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A NOTE ON THE RELLICH FORMULA
IN LIPSCHITZ DOMAINS

ALANO ANCONA

Abstract

Let L be a symmetric second order uniformly elliptic operator in
divergence form acting in a bounded Lipschitz domain Q of RY
and having Lipschitz coefficients in €. It is shown that the Rellich
formula with respect to € and L extends to all functions in the
domain D = {u € H}(Q); L(u) € L2(2)} of L. This answers a
question of A. Chaira and G. Lebeau.

1. Introduction

Let L = Zlgi,jSN 0i(a;;0;.) be a uniformly elliptic operator in diver-
gence form in RY, the coefficients a;; being (real) Lipschitz continuous
functions in RY such that a;; = aj; for 1 <4, 7 < N. Let A denote the
matrix {a;;}.

If O C R¥ is a bounded Lipschitz domain in RY, if V' is a C* vector
field in Q and if u € H?(2), then the following so-called Rellich formula
holds (for references see Necas [N, p. 224]).

W [ owertw - 3Ivuzwvn} o

1 .. ) 1,
_ /ﬂ{du(V)L(u) + du(@azaV) — 3 div(V)|[Vul - EqL,V(W)} i

where v is the unit exterior normal field along 9 and vy = A(v) is the
conormal field; 9y denotes the differentiation operator in the direction U,
and we have let ||U||2 = (AU,U) and arv(U) = (Ov(A)WU),U) =

Keywords. Rellich formula, Lipschitz domain, Harnack boundary principle.
1991 Mathematics subject classifications: 31C99, 35J15, 35L05.



224 A. ANCONA

> UiUjda; (V) when V' € RN, At least if u € C?(Q), the formula
follows from the Stokes formula [,, W.vdo = [, div(W)dz on taking
W = du(V)A(Vu) — 5||Vul|2V. The general case follows from an ap-

proximation argument. Of course the Lipschitz regularity of €2 is only
needed in a neighborhood of supp(V') N 99Q.

In this note it is shown that the Rellich formula extends to all func-
tions u in the domain of L, that is u € H}(Q) with L(u) € L*(£2); this
amounts ([N]) to a continuity property of the gradient of L-solutions
with respect to perturbations of 2 (see Theorem 1 below). This exten-
sion of Rellich formula answers a question raised to me by A. Chaira
and G. Lebeau [CL] (see also [N, Probléme 2.2, p. 258)] and is useful in
some problems in control theory for the wave equation ([C], [CL]). The
proof relies on well-known results and methods of the Potential theory
in Lipschitz domains (in particular [D], [A1], [JK1] and [A2]).

2. Notations and preliminaries

In this section we fix some notations and recall several basic proper-
ties of the Potential theory in Lipschitz domains with respect to elliptic
second order operators.

2.1. Let N be a fixed integer > 2 and let ¢ : R¥~! — R be a function
such that ¢(0) = 0 and |¢(x) — ¢(y)| < k|z — y| for x, y € RN¥~! and
a positive constant k. For x € RV, we note x = (2/,2y) the decom-
position of x in RY~! x R and let ¥ = {(2/,p(2")); 2’ € RVN~1}. For
P = (P',Py) € X, we set

T(P,r)={(2/,zn) € RY; |2’ — P'| <7, |Py —zn]| < 10kr}
@ w(P,r) ={(z",2n) € T(P,r); xn < p(2')},

A(P,r) = (P',Py —5kr) and

S(Pr)={(z',x) € Z; |2' — P'| <7}

In the sequel, the dependence on N of the various constants is not
made explicit. We note §(x) = d(z, %) for z = (z/,zn) € RV.

2.2. For0 < a < 1land M > 0, we denote A(c, M) the class of elliptic
operators L in RY in the form

(3) L(u): Z amafj(u)—i- Z bjaju+'yu

1<i <N 1<G<N
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where a;;, b; and 7 are bounded borel functions on RY such that when
z,y € RY and € € RV,

(4) Z aij(2)&; > M1 Z &, aiy(x) = aji()

D llaiglloe |+ { D Mbilleo | + Illee < M,
i i

(4)
Z laij(z) — ai;(y)| < Mz —y|®.

