z̄j
, (ψ ⊗ h̄)

〉
. On the other hand, one has

similarly(
∂f

∂z̄j

)
h

(z)ψ(z) =
〈
ψ(z)h | ∂f

∂z̄j
(z)
〉
H

=
〈
ψ(z)h̄ | ∂f

∂z̄j
(z)
〉
H

= B

(
∂f

∂z̄j
(z), (ψ ⊗ h̄)(z)

)
,

hence
〈(

∂f

∂z̄j

)
h

, ψ

〉
also equals

〈
∂f

∂z̄j
, (ψ ⊗ h̄)

〉
. This proves the first

assertion of the lemma. In the particular case ∂̄f = 0, one gets imme-
diately ∂̄fh = 0 in the usual distribution sense. The second assertion
follows.

Now let (eν)ν∈Z be a Hilbert basis for H. For any map f : Ω −→
Λ(0,q) ⊗H, f =

∑
Q dz̄Q ⊗ fQ, we define the νth component fν of f by

fν(z) =
∑
Q

〈eν | fQ(z)〉H dz̄Q, z ∈ Ω.
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In particular, for q = 0, one has fν(z) = 〈eν | f(z)〉H = feν (z) in the
sense of (1.1.1). The following properties are then easy to check:

(i) For any z in Ω, the equality f(z) =
∑
ν∈Z fν(z) ⊗ eν holds in

Λ(0,q) ⊗H, and consequently ‖f(z)‖2H =
∑
ν∈Z |fν(z)|2.

(ii) If f belongs to L2
(0,q)(Ω;H, loc), then each fν belongs to

L2
(0,q)(Ω;C, loc) and the equality f =

∑
ν∈Z fν ⊗ eν holds in

L2
(0,q)(Ω;H, loc).

(iii) If moreover ∂̄f belongs to L2
(0,q+1)(Ω;H, loc), then for each ν the

form ∂̄(fν) belongs to L2
(0,q+1)(Ω;C, loc) and satisfies ∂̄(fν) =

(∂̄f)ν .

Although simple, these properties are the key to the following Hör-
mander-type result.

1.4. Proposition. Let ϕ be a continuous plurisubharmonic function
in Ω. Let q be an integer, q≥0. Then for any form f in L2

(0,q+1)(Ω;H, loc)
satisfying ∂̄f = 0 and∫

Ω

‖f(z)‖2He−ϕ(z) dV (z) <∞,

there exists a form g in L2
(0,q)(Ω;H, loc) such that ∂̄g = f and

∫
Ω

‖g(z)‖2He−ϕ(z) dV (z) ≤ CΩ

∫
Ω

‖f(z)‖2He−ϕ(z) dV (z),

where CΩ is a positive constant depending only on the diameter of Ω.

Proof: By properties (i)-(iii) above, it is easily seen that for each
ν, the form fν lies in L2

(0,q+1)(Ω;C, loc), is ∂̄-closed, and has finite
weighted norm

∫
Ω
|fν(z)|2e−ϕ(z) dV (z). Applying a standard result of

Hörmander ([5, 4.4.2]), we solve ∂̄ componentwise: one gets a form gν
in L2

(0,q)(Ω;C, loc) such that ∂̄gν = fν and
∫

Ω
|gν(z)|2e−ϕ(z) dV (z) ≤

CΩ

∫
Ω
|fν(z)|2e−ϕ(z) dV (z). This, together with the elementary fact

‖gν(z)⊗eν‖H = |gν(z)|, allows easily to check that the series
∑
ν∈Z gν⊗eν

converges in L2
(0,q)(Ω;H, loc) to a form g satisfying all the required prop-

erties.



428 V. Thilliez

1.5. Remark. When the Hilbert space H is chosen as a Sobolev
space (this choice will be adopted in the next section), Proposition 1.4
can be viewed as a result on parameter dependence for ∂̄ in weighted L2

spaces, with a weight which does not depend on the parameter. Different
results for parameter-depending weights can be found in [4].

