MEAN GROWTH OF H^{p} FUNCTIONS

Daniel Girela and María Auxiliadora Márquez

Abstract
A classical result of Hardy and Littlewood asserts that if $0<p<$ $q<\infty$ and f is a function which is analytic in the unit disc and belongs to the Hardy space H^{p}, then, if $\lambda \geq p$ and $\alpha=\frac{1}{p}-\frac{1}{q}$, we have

$$
\int_{0}^{1}(1-r)^{\lambda \alpha-1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{q} d \theta\right)^{\lambda / q} d r<\infty
$$

We prove that this result is sharp in a very strong sense. Indeed, we prove that if p, q, λ and α are as above and φ is a positive, continuous and increasing function defined in $[0, \infty)$ with $\frac{\varphi(x)}{x^{q}} \rightarrow \infty$, as $x \rightarrow \infty$, then there exists a function $f \in H^{p}$ such that

$$
\int_{0}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{I} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r=\infty
$$

for every non-degenerate interval $I \subset[0,2 \pi]$. We also prove a result of the same kind concerning functions f such that $f^{\prime} \in H^{p}$, $0<p<1$.

1. Introduction and statement of results

Let Δ denote the unit disc $\{z \in \mathbb{C}:|z|<1\}$ and \mathbb{T} the unit circle $\{\xi \in \mathbb{C}:|\xi|=1\}$. For $0<r<1$ and g analytic in Δ we set

$$
\begin{aligned}
M_{p}(r, g) & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}, \quad 0<p<\infty \\
M_{\infty}(r, g) & =\max _{|z|=r}|g(z)|
\end{aligned}
$$

1991 Mathematics subject classifications: 30D55.
This research has been supported in part by a D.G.I.C.Y.T. grant (PB94-1496) and by a grant from "La Junta de Andalucía".

For $0<p \leq \infty$ the Hardy space H^{p} consists of those functions g, analytic in Δ, for which

$$
\|g\|_{H^{p}}=\sup _{0<r<1} M_{p}(r, g)<\infty
$$

Hardy and Littlewood proved in [6] (see also [2, Th. 5.9]) the following.
Theorem A. If $0<p<q \leq \infty$ and $f \in H^{p}$, then

$$
\begin{equation*}
M_{q}(r, f)=\mathrm{o}\left(\frac{1}{(1-r)^{\frac{1}{p}-\frac{1}{q}}}\right), \quad \text { as } r \rightarrow 1 \tag{1.1}
\end{equation*}
$$

Considering the function $f(z)=\frac{1}{(1-z)^{\frac{1}{p}-\varepsilon}}$ for small $\varepsilon>0$, we easily see that the exponent $\frac{1}{p}-\frac{1}{q}$ is best possible. Duren and Taylor proved in [3] (see also [8]) that the Hardy-Littlewood estimate (1.1) is sharp in a stronger sense. Namely, they proved the following result.

Theorem B. Let $0<p<q \leq \infty$, and let $\phi(r)$ be a positive and non-increasing function on $0 \leq r<1$, with $\phi(r) \rightarrow 0$, as $r \rightarrow 1$. Then there exists a function $f \in H^{p}$ such that

$$
M_{q}(r, f) \neq \mathrm{O}\left(\frac{\phi(r)}{(1-r)^{\frac{1}{p}-\frac{1}{q}}}\right), \quad \text { as } r \rightarrow 1
$$

Although, as we have said, Theorem A is best possible in a strong sense, Hardy and Littlewood were able to sharpen it in one direction proving the following useful result (see [2, Th. 5.11]).

Theorem C. If $0<p<q \leq \infty, f \in H^{p}, \lambda \geq p$, and $\alpha=\frac{1}{p}-\frac{1}{q}$, then

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{\lambda \alpha-1} M_{q}(r, f)^{\lambda} d r<\infty \tag{1.2}
\end{equation*}
$$

The fact that (1.2) implies (1.1) is clear having in mind that $M_{q}(r, f)$ is an increasing function of r. Let us remark that Flett gave in [4] a proof of Theorem C based on the Marcinkiewicz interpolation theorem. Also, it is worth noticing that if we take $q<\infty$ and $\lambda=q$ then we obtain the following:

If $0<p<q<\infty$ and $f \in H^{p}$,

$$
\text { then } \int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{\frac{q}{p}-2}\left|f\left(r e^{i \theta}\right)\right|^{q} d r d \theta<\infty
$$

Our first result in this paper shows that Theorem C is sharp in a very strong sense.

Theorem 1. Let $0<p<q<\infty, \lambda \geq p$, and $\alpha=\frac{1}{p}-\frac{1}{q}$. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a continuous and increasing function with

$$
\begin{equation*}
\frac{\varphi(x)}{x^{q}} \rightarrow \infty, \quad \text { as } x \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Then, there exists a function $f \in H^{p}$ such that

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{I} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r=\infty \tag{1.4}
\end{equation*}
$$

for every non-degenerate interval $I \subset[0,2 \pi]$.
In particular, if $0<p<q<\infty$ and $\varphi:[0, \infty) \rightarrow[0, \infty)$ is as above, then there exists a function $f \in H^{p}$ such that

$$
\int_{I} \int_{0}^{1}(1-r)^{\frac{q}{p}-2} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d r d \theta=\infty
$$

for every non-degenerate interval $I \subset[0,2 \pi]$.

