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ON THE p-RANK OF AN ABELIAN VARIETY
AND ITS ENDOMORPHISM ALGEBRA

Josep González

Abstract
Let A be an abelian variety defined over a finite field. In this pa-
per, we discuss the relationship between the p-rank of A, r(A), and
its endomorphism algebra, End0(A). As is well known, End0(A)
determines r(A) when A is an elliptic curve. We show that, under
some conditions, the value of r(A) and the structure of End0(A)
are related. For example, if the center of End0(A) is an abelian
extension of Q, then A is ordinary if and only if End0(A) is a
commutative field. Nevertheless, we give an example in dimen-
sion 3 which shows that the algebra End0(A) does not determine
the value r(A).

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. Given an
abelian variety A/k of dimension g, the p-rank of A is defined by

r(A) := dimFp Pic0(A)[p] = dimFp H
1(A,O)F

∗
,

where F ∗ denotes the absolute Frobenius. The value r(A) is invariant
under isogenies and satisfies r(A × B) = r(A) + r(B), for A, B abelian
varieties over k. Thus, if A is isogenous to a product of abelian varieties∏m
i=1A

ni
i , then r(A) =

∑m
i=1 nir(Ai).

Let C/k be a non-singular projective curve of genus g > 0. Serre [Se 58]
characterized the Hasse-Witt invariant, r(C), by means of the action of
F ∗ on the first cohomology group:

r(C) = dimFp H
1(C,O)F

∗
.
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If J denotes the jacobian of C, it is clear that r(J) = r(C). Ordinary
abelian varieties are those for which r(A) = g. Supersingular elliptic
curves are those for which r(A) = 0.

Let us denote by End0(A) := Q⊗ZEnd(A) the endomorphism algebra
of A. If E/k is an elliptic curve, E is ordinary if and only if End0(E) is a
commutative field (it is equal toQ or to an imaginary quadratic extension
of Q); E is supersingular if and only if End0(E) is a quaternion algebra
over Q. If, in addition, the field k is the algebraic closure of a finite field,
the case End0(E) = Q is excluded.

The asymptotic behaviour of the Hasse-Witt invariants for the fibres of
modular curves, resp. of Fermat curves, has been studied in [Ba-Go 97],
resp. [Go 97]. Both cases are quite diferent. It turns out that, for some
projective curves over Q, the distribution of the extreme values of the
Hasse-Witt invariant of the fibres seems to depend on the type of the
endomorphism algebra over Q of their jacobian variety.

In this paper, we summarize some results which show the relation-
ship between r(A) and End0(A) when the abelian variety A is defined
over a finite field. Nevertheless, we provide with an example of two
abelian varieties which have Q-isomorphic endomorphism algebras but
show different p-ranks. One of them is the jacobian of the modular curve
X0(41)/F3.

Some of these results are contained in my PhD thesis. I would like
to finish this introduction by expressing my gratitude to my dissertation
advisor Prof. Pilar Bàyer for her help and encouragement throughout
the realization of the work.

2. Some general facts

We fix a positive integer n and consider a power q = pn of the char-
acteristic of k. Throughout, A denotes an abelian variety of dimen-
sion g > 0 defined over the finite field Fq, and k = Fq. We denote
by EndFq (A), resp. End(A), the ring of endomorphisms of A which
are defined over Fq, resp. k. We write End0

Fq (A) := Q ⊗Z EndFq (A),
End0(A) := Q ⊗Z End(A). If A is Fq-isogenous to

∏
Anii , where the

abelian varieties Ai are Fq-simple and not Fq-isogenous to each other,
then End0

Fq (A) = ⊕Mni(End0
Fq (Ai)), where Mni denotes the ring of

(ni × ni)-matrices.
Let ϕ ∈ EndFq (A) be the relative Frobenius endomorphism, whose ac-

tion on the variety raises to the q-th power the coordinates of the points of
A. For a given prime number ` 6= p, we denote by T`(A) the Tate module
of A, and by V`(A) := Q`⊗Z` T`(A). Two abelian varieties A, B defined
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over Fq are Fq-isogenous if and only if the corresponding Frobenius have
the same characteristic polynomial in the `-adic representation.

