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Abstract
We are concerned with solving polynomial equations over rings.
More precisely, given a commutative domain A with 1 and a poly-
nomial equation an tn+ · · ·+ a0 = 0 with coefficients ai in A, our
problem is to find its roots in A.

We show that when A = B[x] is a polynomial ring, our problem
can be reduced to solving a finite sequence of polynomial equations
over B. As an application of this reduction, we obtain a finite
algorithm for solving a polynomial equation over A when A is
F [x1, . . . , xN ] or F (x1, . . . , xN ) for any finite field F and any
number N of variables.

The case of quadratic equations in characteristic two is studied
in detail.

1. Introduction

Let A be a commutative domain with 1. We consider an equation

(1) an t
n + · · ·+ a0 = 0

for t with given ai in A. We call such an equation a polynomial equation
over A of degree ≤ n (or degree n if an 6= 0). Its roots t are to be found
in A.

We will show that when A = B[x], the polynomial ring in one vari-
able x, then solving (1) can be reduced to solving a finite system of poly-
nomial equations over B. Each of these equations has degree at most n,
and the number of the equations can be bound in terms of degrees of ai.

By induction on N , this gives a reduction of the problem over
A = E[x1, . . . , xN ] to solving a finite sequence of equations over E.
When E is a finite field or the ring of integers, there are finite algorithms



       

132 J. Cherly, L. Gallardo, L. Vaserstein, E. Wheland

for solving polynomial equations over E. So we obtain a finite algorithm
for solving (1) over A = E[x1, . . . , xN ]. Solving (1) over the field R of
quotients of A can be easily reduced to solving a similar equation with a
monic polynomial in A[t] whose roots over R belong to A. So we also ob-
tain a finite algorithm for solving (1) over the field A = E(x1, . . . , xN )
when E is a finite field or the field of rational numbers. This can be
generalized to subrings A of E(x1, . . . , xN ) when the membership in the
subring can be decided in finitely many steps.

A more general problem of factorization of multivariate polynomials
in any degree with coefficients in finitely generated fields has been con-
sidered before (see [2], [4]). As will be seen, we take a different approach
to this problem.

Given a quadratic equation, that is, (1) with n = 2, a2 6= 0, a well-
known formula reduces it to an equation of the form y2 = ∆ and a linear
equation, provided that 2A 6= 0. We consider in detail the case 2A = 0
when, obviously, the above-mentioned formula doesn’t apply.

2. Reduction from A = B[x] to B

Given ai ∈ A = B[x], we want to solve (1) in A. If an = 0 or a0 = 0,
then (1) reduces to an equation of a smaller degree, so we will assume
that an a0 6= 0.

First we obtain bounds for the degree d = deg(t) of a solution
t ∈ A = B[x] of (1) in terms of di = deg(ai) (with the convention
that deg(0) = −∞).

Proposition 1. If (1) with an a0 6= 0 has a root t ∈ A = B[x], then

deg(t) ≤ min(d0, max
i=0,... ,n−1

((di − dn)/(n− i))).

Proof: Since t divides a0, deg(t) ≤ d0. If deg(t) > (di−dn)/(n− i) for
all i, then the term an t

n has a higher degree in x than any other term
in the left hand side of (1).

Remark. If we plot the points (0, dn), . . . , (n+1, d0) in the Euclidean
plane and consider the least concave function D(i) ≤ dn−i, then the
maximum in the proposition is the slope of D(i) at i = 0, which is the
largest slope of D. If this slope is negative, i.e., dn > di for i < n, then
(1) has no solutions in A.

In general there are at most n distinct slopes of D, and the bound for
deg(t) in the proposition can be improved as follows: deg(t) is at most
the largest slope not exceeding d0.
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Theorem 1. Finding all roots t in A = B[x] of a given degree d for
(1) with n ≥ 1 can be reduced to solving in B a finite sequence of at most
1 + n + · · · + nd polynomial equations in one variable over B, each of
them of degree ≤ n.

Proof: Without loss of generality, we can assume that an 6= 0. We
proceed by induction on d. When d = −∞, i.e., t = 0, we do not need
to solve any equations (we have to check only whether a0 is 0).

When d = 0, (1) is equivalent to a system of at most max(deg(ai))
polynomial equations over B for t ∈ B, each of them of degree ≤ n. We
solve one of them and then verify the other equations for each of at most
n roots in B.