According to a classical result of Privalov [2, Th. 3.11], a function f analytic in Δ has a continuous extension to the closed unit disc $\bar{\Delta}$ whose boundary values are absolutely continuous on $\partial \Delta$ if and only if $f^{\prime} \in H^{1}$. In particular,

$$
\begin{equation*}
f^{\prime} \in H^{1} \Rightarrow f \in H^{\infty} \tag{1.5}
\end{equation*}
$$

This result has been shown to be sharp. Indeed, Yamashita proved in [9] that there exists a function f analytic in Δ with $f^{\prime} \in H^{p}$ for all $p \in(0,1)$ but such that f is not even a normal function, and the first author has recently proved in [5] that no restriction on the growth of $M_{1}\left(r, f^{\prime}\right)$ other than its boundedness is enough to conclude that f is a normal function. We refer to $[\mathbf{1}]$ and $[\mathbf{7}]$ for the theory of normal functions. On the other hand, Hardy and Littlewood obtained the following generalization of (1.5) (see [2, Th. 5.12]).

Theorem D. Let f be a function which is analytic in Δ. If $0<p<1$ and $f^{\prime} \in H^{p}$ then $f \in H^{q}$, where $q=p /(1-p)$.

Taking $f^{\prime}(z)=(1-z)^{\varepsilon-\frac{1}{p}}$ for small $\varepsilon>0$ shows that for each value of $p \in(0,1)$ the index q is best possible. Our next result proves the sharpness of Theorem D in a much stronger sense.

Theorem 2. Let $0<p<1$ and $q=p /(1-p)$. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a continuous and increasing function satisfying (1.3). Then, there exists a function f analytic in Δ with $f^{\prime} \in H^{p}$ such that

$$
\begin{equation*}
\int_{I} \varphi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta=\infty \tag{1.6}
\end{equation*}
$$

for every non-degenerate interval $I \subset[0,2 \pi]$.
Let us remark that if p and q are as in Theorem 2 and $f^{\prime} \in H^{p}$, then, by Theorem $\mathrm{D}, f \in H^{q}$ and, hence, f has a finite non-tangential limit $f\left(e^{i \theta}\right)$ for almost every θ. Hence, the left hand side of (1.6) makes sense.

2. Proof of the results

The proofs of our results will be constructive. Let α and β be two positive real numbers, and let $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ be a sequence of real numbers with

$$
\begin{equation*}
0<\delta_{k}<2^{-k}, \quad \text { for all } k \tag{2.1}
\end{equation*}
$$

For $k=1,2, \ldots$, and $j=1,2, \ldots, 2^{k}$, define

$$
\begin{align*}
\theta_{j}^{k} & =\frac{2 \pi(2 j-1)}{2^{k+1}} \tag{2.2}\\
I_{j}^{k} & =\left(\theta_{j}^{k}-\delta_{k}, \theta_{j}^{k}+\delta_{k}\right) \tag{2.3}
\end{align*}
$$

Notice that, for each k, the intervals $I_{j}^{k}, j=1,2, \ldots, 2^{k}$, are pairwise disjoint. Set

$$
\begin{equation*}
r_{k}=1-\delta_{k}, \quad k=1,2, \ldots \tag{2.4}
\end{equation*}
$$

For $k=1,2, \ldots$, define

$$
\begin{equation*}
f_{k}(z)=\sum_{j=1}^{2^{k}} \frac{\delta_{k}^{\alpha}}{\left(1-r_{k} e^{-i \theta_{j}^{k}} z\right)^{\beta}}, \quad z \in \Delta \tag{2.5}
\end{equation*}
$$

Let us remark that the functions f_{k} are in fact analytic in the closed unit disc $\bar{\Delta}$. Actually, the functions f_{k} depend on α, β and the sequence $\left\{\delta_{k}\right\}$, however, we shall not indicate this dependence explicitely. We believe that this will not cause any confusion.

We shall make use of some lemmas to deal with the functions f_{k}. The proofs are elementary and some of them will be omitted. First of all, let us recall that

$$
\begin{align*}
& \left|1-r e^{i \theta}\right| \leq 2|\theta|, \quad 0<r \leq 1,1-r \leq|\theta| \leq \pi \tag{2.6}\\
& \left|1-r e^{i \theta}\right| \geq \frac{|\theta|}{\pi}, \quad 0<r \leq 1,|\theta| \leq \pi \tag{2.7}\\
& \left|1-e^{i \theta}\right| \geq 2 \frac{|\theta|}{\pi}, \quad|\theta| \leq \pi . \tag{2.8}
\end{align*}
$$

Lemma 1. If $l \neq m$, then

$$
\left|\theta_{l}^{k}-\theta_{m}^{k}\right| \geq \frac{\pi}{2^{k-1}}
$$

Lemma 2. If $\theta \in I_{j}^{k}$, then

$$
\begin{equation*}
\left|e^{i \theta_{j}^{k}}-r_{k} e^{i \theta}\right| \leq 2 \delta_{k} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|e^{i \theta_{l}^{k}}-r_{k} e^{i \theta}\right| \geq \frac{1}{2^{k-1}}, \quad \text { for all } l \neq j \tag{2.10}
\end{equation*}
$$

Proof: Let $\theta \in I_{j}^{k}$, then $\left|\theta-\theta_{j}^{k}\right|<\delta_{k}$, which, with (2.6), implies

$$
\left|e^{i \theta_{j}^{k}}-r_{k} e^{i \theta}\right|=\left|1-r_{k} e^{i\left(\theta-\theta_{j}^{k}\right)}\right| \leq\left|1-r_{k} e^{i \delta_{k}}\right| \leq 2 \delta_{k} .
$$