The Q-algebra End0
Fq (A) has Q(ϕ) as its center. We have that

End0
Fq (A) = Q(ϕ) if and only if the characteristic polynomial of ϕ acting

on the Tate module has no double roots. We have that Q(ϕ) = Q if
and only if A is Fq-isogenous to the g-th power of a supersingular elliptic
curve with all its endomorphisms defined over Fq. All these assertions
can be found in [Ta 66].

Given an Fq-polarization λ : A→ Â, we consider the Rosati involution,
defined on End0(A) by ψ 7→ ψ′ = λ−1 ◦ ψ̂ ◦ λ. It belongs to Q(ϕ). The
Verschiebung, ϕ′, is an element of EndFq (A) and satisfies ϕ ◦ ϕ′ = q.

If A is Fq-simple, then Q(ϕ) is a number field and the Rosati involution
agrees on Q(ϕ) with the complex conjugation c, for all embeddings of
Q(ϕ) into Q. The class in the Brauer group of Q(ϕ) of the simple algebra
End0

Fq (A) is characterized by the local invariants i℘ = f℘ ord℘(ϕ)/n at
each prime ℘ over p in Q(ϕ) (here, f℘ stands for the residual degree at ℘);
on each real prime, the local invariant is equal to 1/2; on the remaining
primes, the algebra splits. The lowest common denominator e of all the
invariants i℘ is the period of the endomorphism algebra End0

Fq (A). The
characteristic polynomial of ϕ acting on the Tate module equals the e-th
power of the Q-irreducible polynomial of ϕ (cf. [Ta 66], [Wa 69]).

We fix an algebraic closure Q of Q. An element α ∈ Q is called a
Weil q-number if |α| = q1/2, for all archimedian absolute values | · | on
Q. Each Weil q-number α determines, up to isogenies, an Fq-simple
abelian variety A/Fq such that the Q-irreducible polynomial of ϕ equals
the Q-irreducible polynomial of α. This assignment establishes a one to
one correspondence between the conjugation classes of Weil q-numbers
and the Fq-isogenies classes of Fq-simple abelian varieties which are
Fq-defined (cf. [Ta 68]).

Let α1, α2 be two Weil q-numbers such that Q(α1) = Q(α2). If the
ideals (α1), (α2) in the ring of integers of K := Q(α1) coincide, then
their associated abelian varieties are Fq-isogenous. If (α1) = (α2), then
there exists a unit ε ∈ K such that α2 = εα1; since |ε| = 1, we have
that ε must be a root of unity. If εs = 1, then αs1 = αs2. The charac-
teristic polynomials of the relative Frobenius of both abelian varieties
over Fqs are equal. Thus, the varieties are Fqs -isogenous. We note that
the abelian variety associated to a Weil q-number α is Fq-isogenous to a
power of a supersingular elliptic curve if and only if the ideals (α2) and
(q) do coincide.

In the sequel the term isogenous will indicate Fq-isogenous.
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3. Some relations between End0(A) and r(A)

In this section we give some propositions which relate the p-rank r(A)
to the structure of the Q-algebra End0

Fq (A).

Let P (X) := det(ϕ −X Id | V`(A)), which is a polynomial with inte-
ger coefficients independent of `. If αi, 1 ≤ i ≤ g, denote its complex
roots, then we have that |αi| = q1/2 and

∏2g
i=1 αi = qg. The real roots

of P (X) have even multiplicity and we can order all the roots so that
αi+g = αi = q/αi, for 1 ≤ i ≤ g. For such an order we write
βi := αi + q/αi. The polynomial Q(X) :=

∏g
i=1(X − βi) has integer

coefficients too. We have

Q(X)2 = det(ϕ+ ϕ′ −X Id | V`(A)), P (X) = XgQ
(
X +

q

X

)
.