2.3. Harnack boundary principle. If L € A(a, M), if P € X, if u
and v are two positive L-solutions in w(P,r) vanishing on 3(P,r) and if
A= A(P,r), r <rgp, then

o) rule) _ o) _ ul)

u(A) — v(A) T u(4)
for all x € w(P,r/2), where ¢ = c(k,a, M,19) > 0 ([A1], see [A3] and
references there for other related results). More generally, under the
same assumptions on L and w, if v is positive L;-harmonic on w(P,r) for
some L; € Ao, M) having on X(P,r) the same second order part than
L, and if v = 0 on X(P,r), inequalities (5) hold on w(P,r/2) for some
c=clk,a,M,rq) ([A2]).

< <c

2.4. Ratios of positive harmonic functions near the bound-
ary. The Harnack boundary principle (5) when combined with the max-
imum principle implies a stronger continuity statement for the ratios of
harmonic functions [JK1]. If v and v are positive L-solutions on w(P, ),
P € X, r < rg, vanishing on X(P,r), and if Ay = A(P,r6), 0 < 0 < 1,
then
o ) | o)

u(Ag)  v(Ao)
for x € w(P,76/2). Here ¢ and 3 are > 0 constants (depending only on
k, M, a and 19).

< cHP

2.5. Uniform decay property. The following consequence of 2.3
is also needed. There is a constant n = n(a, M, k,r9), 0 < n < 1/4,
such that if u is positive L-harmonic in w(P,r), P € 3, r < rq, and
u =0 on X(P,r), then u(z) < Ju(A(P,r)) for € w(P,nr). It follows
that u(z) < C[6(x)] u(A(P, 7)), v = log(2)/|log(n)|, for some constant
C = C(a,M,k,ro) and € w(P,5). The opposite estimate, u(zx) >
Cl6(x)]" w(A(P,r)) for z € w(P,er) and with another constant 4/ > 0
follows from the local Harnack inequalities.
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2.6. Fatou’s Theorem. Denote 4} the harmonic measure of A =
A(P,r) in Q = w(P,r) with respect to L. If s is positive and
L-superharmonic in 2 then s admits a fine limit at ,u% almost every
point P € Y(P,r), this fine limit being zero p$-a.e. if s is a poten-
tial. If s is L-harmonic in € then s admits a non-tangential limit at
,uﬁ almost every point P € X(P,r). The last property is related to the
first by the following fact. If U C Q is the union of a sequence of balls
B(zj,e6(x;)) C Q where € > 0 is fixed and z; — Q € X(P,r), then U is
not minimally thin (in Q) at P (ref. [A1]).

2.7. Density of harmonic measure. Let ) be a domain such that
QNT(P,r) =w(P,r) for some P € ¥ and r < ro and let A = A(P,r).
Let L € A(1, M) be formally self-adjoint. The L-harmonic measure yS’
of x € Q is equivalent on X(P,r) to the natural area-measure o. In
fact, on ¥/ = X(P,7/2), u} = fa.c with I fallL2sy < C{O’(Z/)}_%
where C = C(k, M,r9) > 0. This follows from the Rellich formula (see
also [D], [JK2], [A2]). Also, f, > 0 a.e. on ¥’ (the argument of [D]
for L = A is easily extended). The Harnack boundary principle shows
that the density f4 satisfies also a reverse Holder inequality. For each
a=(d’,aq) € X' and each positive t with ¢ < 1r:

1
2

(7) / fa(x)do(z) > C/o(X(a,t)) /
3(a,t) by

where C = C(k,M,rg) > 0. By a theorem of Gehring ([G]), it follows
that f4 € LP(X') for some p = p(k, M,rg) > 2 with a uniform bound
|fallz, ) < CLo(£)}77", € = C(k, M.ro).