This is (2.9). Now, let $l \neq j$ and let φ_{l}^{k} be an angle such that $e^{i \varphi_{l}^{k}}=e^{i \theta_{l}^{k}}$ and $\left|\theta-\varphi_{l}^{k}\right| \leq \pi$. Then, using (2.4), (2.8), Lemma 1 and (2.1), we obtain

$$
\begin{aligned}
\left|e^{i \theta_{l}^{k}}-r_{k} e^{i \theta}\right| & =\left|e^{i \varphi_{l}^{k}}-r_{k} e^{i \theta}\right| \geq\left|e^{i \varphi_{l}^{k}}-e^{i \theta}\right|-\left|e^{i \theta}-r_{k} e^{i \theta}\right| \\
& =\left|e^{i \varphi_{l}^{k}}-e^{i \theta}\right|-\delta_{k} \geq 2 \frac{\left|\varphi_{l}^{k}-\theta\right|}{\pi}-\delta_{k} \\
& \geq \frac{2}{\pi}\left(\left|\varphi_{l}^{k}-\theta_{j}^{k}\right|-\left|\theta_{j}^{k}-\theta\right|\right)-\delta_{k} \geq \frac{2}{\pi}\left(\frac{\pi}{2^{k-1}}-\delta_{k}\right)-\delta_{k} \\
& \geq \frac{1}{2^{k-2}}-2 \delta_{k} \geq \frac{1}{2^{k-1}} .
\end{aligned}
$$

Hence, (2.10) holds.

Lemma 3. If $n<k$, then

$$
\left|\theta_{l}^{n}-\theta_{j}^{k}\right| \geq \frac{\pi}{2^{k}}, \quad \text { for all } l, j
$$

Lemma 4. If $\theta \in I_{j}^{k}, n<k$ and $0<r \leq 1$, then

$$
\left|e^{i \theta_{l}^{n}}-r_{n} r e^{i \theta}\right| \geq \frac{1}{2^{k+1}}, \quad \text { for all } l \in\left\{1,2, \ldots, 2^{n}\right\}
$$

Proof: Let $\theta \in I_{j}^{k}$ and let φ_{l}^{n} be defined as in the proof of Lemma 2. Then, using (2.7), Lemma 3, (2.3) and (2.1), we see that

$$
\begin{aligned}
\left|e^{i \theta_{l}^{n}}-r_{n} r e^{i \theta}\right| & =\left|e^{i \varphi_{l}^{n}}-r_{n} r e^{i \theta}\right| \geq \frac{\left|\varphi_{l}^{n}-\theta\right|}{\pi} \\
& \geq \frac{1}{\pi}\left(\left|\varphi_{l}^{n}-\theta_{j}^{k}\right|-\left|\theta_{j}^{k}-\theta\right|\right) \\
& \geq \frac{1}{\pi}\left(\frac{\pi}{2^{k}}-\delta_{k}\right)>\frac{1}{2^{k+1}}
\end{aligned}
$$

We shall see that a suitable choice of the numbers α, β and the sequence $\left\{\delta_{k}\right\}$ will allow us to construct functions f analytic in Δ having the properties asserted in Theorems 1 and 2. Precisely, we can prove the following results.

Theorem 3. Let $0<p<q<\infty, \lambda \geq p$, and $\alpha=\frac{1}{p}-\frac{1}{q}$. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a continuous and increasing function satisfying (1.3). Then, there exist two positive numbers α and β, a sequence of real numbers $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ which satisfies (2.1), and a sequence of positive numbers $\left\{c_{k}\right\}_{k=1}^{\infty}$, such that, if f is the function defined by

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} c_{k} f_{k}(z), \quad z \in \Delta \tag{2.11}
\end{equation*}
$$

then $f \in H^{p}$ and (1.4) holds for every non-degenerate interval $I \subset$ $[0,2 \pi]$.

Theorem 4. Let $0<p<1$ and $q=p /(1-p)$. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a continuous and increasing function satisfying (1.3). Then, there exist two positive numbers α and β, a sequence of real numbers $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ which satisfies (2.1), and a sequence of positive numbers $\left\{c_{k}\right\}_{k=1}^{\infty}$, such that, if f is the function defined by

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} c_{k} f_{k}(z), \quad z \in \Delta \tag{2.12}
\end{equation*}
$$

then f is analytic in $\Delta, f^{\prime} \in H^{p}$ and (1.6) holds for every non-degenerate interval $I \subset[0,2 \pi]$.

Clearly, Theorem 1 and Theorem 2 follow from Theorem 3 and Theorem 4 respectively.

Proof of Theorem 3: Let α be any positive number, and let

$$
\begin{equation*}
\beta=\alpha+\frac{1}{p} . \tag{2.13}
\end{equation*}
$$

Let $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ be a sequence of real numbers which satisfies (2.1) to be specified later. Set

$$
c_{k}=2^{-k\left(\frac{1}{p}+2\right)}, \quad k=1,2, \ldots .
$$

Define the functions $f_{k}, k=1,2, \ldots$, as in (2.5), let $g_{k}=c_{k} f_{k}$ for all k and let f be defined as in (2.11). Hence,

$$
f(z)=\sum_{k=1}^{\infty} g_{k}(z), \quad z \in \Delta .
$$

Notice that

$$
\left|g_{k}(z)\right|=\left|2^{-k\left(\frac{1}{p}+2\right)} f_{k}(z)\right| \leq \frac{2^{-k} \delta_{k}^{\alpha}}{(1-|z|)^{\beta}} \leq \frac{2^{-k}}{(1-|z|)^{\beta}}
$$

for all $z \in \Delta$ and, hence, the series $\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly on every compact subset of Δ and then it defines a function f which is analytic in Δ. Now, having in mind the elementary inequality

$$
\begin{aligned}
\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{p} \leq n^{p}\left(a_{1}^{p}+a_{2}^{p}\right. & \left.+\cdots+a_{n}^{p}\right) \\
p & >0, a_{i} \geq 0 \text { for } i=1,2, \ldots, n,
\end{aligned}
$$

