ON THE p-RANK OF AN ABELIAN VARIETY AND ITS ENDOMORPHISM ALGEBRA

Josep González

Abstract

Let A be an abelian variety defined over a finite field. In this paper, we discuss the relationship between the p-rank of A, r(A), and its endomorphism algebra, $\operatorname{End}^0(A)$. As is well known, $\operatorname{End}^0(A)$ determines r(A) when A is an elliptic curve. We show that, under some conditions, the value of r(A) and the structure of $\operatorname{End}^0(A)$ are related. For example, if the center of $\operatorname{End}^0(A)$ is an abelian extension of $\mathbb Q$, then A is ordinary if and only if $\operatorname{End}^0(A)$ is a commutative field. Nevertheless, we give an example in dimension 3 which shows that the algebra $\operatorname{End}^0(A)$ does not determine the value r(A).

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Given an abelian variety A/k of dimension g, the p-rank of A is defined by

$$r(A) := \dim_{\mathbb{F}_n} \operatorname{Pic}^0(A)[p] = \dim_{\mathbb{F}_n} H^1(A, \mathcal{O})^{\mathbb{F}^*},$$

where F^* denotes the absolute Frobenius. The value r(A) is invariant under isogenies and satisfies $r(A \times B) = r(A) + r(B)$, for A, B abelian varieties over k. Thus, if A is isogenous to a product of abelian varieties $\prod_{i=1}^m A_i^{n_i}$, then $r(A) = \sum_{i=1}^m n_i r(A_i)$.

Let \mathcal{C}/k be a non-singular projective curve of genus g > 0. Serre [Se 58] characterized the Hasse-Witt invariant, $r(\mathcal{C})$, by means of the action of F^* on the first cohomology group:

$$r(\mathcal{C}) = \dim_{\mathbb{F}_n} H^1(\mathcal{C}, \mathcal{O})^{F^*}.$$

This research has been partially supported by DGICYT, PB-93-0034.

If J denotes the jacobian of C, it is clear that r(J) = r(C). Ordinary abelian varieties are those for which r(A) = g. Supersingular elliptic curves are those for which r(A) = 0.

Let us denote by $\operatorname{End}^0(A) := \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(A)$ the endomorphism algebra of A. If E/k is an elliptic curve, E is ordinary if and only if $\operatorname{End}^0(E)$ is a commutative field (it is equal to \mathbb{Q} or to an imaginary quadratic extension of \mathbb{Q}); E is supersingular if and only if $\operatorname{End}^0(E)$ is a quaternion algebra over \mathbb{Q} . If, in addition, the field k is the algebraic closure of a finite field, the case $\operatorname{End}^0(E) = \mathbb{Q}$ is excluded.

The asymptotic behaviour of the Hasse-Witt invariants for the fibres of modular curves, resp. of Fermat curves, has been studied in [Ba-Go 97], resp. [Go 97]. Both cases are quite different. It turns out that, for some projective curves over \mathbb{Q} , the distribution of the extreme values of the Hasse-Witt invariant of the fibres seems to depend on the type of the endomorphism algebra over $\overline{\mathbb{Q}}$ of their jacobian variety.

In this paper, we summarize some results which show the relationship between r(A) and $\operatorname{End}^0(A)$ when the abelian variety A is defined over a finite field. Nevertheless, we provide with an example of two abelian varieties which have \mathbb{Q} -isomorphic endomorphism algebras but show different p-ranks. One of them is the jacobian of the modular curve $X_0(41)/\mathbb{F}_3$.

Some of these results are contained in my PhD thesis. I would like to finish this introduction by expressing my gratitude to my dissertation advisor Prof. Pilar Bàyer for her help and encouragement throughout the realization of the work.

2. Some general facts

We fix a positive integer n and consider a power $q=p^n$ of the characteristic of k. Throughout, A denotes an abelian variety of dimension g>0 defined over the finite field \mathbb{F}_q , and $k=\overline{\mathbb{F}}_q$. We denote by $\operatorname{End}_{\mathbb{F}_q}(A)$, resp. $\operatorname{End}(A)$, the ring of endomorphisms of A which are defined over \mathbb{F}_q , resp. k. We write $\operatorname{End}_{\mathbb{F}_q}^0(A):=\mathbb{Q}\otimes_{\mathbb{Z}}\operatorname{End}_{\mathbb{F}_q}(A)$, $\operatorname{End}^0(A):=\mathbb{Q}\otimes_{\mathbb{Z}}\operatorname{End}(A)$. If A is \mathbb{F}_q -isogenous to $\prod A_i^{n_i}$, where the abelian varieties A_i are \mathbb{F}_q -simple and not \mathbb{F}_q -isogenous to each other, then $\operatorname{End}_{\mathbb{F}_q}^0(A)=\oplus M_{n_i}(\operatorname{End}_{\mathbb{F}_q}^0(A_i))$, where M_{n_i} denotes the ring of $(n_i\times n_i)$ -matrices.