The above extends to wider classes of divergence type elliptic opera-
tors (see [FKP] and references there), and also to every L in A(a, M),
0 < a <1 ([A4]), but this will not be needed here.

: fA(fv)Isz(w))

(a,t

3. Non-tangential differentiability property

From now on (Section 3, 4, 5) we consider an operator L € A(1, M),

L= 3% ay@dd;i+ Y bx)d;+~
1<ij<N 1<G<N

verifying (4) and (4') with « = 1. As a first step for the proof of The-
orem 1 we prove the next lemma which is probably known but an ex-
plicit reference seems difficult to locate (see [KP] for LP estimates of
the non-tangential maximal function of the gradient and a variant of
L? convergence, compare also [A2]). We give a proof which relies on
Fatou theorem (2.6 above).
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Lemma 1. Let Q be a Lipschitz domain in RN . If u is a solution of
Lu = 0 in Q vanishing on an open subset S of N2, then Vu admits a
non-tangential limit at almost every point P € S.

Proof: Tt is enough to consider the case where Q = w(0,7) and S =
¥(0,7/2), r > 0 (with the notations in 2.1 and with respect to some
Lipschitz continuous function ¢ : R¥~1 — R such that ¢(0) = 0). We
let Q' = w(0,r/2), Q" = w(0,3r/4) and assume as we may that u is

continuous and positive on Q with v = 0 on 3(0,7). Then u € Wlif(Q)

for all p < oo ([LU, p. 203-205]) and ujqr € H'(Q") (see Remark 1.2
below).

Set Lo = 3 1<ij<n 9i(af; (2)8;) where af;(z) = aij(2’,p(x')) and let
w be the solution to the problem Low = 0 in , w = 1 on 90 \ X,
and w = 0 on ¥ (compare [A2]). Note that Ly € A(1,M’) for some
M = M'(k,M) > 0 and that Ly is self-adjoint. Observe also that
(—Onw) is Lo-harmonic in Q (because Ly is independent of xy) and
positive (by the maximum principle). It follows from Harnack inequali-
ties, the uniform decay property 2.5 and the interior gradient estimates

that for z € Q” ([A2])

(8) 0 < —Inw(z) < |Vw(z)| < Cé(m)

< —Conw(zx).

By the boundary Harnack principle (5) we have if 2 € Q"

uz)
5x) = o)

(9) [Vu(z)| <c < —Coyw(z).

The argument is now broken into three steps. First we note that the
distribution Lo(dxu) (which is defined as an element of H, !(Q) since

Owu € HL () belongs to H~ (), i.e. to the dual of HJ (). Since
Lu =0,

N
Lo(Oku) = > Okl(ad; — aij)005u] — O | b Oju+yu

1<i,j<N j=1
= Y (a)@0u) + Y (9ia;)(0k0;u).
1<ij<N 1<i,j<N

Using the Hardy inequality (Remark 1.1) and |ag;(z) —af; (2)] < ¢6(z),

it is seen that (af; — ai;)0;0;u € L*(Q'). In fact, on a ball B =
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B(xz,6(x)/(40k)), x € €', we have the standard inner estimate ([LU,
p. 205))

» |D*u(z)|* dz < C/Bé(z)_ u(z)*dz

where B’ = B(z,6(z)/(80k))). By a Whitney covering argument, it
follows that

[(ai; — ad;)(0:0u)Pdy < C | 672 u? dy < +oo.
Q, Q//

This entails that }, ; Il(ad; — aij)0i0;u] € H-H(Q'). Similarly, using
the boundedness of J(ay;) it is seen that (9yal;)(9:i0;u) € HH(Q'). In
fact for v € HY (),

1/2 1/
/ lv 6i8ju| de < C (/ 6—2|U|2‘ dx) </ 5—2|u2|dx)
QO Q/ Q7

< C|Vull L2 IVl 120y,

2

where we have first used that

1/2 1/2
/ v 0;0ju|ldz < C {/ 572 0? da:] {/ 572 u? dx]
B/NgY B/NQY B

for z € Q as above, and then a Whitney partition, Schwarz and Hardy’s
inequalities. In the same time we have also shown that (9;a5;)(9x0;u) €
H=1().