and the fact that for each $\gamma>1$ there exists a constant $c=c_{\gamma}>0$ such that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|1-r e^{i \theta}\right|^{\gamma}} d \theta \leq \frac{c}{(1-r)^{\gamma-1}}, \quad 0<r<1 \tag{2.14}
\end{equation*}
$$

and using (2.4) and (2.13), we obtain that

$$
\begin{aligned}
\left\|g_{k}\right\|_{H^{p}}^{p}=\left\|g_{k}\left(e^{i \theta}\right)\right\|_{L^{p}}^{p} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{k}\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} c_{k}^{p} 2^{k p} \delta_{k}^{\alpha p} \sum_{j=1}^{2^{k}} \frac{1}{\left|1-r_{k} e^{-i \theta_{j}^{k}} e^{i \theta}\right|^{\beta p}} d \theta \\
& =\left(2^{k} c_{k}\right)^{p} \delta_{k}^{\alpha p} 2^{k} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|1-r_{k} e^{i \theta}\right|^{\beta p}} d \theta \\
& \leq 2^{-k p} \delta_{k}^{\alpha p} \frac{c}{\left(1-r_{k}\right)^{\beta p-1}}=2^{-k p} c
\end{aligned}
$$

where c is the positive constant which appears in (2.14) with $\gamma=\beta p>1$.
Thus, we have proved that

$$
\begin{equation*}
\left\|g_{k}\right\|_{H^{p}} \leq 2^{-k} c^{1 / p}, \quad k=1,2, \ldots \tag{2.15}
\end{equation*}
$$

which, clearly, implies that $f \in H^{p}$.
Next we turn to estimate the value of $\left|f\left(r e^{i \theta}\right)\right|$ when θ belongs to one of the intervals I_{j}^{k} given in (2.3), and $0<r<1$, or at least when θ is in a suitable subset of I_{j}^{k} and r is close to 1 , say $r_{k}<r<1$.

Suppose that $\theta \in I_{j}^{k}$ and $0<r<1$. Then

$$
\begin{align*}
\left|f\left(r e^{i \theta}\right)\right| & =\left|\sum_{n=1}^{\infty} g_{n}\left(r e^{i \theta}\right)\right| \\
& \geq\left|g_{k}\left(r e^{i \theta}\right)\right|-\sum_{n=1}^{k-1}\left|g_{n}\left(r e^{i \theta}\right)\right|-\sum_{n=k+1}^{\infty}\left|g_{n}\left(r e^{i \theta}\right)\right| \tag{2.16}
\end{align*}
$$

We shall estimate each of these three terms separetely.

First, for $\theta \in I_{j}^{k}$ and $0<r<1$,

$$
\left|g_{k}\left(r e^{i \theta}\right)\right|=c_{k}\left|\sum_{l=1}^{2^{k}} \frac{\delta_{k}^{\alpha}}{\left(1-r_{k} e^{-i \theta_{l}^{k}} r e^{i \theta}\right)^{\beta}}\right|
$$

$$
\begin{equation*}
\geq c_{k}\left(\frac{\delta_{k}^{\alpha}}{\left|1-r_{k} e^{-i \theta_{j}^{k}} r e^{i \theta}\right|^{\beta}}-\sum_{\substack{l=1 \\ l \neq j}}^{2^{k}} \frac{\delta_{k}^{\alpha}}{\left|1-r_{k} e^{-i \theta_{l}^{k}} r e^{i \theta}\right|^{\beta}}\right) \tag{2.17}
\end{equation*}
$$

If $r>r_{k}$, using (2.9) and (2.4), we see that

$$
\begin{aligned}
&\left|1-r_{k} e^{-i \theta_{j}^{k}} r e^{i \theta}\right|=\left|e^{i \theta_{j}^{k}}-r_{k} r e^{i \theta}\right| \leq\left|e^{i \theta_{j}^{k}}-r_{k} e^{i \theta}\right|+\left|r_{k} e^{i \theta}-r_{k} r e^{i \theta}\right| \\
& \leq 2 \delta_{k}+r_{k}(1-r) \leq 2 \delta_{k}+\left(1-r_{k}\right)=3 \delta_{k}
\end{aligned}
$$

If $l \neq j$ and $r>r_{k},(2.10),(2.4)$ and (2.1) give

$$
\begin{gathered}
\left|1-r_{k} e^{-i \theta_{l}^{k}} r e^{i \theta}\right|=\left|e^{i \theta_{l}^{k}}-r_{k} r e^{i \theta}\right| \geq\left|e^{i \theta_{l}^{k}}-r_{k} e^{i \theta}\right|-\left|r_{k} e^{i \theta}-r_{k} r e^{i \theta}\right| \\
\geq \frac{1}{2^{k-1}}-r_{k}(1-r) \geq \frac{1}{2^{k-1}}-\left(1-r_{k}\right)=\frac{1}{2^{k-1}}-\delta_{k} \geq \frac{1}{2^{k}}
\end{gathered}
$$

Then, (2.17) implies that

$$
\begin{align*}
\left|g_{k}\left(r e^{i \theta}\right)\right| & \geq c_{k}\left(\frac{\delta_{k}^{\alpha}}{\left(3 \delta_{k}\right)^{\beta}}-2^{k} \delta_{k}^{\alpha}\left(2^{k}\right)^{\beta}\right) \tag{2.18}\\
& =c_{k} \delta_{k}^{\alpha}\left(\frac{1}{\left(3 \delta_{k}\right)^{\beta}}-2^{k(1+\beta)}\right), \quad \theta \in I_{j}^{k}, r_{k}<r<1 .
\end{align*}
$$