Then P (X)(mod p) = XgQ(X)(mod p). The following results are known
(cf. [Ma 65], [St 79], [Ba-Go 97]).

3.1. Proposition.

i) r(A) is the sum of the multiplicities of the non-zero roots of the
(mod p)-reduced characteristic polynomial P (X) and, hence, of
those of the polynomial Q(X)(mod p).

ii) We have r(A)=#{βi /∈ ℘ | 1 ≤ i ≤ g}=#{αi /∈ ℘ | 1 ≤ i ≤ 2g},
where ℘ is a prime ideal over p in the ring of integers of Q({αi}).

By using the results displayed in the proposition and in the previous
section, we obtain

3.2. Proposition. Let A/Fq be an Fq-simple abelian variety. Then:

i) A is ordinary if and only if the ideals (ϕ), (ϕ′) (equivalently, the
ideals (ϕ+ ϕ′), (p)) are relatively prime in Q(ϕ).

ii) r(A) = 0 if and only if every prime ℘ | (p) divides (ϕ) in Q(ϕ)
(equivalently, divides (ϕ+ ϕ′)).

iii) A is isogenous to a power of a supersingular elliptic curve if and
only if (ϕ) = (ϕ′).

iv) The period e of End0
Fq (A) in the Brauer group divides r(A).
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From now on, we assume that A/Fq is Fq-simple. As usual, we will
say that A is absolutely simple if it is k-simple.

3.3. Corollary. If there exists a prime ideal ℘ | (p) such that ℘c = ℘,
then A is non ordinary. If A is not isogenous to a power of a supersin-
gular elliptic curve, then there exists a prime ideal ℘ | (p) such that
℘ 6= ℘c.

Proof: Since ϕc = ϕ′, if ℘ = ℘c we shall have ℘ | (ϕ+ ϕ′) and A will
be non ordinary. If every prime ideal over p is invariant under complex
conjugation, then (ϕ) = (ϕ′).

3.4. Proposition. Assume that q = p. Then, we have

i) If A is non ordinary, there exists a prime ℘ | (p) in Q(ϕ) which
ramifies.

ii) If r(A) = 0, every prime ℘ | (p) in Q(ϕ) does ramify.

iii) End0
Fp(A) is a totally imaginary number field if and only if A is

not isogenous to the square of a supersingular elliptic curve.

Proof: If A is non ordinary there exists a prime ℘ | (p) such that
℘ | (ϕ) and ℘ | (ϕ′). Since ϕϕ′ = p, it follows that ℘ ramifies. If
r(A) = 0, the condition if fulfilled by all the primes which divide (p).
Let us prove iii). We recall that A is Fp-simple. Since n = 1, the
period e in the Brauer group is 1 or 2, depending on whether Q(ϕ) is
totally imaginary or not. Thus, e = 1 if and only if End0

Fp(A) is a totally
imaginary number field. The value e is equal to 2 if and only if ϕ2 = p.
In this case, the characteristic polynomial of ϕ is (X2 − p)2, which has
associated an Fp-simple abelian variety Fp2-isogenous to the square of a
supersingular elliptic curve defined over Fp2 .

3.5. Proposition. If r(A) is prime to g, then End0
Fq (A) is a com-

mutative field.

Proof: If dimA = 1, the statement is known and, therefore, we may
assume that g > 1. The field Q(ϕ) is either totally imaginary, equal
to Q(

√
p), or equal to Q. Since A is Fq-simple, the last possibility is

excluded in our case. Thus [Q(ϕ) : Q] is even and e divides g, because
e[Q(ϕ) : Q] = 2g. Since e also divides r(A), it follows that e = 1.

The following theorem allows us to characterize, by means of the com-
mutativity of End0(A), the ordinary character of those absolutely simple



      

124 J. González

abelian varieties whose Q-algebra End0(A) has as center an abelian ex-
tension of Q. Note that, since the center of the endomorphism algebra
of an elliptic curve is always abelian over Q, the ordinary character of
an elliptic curve, E, is equivalent to the commutativity of End0(E).