2. Construction of a barrier map

2.1. Setting of the construction. Let U and k be as in the intro-
duction. From now on, the Hilbert space H will be the Sobolev space
Hm(U) with m = n + k + 1. By Sobolev’s lemma, this choice of m
ensures the inclusion Hm(U) ⊂ Ck(Ū) with continuous injection (this is
the only reason why some regularity for ∂Ω —namely Lip1, see e.g. [1]—
is required in this work). There exists a positive constant Ak depending
only on k, Ω and Ω∗, such that for any integer ` with 0 ≤ ` ≤ k and any
derivation D`

ζ of order `, the estimate

(2.1.1) |D`
ζF (ζ)| ≤ Ak‖F‖Hm(U)

holds for any ζ ∈ Ū and any F ∈ Hm(U). In particular, F 7→ F (ζ)
is a continuous linear form on the Hilbert space Hm(U), so there ex-
ists h(ζ) in Hm(U) such that one has F (ζ) = 〈h(ζ) | F 〉Hm(U) for any
F ∈ Hm(U). Consequently, any map f belonging to L2(Ω;Hm(U), loc)
satisfies, with the notation (1.1.1),

(2.1.2) f(z, ζ) = fh(ζ)(z) for all (z, ζ) ∈ Ω× Ū .
This, together with Lemma 1.3, implies clearly the following fact: if ∂̄f
(in the sense of section 1) belongs to L2

(0,1)(Ω;Hm(U), loc), then for any
(z, ζ) ∈ Ω × Ū , one can view (∂̄f)(z, ζ) as ∂̄z(f(z, ζ)) computed in the
usual space L2

(0,1)(Ω;C, loc), with ζ fixed. This remark extends obviously
to forms of higher degrees.

Now we follow the pattern of the classical work of L. Hörmander [6].
For any integer s and any real γ with s ≥ 0, γ ≥ 0, let Ls,qγ be the space of
families w = (wI ; I ∈ {1, . . . , n}s) of elements of L2

(0,q)(Ω;Hm(U), loc)
satisfying, for each multi-index I ∈ {1, . . . , n}s, both following proper-
ties:

(2.1.3)
∫

Ω

‖wI(z, ·)‖2Hm(U) dist(z, ∂Ω)2γ dV (z) <∞,

(2.1.4) the map

(t1, . . . , ts) 7−→
∑

I∈{1,... ,n}s
t1i1 . . . t

s
is wI

is s-linear alternating with respect to (t1, . . . , ts) ∈ (Cn)s.
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The ∂̄-operator defined in section 1 extends to Ls,qγ by putting ∂̄w =
(∂̄wI ; I ∈ {1, . . . , n}s).

For j = 1, . . . , n and for any f in L2(Ω;Hm(U), loc), let σjf be the
map which, to each point z ∈ Ω, associates the function

(σjf)(z, ·) : ζ ∈ U 7−→ (zj − ζj)f(z, ζ).

It is not difficult to see that σjf itself belongs to L2(Ω;Hm(U), loc) and
that for any z ∈ Ω, one has

(2.1.5) ‖(σjf)(z, ·)‖Hm(U) ≤ C‖f(z, ·)‖Hm(U)

with a suitable positive constant C, depending only on m and on the size
of Ω, Ω∗. In particular, σj acts componentwise as a continuous linear
operator on all the spaces L2

(0,q)(Ω;Hm(U), loc).

Now let w be an element of Ls+1,q
γ . For each I = (i1, . . . , is) in

{1, . . . , n}s, we put

(Pw)I =
n∑
j=1

σjw(I,j),

with (I, j) = (i1, . . . , is, j). Note that for (z, ζ) ∈ Ω × U , one gets
explicitely

(Pw)I(z, ζ) =
n∑
j=1

(zj − ζj)w(I,j)(z, ζ).

Also, by the properties of σj described above (especially (2.1.5)), this
defines an element Pw of Ls,qγ . It is straightforward to check that the
operator P commutes with ∂̄ and that it satisfies P 2 = 0, giving a double
complex just as in [6].