Let $\varphi \in \operatorname{End}_{\mathbb{F}_q}(A)$ be the relative Frobenius endomorphism, whose action on the variety raises to the q-th power the coordinates of the points of A. For a given prime number $\ell \neq p$, we denote by $T_\ell(A)$ the Tate module of A, and by $V_\ell(A) := \mathbb{Q}_\ell \otimes_{\mathbb{Z}_\ell} T_\ell(A)$. Two abelian varieties A, B defined

over \mathbb{F}_q are \mathbb{F}_q -isogenous if and only if the corresponding Frobenius have the same characteristic polynomial in the ℓ -adic representation.

The \mathbb{Q} -algebra $\operatorname{End}^0_{\mathbb{F}_q}(A)$ has $\mathbb{Q}(\varphi)$ as its center. We have that $\operatorname{End}^0_{\mathbb{F}_q}(A) = \mathbb{Q}(\varphi)$ if and only if the characteristic polynomial of φ acting on the Tate module has no double roots. We have that $\mathbb{Q}(\varphi) = \mathbb{Q}$ if and only if A is \mathbb{F}_q -isogenous to the g-th power of a supersingular elliptic curve with all its endomorphisms defined over \mathbb{F}_q . All these assertions can be found in [**Ta 66**].

Given an \mathbb{F}_q -polarization $\lambda: A \to \widehat{A}$, we consider the Rosati involution, defined on $\operatorname{End}^0(A)$ by $\psi \mapsto \psi' = \lambda^{-1} \circ \widehat{\psi} \circ \lambda$. It belongs to $\mathbb{Q}(\varphi)$. The Verschiebung, φ' , is an element of $\operatorname{End}_{\mathbb{F}_q}(A)$ and satisfies $\varphi \circ \varphi' = q$.

If A is \mathbb{F}_q -simple, then $\mathbb{Q}(\varphi)$ is a number field and the Rosati involution agrees on $\mathbb{Q}(\varphi)$ with the complex conjugation c, for all embeddings of $\mathbb{Q}(\varphi)$ into \mathbb{Q} . The class in the Brauer group of $\mathbb{Q}(\varphi)$ of the simple algebra $\mathrm{End}_{\mathbb{F}_q}^0(A)$ is characterized by the local invariants $i_{\wp} = f_{\wp} \operatorname{ord}_{\wp}(\varphi)/n$ at each prime \wp over p in $\mathbb{Q}(\varphi)$ (here, f_{\wp} stands for the residual degree at \wp); on each real prime, the local invariant is equal to 1/2; on the remaining primes, the algebra splits. The lowest common denominator e of all the invariants i_{\wp} is the period of the endomorphism algebra $\mathrm{End}_{\mathbb{F}_q}^0(A)$. The characteristic polynomial of φ acting on the Tate module equals the e-th power of the \mathbb{Q} -irreducible polynomial of φ (cf. [**Ta 66**], [**Wa 69**]).

We fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} . An element $\alpha \in \overline{\mathbb{Q}}$ is called a Weil q-number if $|\alpha| = q^{1/2}$, for all archimedian absolute values $|\cdot|$ on $\overline{\mathbb{Q}}$. Each Weil q-number α determines, up to isogenies, an \mathbb{F}_q -simple abelian variety A/\mathbb{F}_q such that the \mathbb{Q} -irreducible polynomial of φ equals the \mathbb{Q} -irreducible polynomial of α . This assignment establishes a one to one correspondence between the conjugation classes of Weil q-numbers and the \mathbb{F}_q -isogenies classes of \mathbb{F}_q -simple abelian varieties which are \mathbb{F}_q -defined (cf. [**Ta 68**]).

Let α_1 , α_2 be two Weil q-numbers such that $\mathbb{Q}(\alpha_1) = \mathbb{Q}(\alpha_2)$. If the ideals (α_1) , (α_2) in the ring of integers of $K := \mathbb{Q}(\alpha_1)$ coincide, then their associated abelian varieties are $\overline{\mathbb{F}}_q$ -isogenous. If $(\alpha_1) = (\alpha_2)$, then there exists a unit $\varepsilon \in K$ such that $\alpha_2 = \varepsilon \alpha_1$; since $|\varepsilon| = 1$, we have that ε must be a root of unity. If $\varepsilon^s = 1$, then $\alpha_1^s = \alpha_2^s$. The characteristic polynomials of the relative Frobenius of both abelian varieties over \mathbb{F}_{q^s} are equal. Thus, the varieties are \mathbb{F}_{q^s} -isogenous. We note that the abelian variety associated to a Weil q-number α is $\overline{\mathbb{F}}_q$ -isogenous to a power of a supersingular elliptic curve if and only if the ideals (α^2) and (q) do coincide.