3.6. Theorem.

i) If A is ordinary, then End0
Fq (A) is commutative and, therefore,

End0
Fq (A) = Q(ϕ). In particular, if A is ordinary and absolutely

simple, End0(A) is commutative.

ii) If p splits completely in Q(ϕ) and End0
Fq (A) is commutative, then

A is ordinary.

iii) If A is absolutely simple and the center K of End0(A) is an abelian
extension of Q, then p splits completely in K.

Proof: i) Let us assume that A is ordinary. The ideals (ϕ), (ϕ′) are
relatively prime in Q(ϕ) by 3.2 i) and ϕϕ′ = pn. Thus, for all primes
℘ | (p) in Q(ϕ), we have that ord℘ ϕ is zero or a positive multiple of n
and, so, i℘ ∈ Z. The field Q(ϕ) has no real primes, because if ϕ were
real, then ϕ = ±q1/2 and A would be non ordinary. Since all the local
invariants of End0

Fq (A) are trivial, its Brauer period must be e = 1; i.e.,
End0

Fq (A) = Q(ϕ). This line of reasoning parallels that used in [Yu 78]
for the case of the jacobian of a curve.

Let us now prove ii). If End0
Fq (A) is commutative and p splits com-

pletely, then for all primes ℘ | (p) in Q(ϕ) we have i℘ = ord℘ ϕ/n ∈ Z
and ord℘ ϕ is zero or n. Since n = ord℘ ϕ+ ord℘ ϕ′, we get that (ϕ) and
(ϕ′) are relatively prime and A is ordinary.

Let us see iii). We may assume without loss of generality that End0(A)
is equal to End0

Fq (A). Then K = Q(ϕs), for all s > 0. The Q-irreducible
polynomial of ϕ is

∏
σ∈G(X−σ(ϕ)), whereG = Gal(K/Q). Let ℘ | (p) be

a prime in K and let D denote its decomposition group in K/Q. Assume
that p does not split completely in K. Then we can take σ ∈ D\{Id} and
the ideals (σ(ϕ)) and (ϕ) coincide, since K/Q is abelian. There exists a
root of unity ε ∈ K such that ϕ = εσ(ϕ). If s > 1 is the order of ε, then
ϕs = σ(ϕs). Then [Q(ϕs) : Q] < [Q(ϕ) : Q], which is a contradiction.

If A/Fq and B/Fq are absolutely simple abelian varieties of dimension
g > 1, then A and B can have Q-isomorphic endomorphism algebras by
means of a homomorphism Φ : End0(A) ∼→ End0(B) such that Φ(ϕA)
is none of the conjugates of ϕB . If this is the case, A and B are not
Fq-isogenous. Nevertheless, as the following theorem shows, they have
the same p-rank when g = 2.
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3.7. Theorem. Let A/Fq be an absolutely simple abelian variety of
dimension g < 3. We have

i) If g = 1, then End0(A) determines A up to isogenies.

ii) If g = 2, then End0(A) is a commutative field which determines
r(A). If, moreover, p does not split completely in End0(A), then
End0(A) determines A up to isogenies.

Proof: The assertion i) is well known. We assume, without loss of gen-
erality, that End0(A) = End0

Fq (A). Thus, Q(ϕ) is the center of End0(A).
For all abelian varieties A/Fq of dimension 2 the condition r(A) = 0 is

equivalent to the fact that A is isogenous to the square of a supersingular
elliptic curve. Thus, if A is absolutely simple, either A is ordinary or
r(A) = 1.

Assume that dimA = 2 and that A is absolutely simple. Since, in
particular, A is not isogenous to a power of a supersingular elliptic curve,
the field K := Q(ϕ) is totally imaginary and the ideals (ϕ), (ϕ′) are
different, by 3.2 iii).