Let us take the numbers δ_{k} so small that

$$
\begin{equation*}
2^{k(1+\beta)}<\frac{1}{2} \frac{1}{\left(3 \delta_{k}\right)^{\beta}}, \quad k=1,2, \ldots \tag{2.19}
\end{equation*}
$$

then, (2.18) and (2.13) give

$$
\begin{equation*}
\left|g_{k}\left(r e^{i \theta}\right)\right| \geq \frac{1}{2 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p}, \quad \theta \in I_{j}^{k}, r_{k}<r<1 \tag{2.20}
\end{equation*}
$$

Now we look at the second term of (2.16). Again, let $\theta \in I_{j}^{k}$ and $0<r<1$. For all $n<k$, we have, using Lemma 4 , that

$$
\begin{aligned}
\left|g_{n}\left(r e^{i \theta}\right)\right| & \leq c_{n} \sum_{l=1}^{2^{n}} \frac{\delta_{n}^{\alpha}}{\left|1-r_{n} e^{-i \theta_{l}^{n}} r e^{i \theta}\right|^{\beta}} \\
& =c_{n} \delta_{n}^{\alpha} \sum_{l=1}^{2^{n}} \frac{1}{\left|e^{i \theta_{l}^{n}}-r_{n} r e^{i \theta}\right|^{\beta}} \\
& \leq c_{n} \delta_{n}^{\alpha} 2^{n}\left(2^{k+1}\right)^{\beta}=2^{-n\left(\frac{1}{p}+1\right)} \delta_{n}^{\alpha} 2^{(k+1) \beta} \leq 2^{-n} 2^{(k+1) \beta}
\end{aligned}
$$

which shows that

$$
\sum_{n=1}^{k-1}\left|g_{n}\left(r e^{i \theta}\right)\right| \leq 2^{(k+1) \beta} \sum_{n=1}^{k-1} 2^{-n} \leq 2^{(k+1) \beta} \sum_{n=1}^{\infty} 2^{-n}=2^{(k+1) \beta}
$$

So we have found that

$$
\begin{equation*}
\sum_{n=1}^{k-1}\left|g_{n}\left(r e^{i \theta}\right)\right| \leq 2^{(k+1) \beta}, \quad \theta \in I_{j}^{k}, 0<r<1 \tag{2.21}
\end{equation*}
$$

Let us take the δ_{k} 's such that

$$
\begin{equation*}
\delta_{k}^{\alpha / \beta}<\frac{\pi}{2^{k}}, \quad \text { for all } k \tag{2.22}
\end{equation*}
$$

For $n=1,2, \ldots$, define

$$
\begin{equation*}
J_{l}^{n}=\left(\theta_{l}^{n}-\delta_{n}^{\alpha / \beta}, \theta_{l}^{n}+\delta_{n}^{\alpha / \beta}\right), \quad l=1,2, \ldots, 2^{n} \tag{2.23}
\end{equation*}
$$

Notice that (2.22) implies that, for each n, the intervals J_{l}^{n} $\left(l=1,2, \ldots, 2^{n}\right)$ are pairwise disjoint. Then, using (2.7), we easily obtain the following.

Lemma 5. Let $n>k$. If $\theta \in I_{j}^{k} \backslash \bigcup_{l=1}^{2^{n}} J_{l}^{n}$ and $0<r<1$, then

$$
\left|e^{i \theta_{l}^{n}}-r_{n} r e^{i \theta}\right| \geq \frac{1}{\pi} \delta_{n}^{\alpha / \beta}, \quad \text { for all } l \in\left\{1,2, \ldots, 2^{n}\right\}
$$

Now we are able to estimate the third term of (2.16). Take θ and r as in Lemma 5. We have

$$
\begin{aligned}
\left|g_{n}\left(r e^{i \theta}\right)\right| & \leq c_{n} \sum_{l=1}^{2^{n}} \frac{\delta_{n}^{\alpha}}{\left|1-r_{n} e^{-i \theta_{l}^{n}} r e^{i \theta}\right|^{\beta}} \\
& =c_{n} \delta_{n}^{\alpha} \sum_{l=1}^{2^{n}} \frac{1}{\left|e^{i \theta_{l}^{n}}-r_{n} r e^{i \theta}\right|^{\beta}} \\
& \leq c_{n} \delta_{n}^{\alpha} 2^{n}\left(\frac{\pi}{\delta_{n}^{\alpha / \beta}}\right)^{\beta}=\pi^{\beta} 2^{-n\left(\frac{1}{p}+1\right)} \leq \pi^{\beta} 2^{-n} .
\end{aligned}
$$

Thus for $\theta \in I_{j}^{k} \backslash \bigcup_{n=k+1}^{\infty} \bigcup_{l=1}^{2^{n}} J_{l}^{n}$ and $0<r<1$,

$$
\sum_{n=k+1}^{\infty}\left|g_{n}\left(r e^{i \theta}\right)\right| \leq \sum_{n=k+1}^{\infty} \pi^{\beta} 2^{-n} \leq \pi^{\beta} \sum_{n=1}^{\infty} 2^{-n}=\pi^{\beta}
$$

For $k=1,2, \ldots$, let

$$
\begin{equation*}
E_{j}^{k}=I_{j}^{k} \backslash \bigcup_{n=k+1}^{\infty} \bigcup_{l=1}^{2^{n}} J_{l}^{n}, \quad j=1,2, \ldots, 2^{k} \tag{2.24}
\end{equation*}
$$

So we have proved

$$
\begin{equation*}
\sum_{n=k+1}^{\infty}\left|g_{n}\left(r e^{i \theta}\right)\right| \leq \pi^{\beta}, \quad \theta \in E_{j}^{k}, 0<r<1 \tag{2.25}
\end{equation*}
$$

We conclude from (2.16), (2.20), (2.21) and (2.25), that
(2.26) $\left|f\left(r e^{i \theta}\right)\right| \geq \frac{1}{2 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p}-2^{(k+1) \beta}-\pi^{\beta}, \quad \theta \in E_{j}^{k}, r_{k}<r<1$.