In the sequel the term isogenous will indicate $\overline{\mathbb{F}}_q$ -isogenous.

3. Some relations between $\operatorname{End}^0(A)$ and r(A)

In this section we give some propositions which relate the *p*-rank r(A) to the structure of the \mathbb{Q} -algebra $\operatorname{End}^0_{\mathbb{F}_q}(A)$.

Let $P(X) := \det(\varphi - X \operatorname{Id} \mid V_{\ell}(A))$, which is a polynomial with integer coefficients independent of ℓ . If α_i , $1 \le i \le g$, denote its complex roots, then we have that $|\alpha_i| = q^{1/2}$ and $\prod_{i=1}^{2g} \alpha_i = q^g$. The real roots of P(X) have even multiplicity and we can order all the roots so that $\alpha_{i+g} = \overline{\alpha}_i = q/\alpha_i$, for $1 \le i \le g$. For such an order we write $\beta_i := \alpha_i + q/\alpha_i$. The polynomial $Q(X) := \prod_{i=1}^g (X - \beta_i)$ has integer coefficients too. We have

$$Q(X)^{2} = \det(\varphi + \varphi' - X \operatorname{Id} \mid V_{\ell}(A)), \quad P(X) = X^{g} Q\left(X + \frac{q}{X}\right).$$

Then $P(X) \pmod{p} = X^g Q(X) \pmod{p}$. The following results are known (cf. [Ma 65], [St 79], [Ba-Go 97]).

3.1. Proposition.

- i) r(A) is the sum of the multiplicities of the non-zero roots of the (mod p)-reduced characteristic polynomial P(X) and, hence, of those of the polynomial Q(X)(mod p).
- ii) We have $r(A) = \#\{\beta_i \notin \wp \mid 1 \le i \le g\} = \#\{\alpha_i \notin \wp \mid 1 \le i \le 2g\},\$ where \wp is a prime ideal over p in the ring of integers of $\mathbb{Q}(\{\alpha_i\})$.

By using the results displayed in the proposition and in the previous section, we obtain

3.2. Proposition. Let A/\mathbb{F}_q be an \mathbb{F}_q -simple abelian variety. Then:

- i) A is ordinary if and only if the ideals (φ) , (φ') (equivalently, the ideals $(\varphi + \varphi')$, (p)) are relatively prime in $\mathbb{Q}(\varphi)$.
- ii) r(A) = 0 if and only if every prime $\wp \mid (p)$ divides (φ) in $\mathbb{Q}(\varphi)$ (equivalently, divides $(\varphi + \varphi')$).
- iii) A is isogenous to a power of a supersingular elliptic curve if and only if $(\varphi) = (\varphi')$.
- iv) The period e of $\operatorname{End}_{\mathbb{F}_q}^0(A)$ in the Brauer group divides r(A).

From now on, we assume that A/\mathbb{F}_q is \mathbb{F}_q -simple. As usual, we will say that A is absolutely simple if it is k-simple.

3.3. Corollary. If there exists a prime ideal $\wp \mid (p)$ such that $\wp^c = \wp$, then A is non ordinary. If A is not isogenous to a power of a supersingular elliptic curve, then there exists a prime ideal $\wp \mid (p)$ such that $\wp \neq \wp^c$.

Proof: Since $\varphi^c = \varphi'$, if $\wp = \wp^c$ we shall have $\wp \mid (\varphi + \varphi')$ and A will be non ordinary. If every prime ideal over p is invariant under complex conjugation, then $(\varphi) = (\varphi')$.

3.4. Proposition. Assume that q = p. Then, we have

- i) If A is non ordinary, there exists a prime $\wp \mid (p)$ in $\mathbb{Q}(\varphi)$ which ramifies.
- ii) If r(A) = 0, every prime $\wp \mid (p)$ in $\mathbb{Q}(\varphi)$ does ramify.
- iii) $\operatorname{End}_{\mathbb{F}_p}^0(A)$ is a totally imaginary number field if and only if A is not isogenous to the square of a supersingular elliptic curve.

Proof: If A is non ordinary there exists a prime $\wp \mid (p)$ such that $\wp \mid (\varphi)$ and $\wp \mid (\varphi')$. Since $\varphi \varphi' = p$, it follows that \wp ramifies. If r(A) = 0, the condition if fulfilled by all the primes which divide (p). Let us prove iii). We recall that A is \mathbb{F}_p -simple. Since n = 1, the period e in the Brauer group is 1 or 2, depending on whether $\mathbb{Q}(\varphi)$ is totally imaginary or not. Thus, e = 1 if and only if $\mathrm{End}_{\mathbb{F}_p}^0(A)$ is a totally imaginary number field. The value e is equal to 2 if and only if $\varphi^2 = p$. In this case, the characteristic polynomial of φ is $(X^2 - p)^2$, which has associated an \mathbb{F}_p -simple abelian variety \mathbb{F}_{p^2} -isogenous to the square of a supersingular elliptic curve defined over \mathbb{F}_{p^2} .