Second step: Introduce the function v € H}(Q') which is such that
Lo(v) = Lo(Oku) in . Since v € H} ('), a well-known projection
argument shows that there is a Lo-supersolution p € Hg (') such that
|v| < p. By Fatou’s theorem (2.6) applied to p and Lg, v converges finely
(w.r. to Lg) to zero at almost every point P € S. Writing Oyu = v + h,
h is a Lg-solution on €', and by (9) we have that |h| < p—C Iyw on .
Since —dyw is a > 0 Lg-solution in  this means that |h| < —C dyw
and h is hence a difference of two positive Lq solutions in '. By 2.6, h
converges finely (and non-tangentially) almost everywhere on S. Thus,
Oru converges finely at almost all point P € S.

Third step: By [LU, p. 205], dxu has also the following uniform con-
tinuity property: for x € @', and y € B(x,(x)/2)) one has |0pu(y) —
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Iru(z)] < Cllufloo,p 671 (z)|z — y|*, B = B(z, 26(x)), for some con-
stants o = a(M,r) €]0,1] and C > 0. Therefore, by (9) and Harnack
inequalities,

|Oku(y) — Opu(z)| < —C Onw(x) ('”; (x)m) .
It follows that if P € S is such that Oyw is non-tangentially bounded
at P and Oyu admits a fine limit £ at P, then Opu converges nontan-
gentially to £ at P. If not, a positive number ¢ and points z; €
converging non-tangentially to P could be constructed such that for
each j > 1, inf{|0pu(z) — €|; |z — ;| < e6(z;)} > €. This means that
U;>1B(z;,e6(x;)) is thin at P, a contradiction (see 2.6 above). B

Remarks.

1.1. Hardy’s inequality says that [ ,6(z)?|u(z)]Pdz<c [ ,|Vu(z)*dz,
where ¢ = ¢(k), W' = w(P, %), for u € H*(w(P, 7)) with u = 0 on 3(P, 7).
(See [KK], [STE].)

1.2. If w is a (continuous) L-solution on w(0,r) with « = 0 on X(r),
then ujo € H'(Q') and ||[Vul 20y < er™Hulr2eq) (e.g. extend u by 0
outside w(0,r) and apply Lemme 5.2 in [S] to uy and u_).

We shall also need the following observation.

Lemma 2. If the function u in Lemma 1 is positive, then Vu(P) # 0
a.e. on S.

Proof: We may assume as before that Q = w(0,79/2), S = 2(0,7r/4)
and that u vanishes on ¥ N 9S). By the Harnack boundary principle 2.3,
we may also assume that L = Ly (defined as above) and that v = w.

Let Q; = {z € Q; w(z) > %} and S; = {(z/,zn) € O N 2] <
ro/2}. By (8) above and for j sufficiently large, Q; is of the form Q; =
QN {(@,zn); n < p;(2')} where ¢; : RN~ — R is C-Lipschitz for
some constant C' = C(M, rg, k) and of class C1® for all a < 1.

On §;, the harmonic measure of A = A(0,7/2) w.r. to Ly and Q; is
;= =0y, (G;(.,A)).dos,; here vy, = A(v) on S;, where v is the exterior
unit normal field along S;, and G is the Green’s function w.r. to Lg in
Q. This follows from the Stokes formula |, 09, (W,v)do = fQj div(W) dz
which is valid for each vector field W of class WP(Q;), p > N; with
W =@ A(VG,(.,A))—G,(., A) A(Vy), where ¢ is smooth and of support
in T(0,7r9/4) one gets that ¢(A) = _fsj ©(VG;(.,A),vr)do for ¢ =
v+ G;(Lo(¢p)), i.e. ¢ is the solution to Lo(¢») = 0 and ¢ = ¢ on 99Q;.
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Thus, by the Harnack boundary principle C~1|on(w)|.oc < p; <
ClOn(w)|.c on Sj; in particular [[Oywl|pe2(s,) < C for j large. Since
the Lo-harmonic measure p of A in § is the weak limit of p; and
since the Lipschitz constants of the graphs S; are uniformly bounded
" Mon(w)|.o < p < C"|0n(w)|.c on S for some constant C” =
C(M,k,r). Since the density fq of u is > 0 a.e. on S it follows that
Ovw #0a.e inS. N