Assume now that d ≥ 1. Let t = t0 + x s with t0 ∈ B, s ∈ A = B[x],
deg(s) = d − 1. Taking the smallest degree terms in (1), we obtain
a polynomial equation for t0 over B of positive degree ≤ n. Solv-
ing it, we obtain at most n values for t0 in B. Substituting each of
them in (1), we obtain a polynomial equation of degree ≤ n for s ∈
B[x] with deg(s) ≤ n − 1. Using the induction hypothesis, we reduce
the problem of finding all roots of degree d for (1) to solving at most
1 + n (1 + n + · · · + nd−1) = 1 + n + · · · + nd equations over B (and
verifying several equalities in B).

Assuming that we can solve polynomial equations over B, we can
solve (1) over A in finitely many steps, using Theorem 1 together with
Proposition 1. To get a good bound for the number of steps needed, one
has to be able to control a possible branching.

When the left hand side of (1) is 0, every t ∈ A = B[x] satisfies (1).
Assume that an 6= 0, n ≥ 0 in (1). When n = 0, (1) has no solutions.

Let now n = 1. When d1 = deg(a1) > d0 = deg(a0), (1) has no roots
in A. Otherwise, it has at most one root t, and deg(t) = d0 − d1 = d.
Substituting t =

∑d
i=0 ti x

i into the equation a1 t + a0 = 0, we obtain
d0 + 1 equations for ti in B, each of them of degree ≤ 1. As in the
general case, we can find t0, t1, . . . consecutively. There is no branching.
The total number of equations in one variable over B we have to solve
is d+ 1, and we have to verify d1 equalities.

We could also proceed from the other end, finding td, td−1, . . . , t0 con-
secutively. Then the equations we have to solve are of the form bti = ci,
where b ∈ B is the leading coefficient of a1 ∈ A = B[x], ci ∈ B, and
i = d, d− 1, . . . , 0.

The rest of the paper is about the case n = 2. In a future paper, we
will apply our methods to higher degree equations.
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3. Quadratic equations in characteristic two

The well-known formula for solving the quadratic equation

(2) a2t
2 + a1t+ a0 = 0

with a2 6= 0 does not work when we cannot divide by two in our ring A
containing the given coeficients ai. If we are looking for roots of (2) in a
field A, then a linear change of variables reduces the equation to one of
two particular forms,

(3) y2 + ∆ = 0

when a1 = 0 and

(4) y2 + y + ∆ = 0

when a1 6= 0.
Junjie Tang [10], solved (2) when A is a finite field F of characteristic

two. In this case, y = ∆q/2 is a root of (3) with q = card(A), and (4)
has roots in A if and only if Tr (∆) = 0, where Tr is the trace from A
to GF (2) (Niederreiter [8]) (see Section 6 below for more details).

In this paper we are interested in solving (2) in a commutative do-
main A of characteristic two. This means that the given coefficients ai
belong to A, 2A = 0, and we are looking for roots in A. We show that
when A = B[x] is a polynomial ring in one variable x (hence B is a
commutative domain of characteristic 2), then solving a quadratic equa-
tion (2) in A can be reduced to solving several quadratic equations over
B. The number of these equations is at most deg(a0) + deg(a2) + 1.

In particular, we get an effective algorithm for solving (2) over
A = F [x1, . . . , xk] for a finite field F .

The number of steps in our method is O(deg(a0a2)), at each step we
solve (3) with a number ∆ ∈ F , except perhaps at one step, where we
might have to solve (4) instead of (3).

When F is finite, it is easy to solve (3) and (4) with ∆ ∈ F . Namely,
y = ∆q/2 is a root of (3) with q = card(F ), and solving (4) will be
discussed in Section 6. In general solving (2) over A = B[x] depends on
solving (2) over B.

The main equation studied in the rest of the paper is (2) with a2 = 1,
namely

(5) t2 + a1t+ a0 = 0.
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We can reduce (2) to an equation of the form (5) by a change of variable.
More precisely, the roots t = u/a2 of (2) are in 1-1 correspondence with
the roots of u2 + a1u+ a2a0 = 0 with u divisible by a2.

If a1 = 0 in (5), i.e., we have an equation of the form (3), then it is
reduced to a set of similar equations over B. Namely, (3) has a solution if
and only if all the monomials in ∆ ∈ B[x] have even degree (i.e., ∆′ = 0)
and all the coefficients are squares. The solution, if it exists, is unique.
In the case when B is a finite field with q elements, the explicit solution is
t =

∑
c
q/2
2i x

i for ∆ =
∑
c2ix

2i. It can be computed in O(log(q) deg(∆))
multiplications in B (when deg(∆) ≥ 1).