3.5. Proposition. If r(A) is prime to g, then $\operatorname{End}_{\mathbb{F}_q}^0(A)$ is a commutative field.

Proof: If dim A=1, the statement is known and, therefore, we may assume that g>1. The field $\mathbb{Q}(\varphi)$ is either totally imaginary, equal to $\mathbb{Q}(\sqrt{p})$, or equal to \mathbb{Q} . Since A is \mathbb{F}_q -simple, the last possibility is excluded in our case. Thus $[\mathbb{Q}(\varphi):\mathbb{Q}]$ is even and e divides g, because $e[\mathbb{Q}(\varphi):\mathbb{Q}]=2g$. Since e also divides r(A), it follows that e=1.

The following theorem allows us to characterize, by means of the commutativity of $\operatorname{End}^0(A)$, the ordinary character of those absolutely simple

abelian varieties whose \mathbb{Q} -algebra $\operatorname{End}^0(A)$ has as center an abelian extension of \mathbb{Q} . Note that, since the center of the endomorphism algebra of an elliptic curve is always abelian over \mathbb{Q} , the ordinary character of an elliptic curve, E, is equivalent to the commutativity of $\operatorname{End}^0(E)$.

3.6. Theorem.

- i) If A is ordinary, then $\operatorname{End}_{\mathbb{F}_q}^0(A)$ is commutative and, therefore, $\operatorname{End}_{\mathbb{F}_q}^0(A) = \mathbb{Q}(\varphi)$. In particular, if A is ordinary and absolutely simple, $\operatorname{End}^0(A)$ is commutative.
- ii) If p splits completely in $\mathbb{Q}(\varphi)$ and $\operatorname{End}_{\mathbb{F}_q}^0(A)$ is commutative, then A is ordinary.
- iii) If A is absolutely simple and the center K of $\operatorname{End}^0(A)$ is an abelian extension of \mathbb{Q} , then p splits completely in K.

Proof: i) Let us assume that A is ordinary. The ideals (φ) , (φ') are relatively prime in $\mathbb{Q}(\varphi)$ by 3.2 i) and $\varphi\varphi'=p^n$. Thus, for all primes $\wp\mid(p)$ in $\mathbb{Q}(\varphi)$, we have that $\operatorname{ord}_\wp\varphi$ is zero or a positive multiple of n and, so, $i_\wp\in\mathbb{Z}$. The field $\mathbb{Q}(\varphi)$ has no real primes, because if φ were real, then $\varphi=\pm q^{1/2}$ and A would be non ordinary. Since all the local invariants of $\operatorname{End}^0_{\mathbb{F}_q}(A)$ are trivial, its Brauer period must be e=1; i.e., $\operatorname{End}^0_{\mathbb{F}_q}(A)=\mathbb{Q}(\varphi)$. This line of reasoning parallels that used in $[\mathbf{Yu}\,\mathbf{78}]$ for the case of the jacobian of a curve.

Let us now prove ii). If $\operatorname{End}_{\mathbb{F}_q}^0(A)$ is commutative and p splits completely, then for all primes $\wp \mid (p)$ in $\mathbb{Q}(\varphi)$ we have $i_\wp = \operatorname{ord}_\wp \varphi / n \in \mathbb{Z}$ and $\operatorname{ord}_\wp \varphi$ is zero or n. Since $n = \operatorname{ord}_\wp \varphi + \operatorname{ord}_\wp \varphi'$, we get that (φ) and (φ') are relatively prime and A is ordinary.

Let us see iii). We may assume without loss of generality that $\operatorname{End}^0(A)$ is equal to $\operatorname{End}^0_{\mathbb{F}_q}(A)$. Then $K=\mathbb{Q}(\varphi^s)$, for all s>0. The \mathbb{Q} -irreducible polynomial of φ is $\prod_{\sigma\in G}(X-\sigma(\varphi))$, where $G=\operatorname{Gal}(K/\mathbb{Q})$. Let $\wp\mid (p)$ be a prime in K and let \mathcal{D} denote its decomposition group in K/\mathbb{Q} . Assume that p does not split completely in K. Then we can take $\sigma\in\mathcal{D}\setminus\{\operatorname{Id}\}$ and the ideals $(\sigma(\varphi))$ and (φ) coincide, since K/\mathbb{Q} is abelian. There exists a root of unity $\varepsilon\in K$ such that $\varphi=\varepsilon\sigma(\varphi)$. If s>1 is the order of ε , then $\varphi^s=\sigma(\varphi^s)$. Then $[\mathbb{Q}(\varphi^s):\mathbb{Q}]<[\mathbb{Q}(\varphi):\mathbb{Q}]$, which is a contradiction.