Remark 2. From 2.3 and the uniform bound || fal|zr(s) < c(k, M,7)
(with p = p(M,k) > 2, S = ¥(0,r/2)), it follows that every positive
L-harmonic function u in w(0, r) vanishing on X(0, r) verifies || Vul[L»(g) <
¢ (k, M,r)u(A(0,r)). Note also that under the assumptions of Lemma 1,
and if u € HY(Q), a simple limit argument shows that Vu coincides on
S with the weak gradient Vu € H,/?(S) (defined by [q(Vu, Av)do =

loc

Jo{(AVu, V f) + Lo(u) f} da for all f € H*(Q) with [supp f]NOQ C S).

4. The local C%! approximation

Recall that we have fixed L € A(1, M) with (3), (4), (4') and a = 1.
We set Ly = Y af;(x) 0;0; where af;(x) = aij(¢',¢(z')). The oper-
ator Lj is slightly more convenient now than Lo (as defined in Sec-
tion 3) because its solutions are at least of class C%*!. Fix ro > 0, let
Q = w(0,79), & = w(0,79/2) (see notations in 1.1) and let w denote
now the solution of Liw = 0 in  such that w = 1 on 92\ ¥ and
w = 0 on X(0,79). We observe that a local C%! approximation of Q
at 0 is provided by the level sets U(w,e) = {w > e} N, e > 0. Let
D(r) = {2’ e RN7L; |2/| < r}.

Lemma 3. For e > 0 small enough, we may write
Uw,e) = {(2',zn); |2'| <710/2, =5k x 10 < 2N < 0-(2)}
where . : D(rg/2) — R is of class C*' and C-Lipschitz for some
C > 0 independent of e; also —k X rg < p:(2') < p(z). Moreover,
when € decreases to zero, . increases to ¢ uniformly on D(r¢/2), and

lim. o0 Dy (2') = Dp(z’) for almost all ' € D(ro/2).

Proof: The first claim follows by the arguments used in the proof of
Lemma 2. As before

(10) 0 < —Onw(z) < |Vw(z)| <c

S 5@ < —Conw(z)
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when = € €. Hence if € > 0 is so small that w(x) > ¢ for |2/| < ro/2
and xy < —krg, the implicit function theorem shows that the region
U(w,e) N is as required by the first claim above. Recall that by
Schauder’s theory w is locally of class C?! in Q. That ¢. — ¢ uniformly
on D(ry/2) is then obvious, since w is continuous on QU X(0,rg).

The last part of the proposition follows now from Lemma 1, Lemma 2
(applied to w) and Lemma 4 below. If ¢ is differentiable at a’ € D(r¢/2)
and if Vw(x) admits a non tangential limit a at (a/, ¢(a’)) = a with
a=(a/,ay) # 0 (that is an # 0 by (10)), then

djp(d) = gi_r}%)ajgos(a/) = —aj/ay, forj=1,... ,N—1.

To see this, fix n > 0 and j, 1 < 7 < N — 1, and apply Lemma 4
below to the function f(t) = p.(a’ +te;) — p(a’) with 8 = 0;¢(a’),
u < 0 < v being the closest to zero with ¢, (a’ + ue;) = p(a)+ (8 +n)u,
w:(a' +vej) = p(a) + (8 — n)v. It follows that for each small enough
€ > 0, there is a point 2'(¢) € D(ro/2) with the following properties:

(a) the i-th coordinate x () satisfies }(e) = al ifi # j, 1 <i < N—1,

(b) ¢=(2'(c)) < ¢la) + (9j(a’) £ 1) (z](e) — aj),

(¢) 95p(a") = Djpe(2'(e))] < -

Now from (b) it follows that when & — 0 the point z. = (z'(€), @< (2'(¢)))
converges non tangentially to a in Q as well as a. = (a’, p-(a’)). Hence,
since Vw has a non tangential limit a = (/, ay) at a such that ay # 0,

0j¢pe(@'(€)) = —Ojw(ze)/Onw(w:)
= —0djw(as)/Onw(ac) + o(1)
= 0jpe(d’) + o(1),

(a)] <n by (c).

and limsup,_,q|0j¢:(a") — 05
djp(a) = n.t.lim, ,(q)){—05w/Onw} (where
|

Thus, lim._. 0;¢:(a") =
n.t. means nontangential).

Lemma 4. Let f : I — R be a function of class C' on some interval
I=Tlu,v,u<0<wv. Let R, >0, ¢)=f{(B+n)t,(8—n)t}
and assume that f(t) < ¥(t) on I, and f(u) = ¥(u), f(v) =¥(v). Then,
there exists t € I such that |f'(t) — 8| < n.

Proof: Since £W=F) — g Nt and |t%| < 1, the lemma follows
v—u v—Uu v—Uu
at once from the mean value theorem. W
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5. The Rellich formula for v in the domain of L

The previous constructions are now used to obtain the following strong
L? approximation property. It is well-known that the later implies the
desired extension of the Rellich formula. Notations and assumptions are
as in the previous section. It is also assumed for sake of simplicity that
7 < 0. Recall that Q" = w,(0, %) = w(0, %) and that D(r) = {2’ €
RN=L 2| < r).

Theorem 1. Let Q; = {z € Q'; w(z) > ¢;}, where e; — 0, €; > 0
and let p; = pe;. Let uj, j > 1, be L-harmonic on §); vanishing on
Y, ={w=¢;}, j > 1. If u; converges uniformly on €' to u (set u; =0
on '\ Q;), the functions f;(z") = 0,,u;(a’, ¢;(z)) converge strongly in
L3(D(ro/4)) to f(z') = 8y, u(z’,o(2')) (and in fact in LP(D(ro/4)) for
some p=p(k,M)>2.)

Here, 0,,u = (AVu,v) denotes the conormal derivative of u along ¥
(and v is the unit exterior normal), 0,, u; denotes the conormal deriva-
tive of u; along ¥; = {(a/,¢;(z’); 2’ € D(0,r9/2)}. Note that if the
u; are > 0, then simple convergence in ) already implies uniform con-
vergence on w(0,7’), ' < 79/2, by boundary Harnack property. Also
an obvious decomposition of u; shows that to prove Theorem 1 we may
restrict to the case where u; > 0.

Proof of Theorem 1: Consider first the special case of the sequence
v; = w—¢; with L = L, and denote fJQ, £O, the corresponding functions
fj and f. Then by Lemma 1 fJ(z') — fO(z') = (Vw(x), v (z)) almost
everywhere in D' = D(r¢/4) (where x = (2/,¢(2"))). Since there is a
uniform bound on || f? || L»(pry for some p > 2, it follows that f converge
(strongly) to f° in L?(D’). And the proposition follows for the case at
hand. It is then clear that g;(z') = 8,, v (2, ;(z')) tends to fO(z') a.e.
in D' and in L*(D’) (note that f9(z') = 9,,, v;j(z', p;(x'))).

0

In the general case (with u; > 0, u > 0 in '), consider h; = fj/fjo.
By Lemma 5 below, this is a sequence of Hélder continuous functions on
D’ which is bounded in C%(D’) for some a, 0 < o < 1. Moreover the
function h = f/f° —which may be seen as a Hélder continuous function
on D’— is the unique cluster value of this sequence in L>°(D’). In fact,
by Lemma 5, if H is such a cluster value and if n > 0 is small, both
quantities

1= [H(2) : (u(A)/w(A))]] and [1 = [(f(")/f(2)) : (u(A)/w(A))]],

where 2/ € D’ and A = (2/, (') — n), are bounded by < c¢n® for some
positive real 0.
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Thus, h; — H in L*°(D’). Since fJQ — f% almost everywhere on D’
and in L?(D’), it follows that f; — f in L?(D’) and almost everywhere
on D’ which proves the theorem. H

Recall that for a = (d/,an) € X, T(a,n) = {(a/,zn); |2/ — d] <
n, ey —an| < 10kn}. Let S = X N {(a',o(x)); |2']| < ro/4} and
Us = w(0,79/2) N{w > ¢}. Set we = w — ¢ for each £ > 0.