Take the δ_{k} 's so small that

$$
\begin{equation*}
2^{(k+1) \beta}+\pi^{\beta}<\frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p} \tag{2.27}
\end{equation*}
$$

Then (2.26) gives

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \geq \frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p}, \quad \theta \in E_{j}^{k}, r_{k}<r<1 \tag{2.28}
\end{equation*}
$$

From (1.3) it is clear that

$$
\frac{\varphi\left(\lambda_{0} x\right)}{x^{q}} \rightarrow \infty, \quad \text { as } x \rightarrow \infty
$$

for every constant $\lambda_{0}>0$. Taking

$$
\lambda_{k}=\frac{1}{4 \cdot 3^{\beta}} c_{k}, \quad k=1,2, \ldots
$$

for each k, we have

$$
\left(\frac{\varphi\left(\lambda_{k} x\right)}{x^{q}}\right)^{\lambda / q} \rightarrow \infty, \quad \text { as } x \rightarrow \infty
$$

and hence there exists $\varepsilon_{k}>0$ such that

$$
\varepsilon^{\lambda / p} \varphi\left(\lambda_{k} \varepsilon^{-1 / p}\right)^{\lambda / q}>k, \quad 0<\varepsilon \leq \varepsilon_{k}
$$

Let us choose the numbers δ_{k} satisfying

$$
\begin{equation*}
0<\delta_{k} \leq \varepsilon_{k}, \quad k=1,2, \ldots \tag{2.29}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
\delta_{k}^{\lambda / p} \varphi\left(\frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p}\right)^{\lambda / q}>k, \quad k=1,2, \ldots \tag{2.30}
\end{equation*}
$$

Furthermore, we take the numbers δ_{k} so small that

$$
\begin{equation*}
\sum_{n=k+1}^{\infty} 2^{n+1} \delta_{n}^{\alpha / \beta} \leq \delta_{k}, \quad k=1,2, \ldots \tag{2.31}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left|E_{j}^{k}\right| \geq \delta_{k}, \quad j=1,2, \ldots, 2^{k} \tag{2.32}
\end{equation*}
$$

for all $k=1,2, \ldots$, where $\left|E_{j}^{k}\right|$ denotes the Lebesgue measure of the set E_{j}^{k}.

Now, if k is any positive integer, and $j \in\left\{1,2, \ldots, 2^{k}\right\}$, using (2.28), the fact that φ is increasing, (2.30) and (2.32), we obtain

$$
\begin{aligned}
\int_{0}^{1}(1-r)^{\lambda \alpha-1} & \left(\int_{I_{j}^{k}} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r \\
& \geq \int_{r_{k}}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{E_{j}^{k}} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r \\
& \geq \int_{r_{k}}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{E_{j}^{k}} \varphi\left(\frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p}\right) d \theta\right)^{\lambda / q} d r \\
& =\varphi\left(\frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1 / p}\right)^{\lambda / q}\left|E_{j}^{k}\right|^{\lambda / q} \int_{r_{k}}^{1}(1-r)^{\lambda \alpha-1} d r \\
& \geq k \delta_{k}^{-\lambda / p} \delta_{k}^{\lambda / q} \frac{\left(1-r_{k}\right)^{\lambda \alpha}}{\lambda \alpha}=k \delta_{k}^{-\lambda \alpha} \frac{\delta_{k}^{\lambda \alpha}}{\lambda \alpha}=\frac{1}{\lambda \alpha} k
\end{aligned}
$$

Thus, we have seen that

$$
\begin{align*}
\int_{0}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{I_{j}^{k}} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r \geq \frac{1}{\lambda \alpha} k & \tag{2.33}\\
& j=1,2, \ldots, 2^{k}, k=1,2, \ldots
\end{align*}
$$

Now, if $I \subset[0,2 \pi]$ is a non-degenerate interval, then it is clear that there exists k_{0} such that for every $k \geq k_{0}$ there exists $j_{k} \in\left\{1,2, \ldots, 2^{k}\right\}$ with $I_{j_{k}}^{k} \subset I$. Then, using (2.33), we see that

$$
\begin{aligned}
& \int_{0}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{I} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r \\
& \quad \geq \lim _{k \rightarrow \infty} \int_{0}^{1}(1-r)^{\lambda \alpha-1}\left(\int_{I_{j_{k}}^{k}} \varphi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right)^{\lambda / q} d r=\infty
\end{aligned}
$$

Hence, Theorem 3 is proved taking α, β and the sequence $\left\{c_{k}\right\}$ as above, and the δ_{k} 's satisfying (2.1), (2.19), (2.22), (2.27), (2.29) and (2.31), which is clearly possible.