If A/\mathbb{F}_q and B/\mathbb{F}_q are absolutely simple abelian varieties of dimension g>1, then A and B can have \mathbb{Q} -isomorphic endomorphism algebras by means of a homomorphism $\Phi: \operatorname{End}^0(A) \xrightarrow{\sim} \operatorname{End}^0(B)$ such that $\Phi(\varphi_A)$ is none of the conjugates of φ_B . If this is the case, A and B are not \mathbb{F}_q -isogenous. Nevertheless, as the following theorem shows, they have the same p-rank when g=2.

- **3.7. Theorem.** Let A/\mathbb{F}_q be an absolutely simple abelian variety of dimension g < 3. We have
 - i) If g = 1, then $\text{End}^0(A)$ determines A up to isogenies.
 - ii) If g = 2, then $\operatorname{End}^0(A)$ is a commutative field which determines r(A). If, moreover, p does not split completely in $\operatorname{End}^0(A)$, then $\operatorname{End}^0(A)$ determines A up to isogenies.

Proof: The assertion i) is well known. We assume, without loss of generality, that $\operatorname{End}^0(A) = \operatorname{End}^0_{\mathbb{F}_q}(A)$. Thus, $\mathbb{Q}(\varphi)$ is the center of $\operatorname{End}^0(A)$.

For all abelian varieties A/\mathbb{F}_q of dimension 2 the condition r(A)=0 is equivalent to the fact that A is isogenous to the square of a supersingular elliptic curve. Thus, if A is absolutely simple, either A is ordinary or r(A)=1.

Assume that dim A=2 and that A is absolutely simple. Since, in particular, A is not isogenous to a power of a supersingular elliptic curve, the field $K:=\mathbb{Q}(\varphi)$ is totally imaginary and the ideals (φ) , (φ') are different, by 3.2 iii).

In order to show that $\operatorname{End}^0(A)$ is a commutative field, we prove that e=1. Since $e[K:\mathbb{Q}]=4$ and $K\neq \mathbb{Q},\ e=2$ or e=1. Assume that e=2. Then $[K:\mathbb{Q}]=2$ and the prime p splits completely in K by 3.6 iii). We have that $(p)=\wp\wp^c$. The ideal (φ) is $\wp^i(\wp^c)^{n-i}$, for some i such that $0\leq i\leq n$, and the corresponding local invariants are i/n, (n-i)/n. Since e=2, we have that i=n/2 and $(\varphi)=(\varphi')$, which leads to a contradiction. Thus, e=1 and $[K:\mathbb{Q}]=4$.

Let $L := \mathbb{Q}(\varphi + \varphi')$, which is a quadratic extension of \mathbb{Q} . By 3.3, there exists a prime ideal $\wp_1 \mid (p)$ in K such that $\wp_1 \neq \wp_1^c$. This yields the following possibilities for the splitting type of (p) in K:

- a) $(p) = \wp_1^2(\wp_1^c)^2$ (p ramifies in L),
- b) $(p) = \wp_1 \wp_1^c$ (p is inert in L),
- c) $(p) = \wp_1 \wp_1^c \wp_2^s$, $1 \le s \le 2$, (p splits completely in L and not in K),
- d) $(p) = \wp_1 \wp_1^c \wp_2 \wp_2^c$ (p splits completely in K).

In case a), the ideal (φ) is $\wp^i(\wp^c)^{2n-i}$, $0 \le i \le 2n$. The local invariants i/n, (2n-i)/n are integers if and only if $i \in \{0, n, 2n\}$. The case i = n is not possible, since (φ) , (φ') would coincide. Thus, (φ) is equal to \wp^{2n} or $(\wp^c)^{2n}$. The two possible ideals are conjugated and, therefore, they correspond to isogenous abelian varieties. Thus, the p-rank of A is determined. In this particular case, A is ordinary, since (φ) and (φ') are relatively prime in K and we apply 3.2 i).

In case b), we have that (φ) is \wp_1^n or $(\wp_1^c)^n$. The two ideals are conjugated and they correspond to isogenous abelian varieties, which are ordinary.

In case c), we have that (φ) is $\wp_1^n \wp_2^{sn/2}$ or $(\wp_1^c)^n \wp_2^{sn/2}$. The two solutions are conjugated and they correspond to isogenous abelian varieties, which are not ordinary because $\wp_2 = \wp_2^c$. Thus r(A) = 1.

In case d), the ideal (φ) is equal to $\wp_1^n \wp_2^n$, $\wp_1^n (\wp_2^c)^n$, $(\wp_1^c)^n \wp_2^n$ or $(\wp_1^c)^n (\wp_2^c)^n$. These four solutions correspond to two possible ordinary abelian varieties which are not isogenous.