2.2. Lemma. Let w be an element of Ls,q+1
γ such that ∂̄w = 0. Then

there exists v in Ls,qγ such that ∂̄v = w.

Proof: Obvious by Proposition 1.4 applied with

ϕ(z) = −2γ Log dist(z, ∂Ω).
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2.3. Lemma. Let v be an element of Ls,qγ such that Pv = 0. Then
there exists w in Ls+1,q

γ+m+1 such that Pw = v. If one has additionally
∂̄v = 0, then ∂̄w belongs to Ls+1,q+1

γ+m+2 .

Proof: Following [6, Lemma 6], we define explicitely

wI(z, ζ) =
s+1∑
k=1

(−1)s+1−k z̄ik − ζ̄ik
|z − ζ|2 vI\(ik)(z, ζ)

for I = (i1, . . . , is+1) ∈ {1, . . . , n}s+1, (z, ζ) ∈ Ω × U and I\(ik) = “I
with the index ik deleted”. Just as in [6], one gets Pw = v and part
(2.1.4) of the definition of Ls+1,q

γ is satisfied. The only things to check
are the growth conditions. But for any (z, ζ) ∈ Ω×U and any derivation
D`
ζ of order at most m, it is clear that

∣∣∣∣D`
ζ

(
z̄ik − ζ̄ik
|z − ζ|2

)∣∣∣∣ ≤ C ′ dist(z, ∂Ω)−(m+1),

hence

‖wI(z, ·)‖2Hm(U) ≤ C ′′ dist(z, ∂Ω)−2(m+1)
s+1∑
k=1

‖vI\(ik)(z, ·)‖2Hm(U),

for suitable positive constants C ′ and C ′′, depending only on m and on
the size of Ω, Ω∗. From these estimates, it is not difficult to prove that
w belongs to Ls+1,q

γ+m+1. The claim that ∂̄w belongs to Ls+1,q+1
γ+m+2 when ∂̄v

vanishes comes similarly, since one gets then

(∂̄wI)(z, ζ) =
s+1∑
k=1

(−1)s+1−k ∂̄z

(
z̄ik − ζ̄ik
|z − ζ|2

)
∧ vI\(ik)(z, ζ),

by elementary computations using the remarks in 2.1.

We are now ready to state the key result of this paper.

2.4. Theorem. For every element v of Ls,qγ satisfying ∂̄v = 0 and
Pv = 0, there exists an element w of Ls+1,q

γ+m+1+(m2 +1)(2n−q−s) such that
∂̄w = 0 and Pw = v.
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Proof: We essentially mimic the proof of Theorem 7 in [6], by de-
creasing induction on q and s. The only different point is that a special
attention has to be paid to the evolution of the index γ (invisible in [6])
during the induction. First, the result is trivial for q > n or s > n.
Now assume that it holds for data in Ls+1,q+1

γ′ where γ′ is an arbitrary
positive real number, and s ≤ n, q ≤ n. Let v be as in the statement of
the theorem. By 2.3, there exists w′ in Ls+1,q

γ+m+1 such that Pw′ = v and
∂̄w′ ∈ Ls+1,q+1

γ+m+2 . Since ∂̄(∂̄w′) = 0 and P (∂̄w′) = ∂̄(Pw′) = ∂̄v = 0, the
induction assumption applies to the data ∂̄w′ with γ′ = γ +m+ 2. One
gets w′′ in Ls+2,q+1

γ′′ with γ′′ = γ′+m+1+(m2 +1)(2n−(q+1)−(s+1)) =
γ+m+1+(m2 +1)(2n− q− s), such that Pw′′ = ∂̄w′ and ∂̄w′′ = 0. By
2.2, we can find w′′′ in Ls+2,q

γ′′ such that ∂̄w′′′ = w′′. Put w = w′−Pw′′′.
Since one has w′ ∈ Ls+1,q

γ+m+1 ⊂ Ls+1,q
γ′′ , we see that w belongs to Ls+1,q

γ′′ .
Finally one checks that ∂̄w = ∂̄w′− ∂̄(Pw′′′) = Pw′′−P (∂̄w′′′) = 0 and
Pw = Pw′ = v.