Proof of Theorem 4: Let α be any positive number, and let

$$
\begin{equation*}
\beta=\alpha+\frac{1}{p}-1 \tag{2.34}
\end{equation*}
$$

Suppose that $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ is a sequence of real numbers which satisfies (2.1). Set

$$
c_{k}=2^{-2 k / p}, \quad k=1,2, \ldots,
$$

define the functions $f_{k}, k=1,2, \ldots$, as in (2.5), and let $g_{k}=c_{k} f_{k}$ for all k. Then,

$$
g_{k}^{\prime}(z)=c_{k} \sum_{j=1}^{2^{k}} \frac{\delta_{k}^{\alpha} \beta r_{k} e^{-i \theta_{j}^{k}}}{\left(1-r_{k} e^{-i \theta_{j}^{k}} z\right)^{\beta+1}}
$$

and

$$
\left|g_{k}^{\prime}(z)\right| \leq c_{k} \beta \sum_{j=1}^{2^{k}} \frac{\delta_{k}^{\alpha}}{\left|1-r_{k} e^{-i \theta_{j}^{k}} z\right|^{\beta+1}}
$$

Now, using the elementary inequality

$$
\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{p} \leq a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}, \quad a_{i} \geq 0 \text { for } i=1,2, \ldots, n
$$

which holds since $0<p<1$, (2.14) with $\gamma=(\beta+1) p>1$, (2.4) and (2.34), we have

$$
\begin{aligned}
\left\|g_{k}^{\prime}\right\|_{H^{p}}^{p}=\left\|g_{k}^{\prime}\left(e^{i \theta}\right)\right\|_{L^{p}}^{p} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{k}^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} c_{k}^{p} \beta^{p} \delta_{k}^{\alpha p} \sum_{j=1}^{2^{k}} \frac{1}{\mid 1-r_{k} e^{-i \theta_{j}^{k}} e^{i \theta \mid(\beta+1) p}} d \theta \\
& =c_{k}^{p} \beta^{p} \delta_{k}^{\alpha p} 2^{k} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|1-r_{k} e^{i \theta}\right|^{(\beta+1) p}} d \theta \\
& \leq 2^{-k} \beta^{p} \delta_{k}^{\alpha p} \frac{c}{\left(1-r_{k}\right)^{(\beta+1) p-1}}=2^{-k} \beta^{p} c
\end{aligned}
$$

So we have obtained that

$$
\begin{equation*}
\left\|g_{k}^{\prime}\right\|_{H^{p}}^{p} \leq 2^{-k} \beta^{p} c, \quad k=1,2, \ldots \tag{2.35}
\end{equation*}
$$

Let us define f by (2.12). It is clear that f is analytic in Δ. Since

$$
f^{\prime}(z)=\sum_{k=1}^{\infty} g_{k}^{\prime}(z)
$$

using (2.35), we deduce that

$$
\left\|f^{\prime}\right\|_{H^{p}}^{p} \leq \sum_{k=1}^{\infty}\left\|g_{k}^{\prime}\right\|_{H^{p}}^{p} \leq \sum_{k=1}^{\infty} 2^{-k} \beta^{p} c=\beta^{p} c<\infty
$$

and, hence, $f^{\prime} \in H^{p}$.
We shall argue as in the proof of Theorem 3. If $\theta \in I_{j}^{k}$, we have

$$
\begin{align*}
\left|f\left(e^{i \theta}\right)\right| & =\left|\sum_{n=1}^{\infty} g_{n}\left(e^{i \theta}\right)\right| \\
& \geq\left|g_{k}\left(e^{i \theta}\right)\right|-\sum_{n=1}^{k-1}\left|g_{n}\left(e^{i \theta}\right)\right|-\sum_{n=k+1}^{\infty}\left|g_{n}\left(e^{i \theta}\right)\right| . \tag{2.36}
\end{align*}
$$

First, we apply Lemma 2 to get

$$
\begin{aligned}
\left|g_{k}\left(e^{i \theta}\right)\right| & =c_{k}\left|\sum_{l=1}^{2^{k}} \frac{\delta_{k}^{\alpha}}{\left(1-r_{k} e^{-i \theta_{l}^{k}} e^{i \theta}\right)^{\beta}}\right| \\
& \geq c_{k}\left(\frac{\delta_{k}^{\alpha}}{\left|1-r_{k} e^{-i \theta_{j}^{k}} e^{i \theta}\right|^{\beta}}-\sum_{\substack{l=1 \\
l \neq j}}^{2^{k}} \frac{\delta_{k}^{\alpha}}{\left|1-r_{k} e^{-i \theta_{l}^{k}} e^{i \theta}\right|^{\beta}}\right) \\
& \geq c_{k} \delta_{k}^{\alpha}\left(\frac{1}{\left(2 \delta_{k}\right)^{\beta}}-2^{k} 2^{(k-1) \beta}\right)
\end{aligned}
$$

Notice that the sequence $\left\{\delta_{k}\right\}$ may be supposed to satisfy

$$
2^{k} 2^{(k-1) \beta}<\frac{1}{2} \frac{1}{\left(2 \delta_{k}\right)^{\beta}}, \quad k=1,2, \ldots .
$$

Then,

$$
\left|g_{k}\left(e^{i \theta}\right)\right| \geq c_{k} \delta_{k}^{\alpha} \frac{1}{2} \frac{1}{\left(2 \delta_{k}\right)^{\beta}}=\frac{1}{2 \cdot 2^{\beta}} c_{k} \delta_{k}^{\alpha-\beta}=\frac{1}{2^{\beta+1}} c_{k} \delta_{k}^{-1 / q} .
$$

So, we have proved that

$$
\begin{equation*}
\left|g_{k}\left(e^{i \theta}\right)\right| \geq \frac{1}{2^{\beta+1}} c_{k} \delta_{k}^{-1 / q}, \quad \theta \in I_{j}^{k} \tag{2.37}
\end{equation*}
$$