We see that in all cases r(A) is determined by $\operatorname{End}^0(A)$. If p does not split completely in $\operatorname{End}^0(A)$ then only cases a), b) or c) are possible. In all of them, A is determined up to isogenies by $\operatorname{End}^0(A)$. We remark that the first claim of ii) can be deduced from $[\mathbf{Oo} \, \mathbf{87}, \, 6.5]$.

If dim A = 2 and A/\mathbb{F}_q is not \mathbb{F}_q -simple, a counting of dimensions in each possible splitting type of A shows that the \mathbb{Q} -algebra $\mathrm{End}^0(A)$ also determines r(A).

4. An example

In this section we will give an example of two absolutely simple abelian varieties of dimension 3 which have isomorphic endomorphism algebras but different p-ranks.

Let α be a Weil q-number. For each positive integer m, we denote by A_m an abelian variety associated to the Weil q^m -number α^m . Let e_m be the Brauer period of $\operatorname{End}^0_{\mathbb{F}_{q^m}}(A_m)$. We have the following equivalent conditions:

- i) A_1/\mathbb{F}_q is absolutely simple.
- ii) A_1/\mathbb{F}_{q^m} is \mathbb{F}_{q^m} -simple for all positive integers m.
- iii) $\dim A_1 = \dim A_m$ for all positive integers m.
- iv) $[\mathbb{Q}(\alpha):\mathbb{Q}]e_1 = [\mathbb{Q}(\alpha^m):\mathbb{Q}]e_m$ for all positive integers m.

Since $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a finite extension, there exists a positive integer t such that $\mathbb{Q}(\alpha^t) = \mathbb{Q}(\alpha^{tm})$ for all positive integers m. For this t, we have that $e_t = e_{tm}$ for all m and, thus, A_t is absolutely simple. The abelian variety A_1 is absolutely simple if and only if $\dim A_1 = \dim A_t = [\mathbb{Q}(\alpha^t):\mathbb{Q}]e_t/2$ and, in this case, we have that $\operatorname{End}^0(A_1) = \operatorname{End}^0_{\mathbb{F}_q^t}(A_t)$. In particular, if $\mathbb{Q}(\alpha^m) = \mathbb{Q}(\alpha)$ for all m, then A_1 is absolutely simple and $\operatorname{End}^0(A_1) = \operatorname{End}^0_{\mathbb{F}_q}(A_1)$. This is the condition which we will use in our example.

The next proposition yields a criterion which makes it easy to determine whether an abelian variety A/\mathbb{F}_q , associated to a Weil q-number α such that $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$, is absolutely simple.

4.1. Proposition. Let α be a Weil q-number such that $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$. If there exists a positive integer s such that $\mathbb{Q}(\alpha^s) \subseteq \mathbb{Q}(\alpha)$, then the \mathbb{Q} -irreducible polynomial of α , P(x), is of type $X^6 + aX^3 + q^3$ or $\mathbb{Q}(\alpha) = \mathbb{Q}(\mu_7)$. If the polynomial P(x) is of type $X^6 + aX^3 + q^3$, then $\mathbb{Q}(\alpha^3) \subseteq \mathbb{Q}(\alpha)$.

Proof: For each positive integer s, the field $\mathbb{Q}(\alpha^s)$ is real if and only if $\alpha^s = \pm q^{1/2}$. In this case $[\mathbb{Q}(\alpha^s) : \mathbb{Q}]$ is 2 or 1; otherwise, $\mathbb{Q}(\alpha^s)$ is totally imaginary. We write $K := \mathbb{Q}(\alpha)$ and we denote by $L := \mathbb{Q}(\alpha + \overline{\alpha})$ the largest real subfield of K. The field L is the only subfield of K which has dimension 3 over \mathbb{Q} and, thus, $[\mathbb{Q}(\alpha^s) : \mathbb{Q}] \neq 3$ for all positive integers s.

Let m be the smallest positive integer such that $\mathbb{Q}(\alpha^m) \subseteq K$. The integer m is odd, otherwise $[\mathbb{Q}(\alpha^{m/2}) : \mathbb{Q}] = 6$ and, then $[\mathbb{Q}(\alpha^m) : \mathbb{Q}] = 3$. We consider two cases.

1) The Weil q-number α is equal to $q^{1/2}\zeta$, where ζ is a root of unity.

We assume that $q^{1/2} \in \mathbb{Z}$. Then $K = \mathbb{Q}(\zeta)$ and $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 6$. Therefore, $K = \mathbb{Q}(\mu_7)$ or $K = \mathbb{Q}(\mu_9)$. If $K = \mathbb{Q}(\mu_9)$, then the polynomial P(X) is equal to $X^6 \pm q^{3/2}X^3 + q^3$.