So in the rest of the paper we assume that a1 6= 0 in (5). We will
apply the method of Section 2 to (5) in the next section. In Section 5 we
give a method of reducing the degree of a1 in (5) to 0. Section 6 deals
with (5) with constant a1. Without loss of generality, we can assume
that a0 6= 0, because otherwise (5) reduces to a degree one equation.

Note that (5) has a root in a domain A if and only if the polynomial
t2 + a1t + a0 ∈ A[t] is reducible. When A = F [x] with a finite field F
of characteristic two, there is a well-known irreducibility criterion using
reduction modulo a polynomial p:

Theorem 2. Let F = GF (2m), a0, a1 ∈ F [x], a1 6= 0, and let α
be one element of the algebraic closure of GF (2), such that its minimal
polynomial p over F is relatively prime with a1. Suppose that

(6) Tr(a0(α)/a1(α)2) = 1.

Then t2 + a1t+ a0 is irreducible in the ring F [x, t].

The trace Tr is always taken over the prime subfield GF (2) = F2.

For example, the polynomial t2 + (x2 + x)t+ x3 + x over F2[x] has no
roots t ∈ F2[x], as seen by choosing the irreducible polynomial
p = x2 + x + 1, or, with a slightly more complicated computation, by
choosing p = x3 +x+1, and it is clear that picking p of degree one gives
no information here.

Besides the obstructions for existence of roots of (5) given by Theo-
rem 2 (in the particular case when B is finite), there are degree obstruc-
tions (on degrees of a0, a1) given by the following proposition (for any
domain B). The proof is easy and will be left to the reader.
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Proposition 2. Suppose that (5) with a0a1 6= 0 has a root t in B[x],
where B is a domain. Set r =∞ when a1 ∈ B, and r = deg(a0)/ deg(a2

1)
otherwise.

(a) 2 r ≥ 1.

(b) If r ≤ 1, then one of the roots t of (5), is such that deg(t) =
deg(a0)− deg(a1).

(c) If r = 1, then both roots have the same degree, equal to deg(a1),
and B 6= F2.

(d) If r > 1, then the two roots t and −t − a1 of (5) have the same
degree, deg(a0) is even and deg(t) = deg(a0)/2 = deg(t+ a1).

4. Solving (5) by the method of Section 2

We consider (5) with a0a1 6= 0 over B[x] with a domain B of charac-
teristic 2. Set di = deg(ai). We will show that finding a root of (5) can
be reduced to solving 1+max(d0/2, d0−d1) equations over B of degree 1
or 2. More precisely, we have max(d0/2 − d1, 0) equations of type (4),
at most one quadratic equation over B with a nonzero linear term, and
1 + max(d0 − d1, d1) linear equations over B.

Let r be as in Proposition 2. We will show that solving (5) with r ≥ 1
can be reduced to solving a similar equation with r < 1 by solving a
few quadratic equations over B, and that solving (5) with r < 1 can be
reduced to solving a few linear equations over B. Let t =

∑d
i=0 tix

i be
an unknown root of (5) with d 6= 0.

When r < 1, we can assume that d = d0 − d1 by Proposition 2. We
have a linear equation tdb = cd for td, where b is the leading coefficient
of a1 and cd is the leading coefficient of a0. If this equation has a root
td ∈ B, we have a linear equation td−1b = cd−1 with the same b and
some cd−1 ∈ B. So consecutively solving d + 1 linear equations of the
form tib = ci over B for i = d, d− 1, . . . , we solve (5) for t.

When r = 1 (this case is impossible when B = F2), d = d1 = d0/2 by
Proposition 2. We obtain a quadratic equation t2d + btd + c = 0, where
b is the leading coefficient of a1 and c is the leading coefficient of a0.
Having chosen a root td (if it exists), we obtain an equation for the rest
of t of the form (5) with r < 1. This equation can be reduced as above
to d linear equations over B.

When r > 1, d = deg(a0)/2 by Proposition 2. To find the leading
coefficient td of t, we utilize the equation t2d = cd, where cd is the leading
coefficient of a0. This equation over B has at most one root. Once
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td is found, we have a similar equation for td−1, and so on. Thus, we
consecutively obtain equations t2i = ci for i = d, . . . , d1 + 1. For the rest
of t, we solve, as above, one quadratic and d1−1 linear equations over B.

In all three cases, there are 2d+1 equations over B (some of which do
not contain unknown coefficients ti of t). We find these d+1 coefficients
(if they exist) from d + 1 of the equations. Then we can check whether
the other d equations hold.