Lemma 5. There are constants C > 1 and D € (0,1) with the fol-
lowing property. If P € S, if h is positive L-harmonic in T(P,n) N U.
vanishing on Tp(n) NOU., € > 0, and if n > 0 is small, then

we () h(x)
w.(Ay) = h(A)

we ()

(11) (1_077D) w-(A!)
e\

<(1+CnP)

forz € T(P, I5) NU. and Al = (P', Py — 5kn?).

Note that if A, ¢ U, then T'(P, %) U = 0 at least if i is small.
Proof: We use a construction from [A2]. Let s = f(w) where f(t) =

fg e " do, u = g(w) where g(t) = fot e df and 0 < a < 1. Tt is

immediately checked, using (9), that if « is small, then s (resp. u) is
L-superharmonic (resp. L-subharmonic) in Q' (\{w < €} for € > 0 small.
In fact,

Lis) = f"(w) {3 ai; dw dyw} + f/(w) Lw) +5(f(w) = wf'(w))

so that using (9) and Schauder interior estimates, we have on ) near X,

{3 ai; 0 ajw}_l L(s) < f"(w) + C|Vw|2f' (w){L(w) — Lj(w)}

+ C|Vw| 2w
< P+ pw) (52 + Y w) et
- w? 62 6 w
< f(w) + C"wP T (f(w) + 1)
for some positive constants C” and 8, and where in the last line we have

used 2.5. It follows that if we fix « in (0, §), then s is L-superharmonic
near X in €. The subharmonicity of u = g(w) is obtained similarly.

Let s = s — f(e) = f(w) — f(e) and ue. = u — g(e) = g(w) — g(¢) for
e>0. fm=sup{w(z); z € T(P,n)NU}, PeS,

e~ < se(x) /we(z) < e="
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e

when z € w = U.NT(P,7). Similarly, we have e” < u.(2)/w.(z) < e™
for x € w. Observe also that

e—(e%—m®) < e(m—2e)" < exp(c' nboc) _ ec’ n®’

for some constants b > 0 and ¢’ > 0, where we have applied again 2.5.

Now, let 5. = m{% and u. = mua. For n > 0
and small, the function §. (resp. 4. ) is positive L-superharmonic (resp. L-
subharmonic) on w = T(P,n)NU (¢), vanishes on 3. = 0U.NT' (P, n) and
e < §. in w. Taking the smallest L-harmonic majorant of 4. in w, we
obtain a positive L-harmonic function h; on w such that . < hy < 5,
on w. Of course, h; vanishes on Y. and by the previous estimates, we
have in w

(12) (1= en? () < hi(@) < (1 +en®) w(a).

Finally, if h is any positive L-harmonic function on w vanishing on ¥,
we know (see Section 2.4) that for some real 8" € (0, 1]

09 a-en )l < gk < ren”) )

when z € U. N T(P, %) Combining (12) and (13) we obtain (11). B

Let now L € A(1, M) be in the form L = )" 9;(a;;0;.) the a;; satisfying
(4) and (4') with & = 1. From Theorem 1, the desired generalization
of Rellich formula (1) together with an extension of Theorem 1 itself
are easily derived. In the next corollary notations are the same as in
Theorem 1.

Corollary 1. Let v € H}(Q) be such L(v) = f € L*(Q), and let
v; € H(Q) be such that L(v;) = f in Q. Then, d,,v;(z',p;(z’)) —
vz’ o(z")) in L2(D').