In order to show that End0(A) is a commutative field, we prove that
e = 1. Since e[K : Q] = 4 and K 6= Q, e = 2 or e = 1. Assume that
e = 2. Then [K : Q] = 2 and the prime p splits completely in K by
3.6 iii). We have that (p) = ℘℘c. The ideal (ϕ) is ℘i(℘c)n−i, for some
i such that 0 ≤ i ≤ n, and the corresponding local invariants are i/n,
(n− i)/n. Since e = 2, we have that i = n/2 and (ϕ) = (ϕ′), which leads
to a contradiction. Thus, e = 1 and [K : Q] = 4.

Let L := Q(ϕ+ϕ′), which is a quadratic extension of Q. By 3.3, there
exists a prime ideal ℘1 | (p) in K such that ℘1 6= ℘c1. This yields the
following possibilities for the splitting type of (p) in K:

a) (p) = ℘2
1(℘

c
1)

2 (p ramifies in L),

b) (p) = ℘1℘
c
1 (p is inert in L),

c) (p) = ℘1℘
c
1℘

s
2, 1 ≤ s ≤ 2, (p splits completely in L and not in K),

d) (p) = ℘1℘
c
1℘2℘

c
2 (p splits completely in K).

In case a), the ideal (ϕ) is ℘i(℘c)2n−i, 0 ≤ i ≤ 2n. The local in-
variants i/n, (2n − i)/n are integers if and only if i ∈ {0, n, 2n}. The
case i = n is not possible, since (ϕ), (ϕ′) would coincide. Thus, (ϕ) is
equal to ℘2n or (℘c)2n. The two possible ideals are conjugated and,
therefore, they correspond to isogenous abelian varieties. Thus, the
p-rank of A is determined. In this particular case, A is ordinary, since
(ϕ) and (ϕ′) are relatively prime in K and we apply 3.2 i).



     

126 J. González

In case b), we have that (ϕ) is ℘n1 or (℘c1)
n. The two ideals are con-

jugated and they correspond to isogenous abelian varieties, which are
ordinary.

In case c), we have that (ϕ) is ℘n1℘
sn/2
2 or (℘c1)

n℘
sn/2
2 . The two solu-

tions are conjugated and they correspond to isogenous abelian varieties,
which are not ordinary because ℘2 = ℘c2. Thus r(A) = 1.

In case d), the ideal (ϕ) is equal to ℘n1℘
n
2 , ℘n1 (℘c2)

n, (℘c1)
n℘n2 or

(℘c1)
n(℘c2)

n. These four solutions correspond to two possible ordinary
abelian varieties which are not isogenous.

We see that in all cases r(A) is determined by End0(A). If p does not
split completely in End0(A) then only cases a), b) or c) are possible. In
all of them, A is determined up to isogenies by End0(A). We remark
that the first claim of ii) can be deduced from [Oo 87, 6.5].

If dimA = 2 and A/Fq is not Fq-simple, a counting of dimensions in
each possible splitting type of A shows that the Q-algebra End0(A) also
determines r(A).

4. An example

In this section we will give an example of two absolutely simple abelian
varieties of dimension 3 which have isomorphic endomorphism algebras
but different p-ranks.

Let α be a Weil q-number. For each positive integer m, we denote by
Am an abelian variety associated to the Weil qm-number αm. Let em
be the Brauer period of End0

Fqm (Am). We have the following equivalent
conditions:

i) A1/Fq is absolutely simple.

ii) A1/Fqm is Fqm -simple for all positive integers m.

iii) dimA1 = dimAm for all positive integers m.

iv) [Q(α) : Q]e1 = [Q(αm) : Q]em for all positive integers m.

Since Q(α)/Q is a finite extension, there exists a positive integer t
such that Q(αt) = Q(αtm) for all positive integers m. For this t, we
have that et = etm for all m and, thus, At is absolutely simple. The
abelian variety A1 is absolutely simple if and only if dimA1 = dimAt =
[Q(αt) : Q]et/2 and, in this case, we have that End0(A1) = End0

Fqt (At).
In particular, if Q(αm) = Q(α) for all m, then A1 is absolutely simple
and End0(A1) = End0

Fq (A1). This is the condition which we will use in
our example.
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The next proposition yields a criterion which makes it easy to deter-
mine whether an abelian variety A/Fq, associated to a Weil q-number α
such that [Q(α) : Q] = 6, is absolutely simple.