2.5. Proof of the main theorem of the introduction: The application of
2.4 with q = s = γ = 0 and v ≡ 1 yelds functions w1, . . . , wn belonging
to L2(Ω;Hm(U), loc) and satisfying the following properties:

∂̄wj = 0 (in the sense of section 1) for j = 1, . . . , n,(2.5.1)

n∑
j=1

wj(z, ζ)(zj − ζj) = 1 for any (z, ζ) ∈ Ω× U,(2.5.2)

∫
Ω

‖wj(z, ·)‖2Hm(U) dist(z, ∂Ω)2(n+1)(m+2)−2 dV (z) <∞(2.5.3)

for j = 1, . . . , n.

Observe that property (2.5.2) is true as well for ζ ∈ Ū , since the functions
wj(z, ·) extend continuously to Ū for all fixed z ∈ Ω (see 2.1). Also, in
virtue of Lemma 1.3, of the representation formula (2.1.2) and of (2.5.1),
the function z 7→ wj(z, ζ) is holomorphic in Ω for each ζ ∈ Ū . By
the same ideas, this can be shown as well for the functions D`

ζwj(·, ζ),
` ≤ k. Thus we have proved part (1) and (2) of the main theorem.
We proceed now to prove part (3). For z ∈ Ω, let Bz be the euclidean
ball with center z and radius 1

2 dist(z, ∂Ω). The plurisubharmonicity of
|D`

ζwj(·, ζ)|2 yelds

|D`
ζwj(z, ζ)|2 ≤ C dist(z, ∂Ω)−2n

∫
Bz

|D`
ζwj(t, ζ)|2 dV (t)
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for some constant C. Besides, one has 1 ≤ 2 dist(z, ∂Ω)−1 dist(t, ∂Ω)
for all t ∈ Bz. From this, and from the estimate (2.1.1) applied to
F = wj(t, ·), we deduce

|D`
ζwj(z, ζ)|2 ≤ C ′ dist(z, ∂Ω)−2(n+(m+2)(n+1))+2

×
∫

Ω

‖wj(t, ·)‖2Hm(U) dist(t, ∂Ω)2(n+1)(m+2)−2 dV (t),

for some suitable constant C ′ depending on k, Ω, Ω∗. Taking into account
(2.5.3) and the value m = n+k+1, this proves part (3) of the main theo-
rem. Now we end by showing how to obtain Ck regularity with respect to
both variables (z, ζ) ∈ Ω×Ū . This requires actually standard arguments,
so we will just sketch the proof for C0 regularity. Pick (z0, ζ0) ∈ Ω× Ū
and put E1 = wj(z, ζ)−wj(z0, ζ), E2 = wj(z0, ζ)−wj(z0, ζ0). One has
clearly |E1| ≤ C(z0, ζ)|z − z0| with

C(z0, ζ) = Sup
1≤p≤n, t∈Bz0

∣∣∣∣ ∂∂tpwj(t, ζ)
∣∣∣∣ .

But in virtue of the holomorphy of wj(t, ζ) with respect to t, of the
Cauchy formula and of the estimate (3) of the theorem, we see that
C(z0, ζ) is bounded uniformly with respect to ζ ∈ Ū . Thus E1 tends to
0 uniformly with respect to ζ when z tends to z0. On the other hand,
since wj(z0, ·) is continuous, it is clear that E2 tends to 0 when ζ tends
to ζ0. As announced, one gets finally that wj(z, ζ) tends to wj(z0, ζ0)
as (z, ζ) tends to (z0, ζ0).

2.6. Concluding remark. The results described above suggest a
question: is it possible to obtain valuable information about parameter
dependence in Skoda’s theorem ([13, Théorème 1]) by the kind of argu-
ment used in the present paper ? It is known (see e.g. [3], [7], [12]) that
such a result would have significant consequences in the construction of
integral operators solving the ∂̄-equation.
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