Remark. Assume that B is a field, and consider the fraction
a0/a

2
1 = u/v reduced to lowest terms inB[x], i.e., such that gcd(u, v) = 1,

with monic v. When (5) has a root, it is easy to see that v is the square
of a polynomial. The Eisenstein criterion follows from this observation.

5. Induction on d1

As above, B is a domain of characteristic 2.
The idea is to write any polynomial p ∈ B[x] as p = f + xg, where

f = (xp)′ is the sum of even degree terms in p and xg = xp′ is the sum
of odd degree terms in p.

Theorem 3. Suppose that (5) has a root t ∈ B[x]. Then a2
1 | (a′0)2 +

a′1(a1a0)′.

Proof: Differentiating (5) we obtain

(7) a′1t = a1t
′ + a′0.

Squaring (7) and applying (5) we obtain (a′1)
2(a1t+a0)+a2

1(t
′
)2 = (a′0)

2.
Using (7) to eliminate a′1t, we get

(8) a2
1((t
′)2 + a′1t

′) + (a′0)
2 + a′1(a1a0)′ = 0

which proves the conclusion of the theorem.

Remark. Suppose that Aa1 + Aa′1 = A = B[x] and that the leading
coefficient of a1 is invertible in B (when B is a field, this means that
a1 is square-free). Then the conclusion of the theorem is equivalent to
a1 | (a′1)2a0 + (a′0)

2. If, furthermore, d0/2 ≤ d1 < d0, then a root t of
(5) in A can be found as the polynomial t such that a′1t ≡ a′0 modulo a1

and deg(t) < deg(a1) = d1.
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Now we write down the reduction step. We will show that when (5)
has a root, say t = (xt)′ + xt′, then t′ satisfies a ‘smaller’ quadratic
equation of type (5). To obtain such an equation

(t′)2 + a′1t
′ + ((a′0)

2 + a′1(a1a0)′)/a2
1 = 0

we divide (8) by a2
1; if the constant term is not divisible by a2

1 then (5)
has no roots by Theorem 3.

Note that all coefficients in this equation are polynomials in x2, and
the unknown root t′ is also a polynomial in x2: t′(x) = f(x2). So we
obtain a quadratic equation for f of the form f2 + a3f + a2 = 0 with
deg(a3) ≤ (deg(a1)− 1)/2.

Once we find f and hence t′, we can find t from (7) when a′1 6= 0.
When a′1 = 0, we can use the linear equation (7) to find t′, rather than
the quadratic equation (8). Then, to reconstruct the even part (xt)′ of t
we can use the even part of (5), i.e.,

(9) (xt)
′2 + (xa1)′(xt)′ + (xt′)2 + (xa0)′ + x2a′1t

′ = 0.

This is a quadratic equation for (xt)′ of type (5) with linear coefficient
(xa1)′ = a1. Moreover, writing the coefficients and (xt)′ as polynomials
in x2, we obtain a similar equation with the linear coefficient having
degree equal to half the degree of a1.

Repeating this process at most [log2(deg(a1)] times, we either obtain
(5) with a constant linear term, or at some step we are in violation of
the conclusion of Theorem 3 (in which case the original equation (5) has
no roots).

6. Solving (5) with constant a1

The case when a1 = 0 was dealt with in Section 3. So we assume now
that a0a1 6= 0. As usual, we will reduce solving (5) over A = B[x] to
solving equations over B. We set b = a1 ∈ B and write a0 =

∑2d
i=0 cix

i

with ci ∈ B, c2d 6= 0 (if deg(a0) is odd, there are no roots). Let t =∑d
i=0 tix

i.
Collecting constant terms in (5), we obtain t20 + bt0 + c0 = 0. This

equation over B is needed to find the constant term t0 = t(0) of t. A
method of solving it in the case of finite B is considered at the end of
this section.
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To find the other coefficients ti of t we can proceed as in Section 2. In
degree 2i > 0, we have t2i = c2i when d/2 < i ≤ d. When d/4 < i ≤ d/2,
we have t2i = c2i + bt2i, and so on. Thus, to find td, td−1, . . . , t1 we have
to solve d quadratic equations over B of the form (3).

Alternatively, we can look for the unknown coefficients of t starting
from lower degrees. For each odd k, we have btk = ck (in other words,
t′b = a′0, so we have a linear equation for t′). Next bt2k = c2k + t2k is a
linear equation for t2k once we have found tk, and so on. Thus, we can
find all ti, i = 1, 2, . . . , d, by solving linear equations, all of them with
linear coefficient b.