Recall (ref. [N]) that if W be a bounded Lipschitz region in R, then
for u € H} (W) such that L(u) = f € L?*(W), the weak conormal deriva-
tive 8,, (u) (defined as a member of H~2(9W)) belongs to L2(9Q) and
10u, ()| L2owy < C(W, M)|| fllz2(owy- This follows from a natural ap-
proximation argument combined with Rellich formula for functions in
H?2. By Theorem 1, if f = 0 in an open neighborhood V of P € 9W, then
the weak and the strong conormal derivatives of v coincide in V N oOW.
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Proof of Corollary 1: By decomposing f; into its positive and negative
parts we may assume that f; < 0 in Q;, j > 1. By Rellich formula there
is a uniform estimate ||ayL(w)HL2(Q;_) < C’||f||L2(aQ;) for w € Hy ()
with L(w) = f € L*(9;) and a constant C' independent of j. Thus by
a standard approximation argument we may also assume that f; = 0 on
a neighborhood V of 3. Then, v; — v simply on V N Q" and the result
follows from Theorem 1. B

Remarks.

5.1. It follows from Lemma 1 and Theorem 1 (and the obvious ap-
proximation argument) that in a given bounded region €2 the L-harmonic
measure of xg € {2 induces on a Lipschitz open piece S of 92 the measure
of density —9,, (G(xo, .), if G denotes the Green’s function of L in €.

5.2. Corollary 1 is easily extended to the following case: v € H'(Q')
with L(v) = f € L*(Q) in Q' and v = F on 99 for some F € H?(Q);
the v; € H' () are such that L(v;) = f in €} and v; = F in 9Q). One
has just to look to v = v; — I and to notice that VF(2', ¢;(z')) —
VF(2',o(2') as. in D(ro/4) and also in L?(D’) (in fact in HY/?(D"))
since VF € H1(Q).

From Corollary 1 and Remark 5.2 above the extension of Rellich for-
mula follows.

Corollary 2. Let L be as before, let V be a C} vector field in RN and
let Q be a domain in RN which is Lipschitz in a neighborhood of each
point P of F = supp(V)N Q. If u € HY(Q) is such that L(u) € L?(Q)
and if u = g in a neighborhood of F in OQ for some g € H?(Q) then the
Rellich formula (1) holds.

To state the next corollary, we assume that we are given a sequence
of functions v, in D(rg) such that ¥; < ¢, [¢;(x) —¢;(y)| < k|z —y]| for
z, y in D(rp), im0 | — ¢l = 0 and lim; .o D;(z") = Dp(a’)
for almost all 2’ € D(rg). We let Q" = w,(0,79/2) (as before) and
Q= n{(2",zn); zn < j(a’)}. Set X; = {(2/,¢;(2")); 2’ € D(ro)},
Y = {(a',9(2"); 2’ € D'(rg)}, and v; (resp. v) to denote the exterior
unit normal field on X; (resp. on X).

Corollary 3. Let L be as in Corollary 1 and let {u;} be a sequence
of functions such that u; € H*(Q;), u; = 0 on X; and L(uj) = f; €
L?(Q). Assume that f; — f in L*(Q') (set fj = 0 in QF) and that
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uj — uin HY (). Then, u € H (wy(0,20)), u = 0 in X(ro/4), and
Oy, uj (', 5 (2")) — Opu(a’, p(a')) in L*(D(ro/4)).

This follows from Rellich formula (Corollary 2) and the fact that in
a Hilbert space (H,||.||) every weakly convergent sequence §; such that
lim; o [|6;]] = || im0 8] is strongly convergent. Corollary 3 means
that for a bounded Lipschitz domain Q with a given C%! approximation
(ref. [N]) by a sequence of Lipschitz domains €2; the following holds:
if v; € Hj(Q), v € H}(Q) are such L(v;) = f; € L*(Q;) converges
strongly (in the appropriate sense) to L(v) = f € L?(Q2), then Vji90, =
Vujgq in the appropriate strong L? sense.
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