Next, take $\theta \in I_{j}^{k}$ and $n<k$. Using Lemma 4, we deduce that

$$
\begin{aligned}
\left|g_{n}\left(e^{i \theta}\right)\right| & \leq c_{n} \sum_{l=1}^{2^{n}} \frac{\delta_{n}^{\alpha}}{\left|1-r_{n} e^{-i \theta_{l}^{n}} e^{i \theta}\right|^{\beta}} \\
& =c_{n} \delta_{n}^{\alpha} \sum_{l=1}^{2^{n}} \frac{1}{\left|e^{i \theta_{l}^{n}}-r_{n} e^{i \theta}\right|^{\beta}} \\
& \leq c_{n} \delta_{n}^{\alpha} 2^{n}\left(2^{k+1}\right)^{\beta}=2^{n\left(1-\frac{2}{p}\right)} \delta_{n}^{\alpha} 2^{(k+1) \beta} \leq 2^{-n} 2^{(k+1) \beta} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{n=1}^{k-1}\left|g_{n}\left(e^{i \theta}\right)\right| \leq 2^{(k+1) \beta}, \quad \theta \in I_{j}^{k} \tag{2.38}
\end{equation*}
$$

For every positive integer n, define $J_{l}^{n}, l=1,2, \ldots, 2^{n}$, by (2.23), and suppose, as in the proof of Theorem 3, that (2.22) is satisfied. Notice that Lemma 5 holds for every $r \in(0,1)$, and so it also does for $r=1$. Finally, define the sets E_{j}^{k}, for $k=1,2, \ldots$, by (2.24). Then, the same argument used in the proof of Theorem 3 shows that

$$
\begin{equation*}
\sum_{n=k+1}^{\infty}\left|g_{n}\left(e^{i \theta}\right)\right| \leq \pi^{\beta}, \quad \theta \in E_{j}^{k} \tag{2.39}
\end{equation*}
$$

It follows from (2.36), (2.37), (2.38) and (2.39), that

$$
\left|f\left(e^{i \theta}\right)\right| \geq \frac{1}{2^{\beta+1}} c_{k} \delta_{k}^{-1 / q}-2^{(k+1) \beta}-\pi^{\beta}, \quad \theta \in E_{j}^{k}
$$

and, taking the numbers δ_{k} sufficiently small, we have

$$
\begin{equation*}
\left|f\left(e^{i \theta}\right)\right| \geq \frac{1}{2^{\beta+2}} c_{k} \delta_{k}^{-1 / q}, \quad \theta \in E_{j}^{k} \tag{2.40}
\end{equation*}
$$

For $k=1,2, \ldots$, let

$$
\lambda_{k}=\frac{1}{2^{\beta+2}} c_{k}
$$

and notice that (1.3) implies

$$
\frac{\varphi\left(\lambda_{k} x\right)}{x^{q}} \rightarrow \infty, \quad \text { as } x \rightarrow \infty
$$

and so there exists $\varepsilon_{k}>0$ such that

$$
\varepsilon \varphi\left(\lambda_{k} \varepsilon^{-1 / q}\right)>k, \quad 0<\varepsilon \leq \varepsilon_{k}
$$

We may assume that the numbers δ_{k} also satisfy

$$
0<\delta_{k} \leq \varepsilon_{k}, \quad k=1,2, \ldots
$$

Therefore,

$$
\begin{equation*}
\delta_{k} \varphi\left(\frac{1}{2^{\beta+2}} c_{k} \delta_{k}^{-1 / q}\right)>k, \quad k=1,2, \ldots \tag{2.41}
\end{equation*}
$$

Also, as in the proof of Theorem 3, we can take the numbers δ_{k} small enough so that (2.31) holds, and then

$$
\begin{equation*}
\left|E_{j}^{k}\right| \geq \delta_{k}, \quad j=1,2, \ldots, 2^{k} \tag{2.42}
\end{equation*}
$$

for all $k=1,2, \ldots$.
From (2.40), the fact that φ is increasing, (2.41) and (2.42), we conclude that, for each set E_{j}^{k}, we have

$$
\begin{aligned}
\int_{E_{j}^{k}} \varphi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta & \geq \int_{E_{j}^{k}} \varphi\left(\frac{1}{2^{\beta+2}} c_{k} \delta_{k}^{-1 / q}\right) d \theta \\
& =\varphi\left(\frac{1}{2^{\beta+2}} c_{k} \delta_{k}^{-1 / q}\right)\left|E_{j}^{k}\right| \\
& \geq k \delta_{k}^{-1} \delta_{k}=k
\end{aligned}
$$

An argument similar to that used at the end of the proof of Theorem 3 shows that this implies that (1.6) holds for every non-degenerate interval $I \subset[0,2 \pi]$. This finishes the proof.

References

1. J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
2. P. L. Duren, "Theory of H^{p} Spaces," Academic Press, New York, 1970.
3. P. L. Duren and G. D. Taylor, Mean growth and coefficients of H^{p} functions, Illinois J. Math. 14 (1970), 419-423.
4. T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768.
5. D. Girela, On a theorem of Privalov and normal functions, Proc. Amer. Math. Soc. 125 (2) (1997), 433-442.
6. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1932), 403-439.
7. Ch. Pommerenke, "Univalent Functions," Vandenhoeck und Ruprecht, Göttingen, 1975.
8. G. D. Taylor, A note on the growth of functions in H^{p}, Illinois J. Math. 12 (1968), 171-174.
9. S. Yamashita, A non-normal function whose derivative is of Hardy class $H^{p}, 0<p<1$, Canad. Math. Bull. 23 (4) (1980), 499-500.

Departamento de Análisis Matemático
Facultad de Ciencias
Universidad de Málaga
29071 Málaga
SPAIN
e-mail: Girela@anamat.cie.uma.es
e-mail: Marquez@anamat.cie.uma.es

Rebut el 24 de febrer de 1997