In this way, neccessary conditions for existence of the root t are that
certain elements of B given as polynomials in given ci are divisible by
b, while in the first approach, certain elements should be squares. To
make it more explicit, note that our system of equations for ti, i ≥ 1
splits into subsystems corresponding to odd numbers k ≤ 2d. For each
such k, we have the system ck 2j = btk 2j + t2k 2j−1 for all j ≥ 0 with

tk/2 = 0. This is a system of linear equations for t1/2
j

k 2j . Thus, for each k,
we obtain a neccessary condition for existence of t in the next theorem.
This condition is sufficient (i.e., it implies that certain elements of B are
divisible by b or are squares) provided that the ring B has the following
property:

(10) if y ∈ B and y2 ∈ b2B, then y ∈ bB.

The condition holds, e.g., when bB = B, or B is a unique factorization
domain, or B is integrally closed in its field of fractions.

Theorem 4. For the equation t2 + bt + a0 = 0 with given nonzero
b ∈ B, a0 =

∑2d
i=0 cix

i ∈ B[x] to have a root t ∈ B[x], the following two
conditions must be satisfied:

(a) t20 + bt0 + c0 = 0 has a root t0 ∈ B,

(b) for every integer m ≥ 0 and every odd number k such that
d/2m < k ≤ d/2m−1,

(11)
m∑
j=0

c2
j

k2m−j b
2m+1−2j+1

= 0.
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When the conditions hold and B satisfies (10), the two roots t =∑d
i=0 tix

i are given as follows: t0 is one of two roots in B of the quadratic
equation in (a) while tk with k ≥ 1 is given as follows:

tk2m =
m∑
j=0

c2
j

2m−jk/b
2j ,

where k is odd and m ≥ 0.

Now we consider the equation y2 +by+c0 = 0 over B in the case when
B is finite (so B is a finite field). Recall that when b = 0, y = c

q/2
0 is the

only root, where q = 2m = card(B). Otherwise b is invertible, so we can
replace it by 1 by a change of variable. So we are concerned with solving
the equation

y2 + y + δ = 0

with a given δ ∈ B = F = GF (q). When Tr(δ) = 0, we have roots y ∈ F
by the additive analogue of Hilbert’s Theorem 90, but here we need to
be a little more explicit. So we use the formula of Kugurakov inspired
by Berlekamp’s paper [1].

Lemma 1. Let δ ∈ B = F = GF (2m), and Tr(δ) = 0. Then the
equation y2 + y = δ has the explicit root y = 1 +

∑m−1
j=1 δ2

j

(
∑j−1
k=0 u

2k)
where u ∈ F and Tr(u) = 1. The other root is of course y + 1.

Proof: We have

y + y2 = δ2u+ δ4u+ · · ·+ δ2
m−1

u+ δ2
m

(u2 + · · ·+ u2m−1
)

= (Tr(δ) + δ)u+ δ2
m

(Tr(u) + u).

Now using that Tr(δ) = 0, Tr(u) = 1, and δ2
m

= δ, we obtain that
y2 + y = δ, completing the proof.

But how can we find a u ∈ F , verifying Tr(u) = 1? If m is odd u = 1
is a root, if m/2 is odd u = ρ with ρ 6= 1, a 3-root of unity is a root, but
if m/2 is even there are no obvious roots. As observed in Berlekamp’s
paper, exactly one half of the elements of F have trace equal to one. So
random trial is a good computational method. For small values of m,
we refer to the tables of primitive polynomials in Niederreiter’s book [8]
or, in the recent papers of Zivkovic [11] and Morgan and Mullen [7].

But a simpler solution exists.
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Lemma 2. Set F = F2[θ], and let P (x) be the minimal polynomial of
θ over F2. Then Tr(u) = 1 for u = ρ0/P

′(θ) ∈ F with ρ0 ∈ F being the
constant term of the polynomial P (x)/(x− θ).

Proof: Write n = deg(P (x)), and

P (x) = (x− θ)(ρ0 + ρ1x+ · · ·+ ρn−1x
n−1)

with the ρj in F . By Proposition 5.5 on page 322 of Lang’s book [5], the
dual basis of 1, θ, . . . , θn−1 relative to the bilinear form (x, y)→ Tr(xy)
is

u, ρ1/P
′(θ), . . . , ρn−1/P

′(θ)

finishing the proof.

Remark. A more general result concerning primitive polynomials
with given trace was obtained by Cohen in [3].
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