If $q^{1/2} \notin \mathbb{Z}$ then $\alpha^2 = q\zeta^2$. We have that $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^2)$, because m > 2, and K is equal to $\mathbb{Q}(\mu_7)$ or $\mathbb{Q}(\mu_9)$. Since m is odd, we have that $q^{m/2} \notin \mathbb{Q}$ and $[\mathbb{Q}(\alpha^m) : \mathbb{Q}] = 2$. The field $\mathbb{Q}(\mu_9)$ only contains the quadratic field $\mathbb{Q}(\sqrt{-3})$. Thus, if $K = \mathbb{Q}(\mu_9)$ then p = 3 and $\alpha = \pm (-q)^{1/2}\zeta_1$, where ζ_1 is a primitive 9-th root of unity; in this case, the polynomial P(x) is equal to $X^6 \pm (3q^3)^{1/2}X^3 + q^3$.

2) $\mathbb{Q}(\alpha^s) \neq \mathbb{Q}$ for all positive integers s.

In this case $\mathbb{Q}(\alpha^m)/\mathbb{Q}$ is an imaginary quadratic extension and there exist two primitive m-th roots of unity, ζ_1 and ζ_2 , such that

$$P(X) = (X - \alpha)(X - \alpha\zeta_1)(X - \alpha\zeta_2)(X - \overline{\alpha})(X - \overline{\alpha}\zeta_1^{-1})(X - \overline{\alpha}\zeta_2^{-1}).$$

We denote by \widetilde{K} the normal closure of K. We write $G := \operatorname{Gal}(\widetilde{K}/\mathbb{Q})$, $H := \{ \sigma \in G \mid \sigma(\alpha\zeta_2) = \alpha\zeta_2 \}$. We note that if $\sigma(\alpha\zeta_2) = \alpha\zeta_2$ and $\sigma(\alpha\zeta_1) = \alpha\zeta_1$, then $\sigma = \operatorname{Id}$ since the complex conjugation is in the center of G. We consider the following possibilities:

i) $H \neq \{\text{Id}\}$. In this case, there exists $\sigma \in G$ such that

$$\sigma(\alpha\zeta_2) = \alpha\zeta_2, \quad \sigma(\alpha\zeta_1) = \alpha, \quad \sigma(\alpha) = \alpha\zeta_1.$$

Therefore, $\sigma(\alpha) = \alpha\zeta_1$ and $\sigma^2(\alpha) = \alpha$. Since $\{\sigma \in G \mid \sigma(\alpha\zeta_1) = \alpha\zeta_1\} \neq \{\text{Id}\}$, there exists $\tau \in G$ such that $\tau(\alpha) = \alpha\zeta_2$ and $\tau^2(\alpha) = \alpha$. The conditions $\sigma^2(\alpha) = \tau^2(\alpha) = \alpha$ imply that σ , τ coincide in $\mathbb{Q}(\mu_m)$ with the complex conjugation. Thus $(\sigma \circ \tau)(\alpha) = \alpha\zeta_1\zeta_2^{-1}$. Since $\zeta_1\zeta_2^{-1} \in \{1, \zeta_1, \zeta_2\}$ and $\zeta_1 \notin \{1, \zeta_2\}$, we have that $\zeta_1 = \zeta_2^2$. Using $\tau \circ \sigma$, we obtain that $\zeta_2 = \zeta_1^2$. Thus, $\zeta_1, \zeta_2 \in \mu_3$ and m = 3.

ii) $H = \{\text{Id}\}$. In this case, $\widetilde{K} = K$. The field $\mathbb{Q}(\mu_m)$ is totally imaginary because m is odd, and thus, $[\mathbb{Q}(\mu_m) : \mathbb{Q}]$ can only be equal to 6 or 2. Therefore, $K = \mathbb{Q}(\mu_7)$ or m = 3.

If m=3 then $P(X)=(X^3-\alpha^3)(X^3-\overline{\alpha}^3)=X^6+aX^3+q^3$. It is clear that if $P(X)=X^6+aX^3+q^3$ then $\mathbb{Q}(\alpha^3)\subsetneq\mathbb{Q}(\alpha)$.

4.2. Example. We consider the modular curves $X_0(41)/\mathbb{Q}$, $X_0(41)/\mathbb{F}_3$, which have genus 3. Let A denote the jacobian of $X_0(41)/\mathbb{F}_3$.

From the tables of Wada, we see that the characteristic polynomial of the Hecke operator T_3 acting in $S_2(X_0(41))$ is $Q(X) = X^3 - 4X + 2$, which is \mathbb{Q} -irreducible. We consider the natural action of T_3 as endomorphism of $J_0(41)$, the jacobian of $X_0(41)$, and its (mod 3)-reduction, \widetilde{T}_3 , as endomorphism of A. The \mathbb{Q} -irreducible polynomial of \widetilde{T}_3 acting in $\Omega_1(A)$ is Q(X).

The real field $L=\mathbb{Q}(\widetilde{T}_3)$ has discriminant $2^2\cdot 37$ and, thus, $L\not\subset\mathbb{Q}(\mu_7)$. The congruence of Eichler-Shimura establishes that $\widetilde{T}_3=\varphi+\varphi'$. Then $\mathbb{Q}(\varphi)/L$ is an imaginary quadratic extension and the \mathbb{Q} -irreducible polynomial of φ is

$$P(X) = X^{3}Q(X + 3/X) = X^{6} + 5X^{4} + 2X^{3} + 15X^{2} + 27.$$

By 3.1 ii), r(A) = 3, because the (mod 3)-reduced polynomial Q(x) has there non zero roots. Since A is defined over \mathbb{F}_3 , then e = 1 and $\operatorname{End}_{\mathbb{F}_3}^0(A) = \mathbb{Q}(\varphi)$.

Let $\alpha:=3\varphi$, which is a Weil 3^3 -number. We have that $\mathbb{Q}(\alpha^m)=\mathbb{Q}(\varphi^m)$ for all positive integers m. Let B/\mathbb{F}_{27} be the abelian variety associated to α . It has r(B)=0, by 3.2 ii). The prime 3 is inert in L and does not ramify in $\mathbb{Q}(\alpha)$. The ideal (3) is not prime in $\mathbb{Q}(\alpha)$ because $r(A)\neq 0$. Then, we have that $(3)=\wp\wp^c$ with $f_\wp=f_{\wp^c}=3$ in $\mathbb{Q}(\alpha)$. Thus, the Brauer periode e of $\mathrm{End}^0_{\mathbb{F}_{27}}(B)$ is 1. Therefore, $\dim B=3$ and $\mathrm{End}^0_{\mathbb{F}_{27}}(B)=\mathbb{Q}(\alpha)$.

Since P(X) is not of type $X^6 + aX^3 + 3^3$ and $\mathbb{Q}(\varphi) \neq \mathbb{Q}(\mu_7)$, we have by 4.1 that $\mathbb{Q}(\varphi) = \mathbb{Q}(\varphi^m)$, for all positive integers m. Thus, A and B are absolutely simple and $\mathrm{End}^0(A)$, $\mathrm{End}^0(B)$ are isomorphic to $\mathbb{Q}(\varphi)$.

References

- [Ba-Go 97] P. BAYER AND J. GONZÁLEZ, On the Hasse-Witt invariants of modular curves, *Experiment. Math.* 6 (1997), 57–76.
- [De 41] M. DEURING, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272.
- [Go 97] J. GONZÁLEZ, Hasse-Witt matrices for the Fermat curves of prime degree, *Tôhoku Math. J.* **49** (1997), 149–163.
- [Ha 34] H. HASSE, Existenz separabler zyklischer unverzweigter Erweiterungskörpern vom Primzahlgrade p über elliptischen Funktionenkörpern der Charakteristik p, J. Reine Angew. Math. 172 (1934), 77–85.
- [Ha-Wi 36] H. HASSE AND E. WITT, Zyklische unverzweigte Erweiterungskörpern vom Primzahlgrade p über einem algebraischen Funktionenkörpern der Charakteristik p, Monatsh. Math. Phys. 43 (1936), 477–492.
- [Ma 65] J. I. MANIN, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Transl. Ser. 45 (1965), 245–264.
- [Oo 87] F. Oort, Endomorphism Algebras of Abelian Varieties, Algebraic Geometry and Commutative Algebra, in honour of M. Nagata 2 (1987), 469–502.
- [Se 58] J. P. SERRE, Sur la topologie des variétés algébriques en caractéristique p, Symp. Int. Top. Alg., México, p. 24–53, in "Euvres," vol. I, Springer.
- [St 79] H. STICHTENOTH, Die Hasse-Witt-Invariante eines Kongruenzfunktionenkörpers, Arch. Math. 33 (1979), 357–360.
- [Ta 66] J. Tate, Endomorphisms of abelian varieties over finite fields, *Invent. Math.* **2** (1966), 134–144.
- [Ta 68] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Sém. Bourbaki (1968/69), 95–110.
- [Wa 69] W. C. WATERHOUSE, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 2 (1969), 521–560.

 $[{\rm Yu}\,78]$ N. Yui, On the Jacobian varieties of hyperelliptic curves, J. $Algebra~{\bf 52}~(1978),~378–410.$

Departament de Matemàtica Aplicada i Telemàtica Escola Universitària Politècnica de Vilanova i la Geltrú Av. Victor Balaguer s/n Vilanova i la Geltrú 08800 SPAIN

e-mail: josepg@mat.upc.es

Primera versió rebuda el 21 de gener de 1997, darrera versió rebuda el 3 d'abril de 1997