4.1. Proposition. Let α be a Weil q-number such that [Q(α) : Q]=6.
If there exists a positive integer s such that Q(αs) ( Q(α), then the
Q-irreducible polynomial of α, P (x), is of type X6 + aX3 + q3 or
Q(α) = Q(µ7). If the polynomial P (x) is of type X6 + aX3 + q3, then
Q(α3) ( Q(α).

Proof: For each positive integer s, the field Q(αs) is real if and only if
αs = ±q1/2. In this case [Q(αs) : Q] is 2 or 1; otherwise, Q(αs) is totally
imaginary. We write K := Q(α) and we denote by L := Q(α + α) the
largest real subfield of K. The field L is the only subfield of K which has
dimension 3 over Q and, thus, [Q(αs) : Q] 6= 3 for all positive integers s.

Let m be the smallest positive integer such that Q(αm) ( K. The
integerm is odd, otherwise [Q(αm/2) : Q] = 6 and, then [Q(αm) : Q] = 3.
We consider two cases.

1) The Weil q-number α is equal to q1/2ζ, where ζ is a root of unity.

We assume that q1/2 ∈ Z. Then K = Q(ζ) and [Q(ζ) : Q] = 6.
Therefore,K = Q(µ7) orK = Q(µ9). IfK = Q(µ9), then the polynomial
P (X) is equal to X6 ± q3/2X3 + q3.

If q1/2 /∈ Z then α2 = qζ2. We have that Q(α) = Q(α2), because
m > 2, and K is equal to Q(µ7) or Q(µ9). Since m is odd, we have
that qm/2 /∈ Q and [Q(αm) : Q] = 2. The field Q(µ9) only contains
the quadratic field Q(

√
−3). Thus, if K = Q(µ9) then p = 3 and

α = ±(−q)1/2ζ1, where ζ1 is a primitive 9-th root of unity; in this case,
the polynomial P (x) is equal to X6 ± (3q3)1/2X3 + q3.

2) Q(αs) 6= Q for all positive integers s.

In this case Q(αm)/Q is an imaginary quadratic extension and there
exist two primitive m-th roots of unity, ζ1 and ζ2, such that

P (X) = (X − α)(X − αζ1)(X − αζ2)(X − α)(X − αζ−1
1 )(X − αζ−1

2 ).

We denote by K̃ the normal closure of K. We write G := Gal(K̃/Q),
H := {σ ∈ G | σ(αζ2) = αζ2}. We note that if σ(αζ2) = αζ2 and
σ(αζ1) = αζ1, then σ = Id since the complex conjugation is in the center
of G. We consider the following possibilities:
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i) H 6= {Id}. In this case, there exists σ ∈ G such that

σ(αζ2) = αζ2, σ(αζ1) = α, σ(α) = αζ1.

Therefore, σ(α) = αζ1 and σ2(α) = α. Since {σ ∈ G | σ(αζ1) =
αζ1} 6= {Id}, there exists τ ∈ G such that τ(α) = αζ2 and
τ2(α) = α. The conditions σ2(α) = τ2(α) = α imply that
σ, τ coincide in Q(µm) with the complex conjugation. Thus
(σ ◦ τ)(α) = αζ1ζ

−1
2 . Since ζ1ζ−1

2 ∈ {1, ζ1, ζ2} and ζ1 /∈ {1, ζ2},
we have that ζ1 = ζ2

2 . Using τ ◦ σ, we obtain that ζ2 = ζ2
1 . Thus,

ζ1, ζ2 ∈ µ3 and m = 3.

ii) H = {Id}. In this case, K̃ = K. The field Q(µm) is totally
imaginary because m is odd, and thus, [Q(µm) : Q] can only be
equal to 6 or 2. Therefore, K = Q(µ7) or m = 3.

If m = 3 then P (X) = (X3 − α3)(X3 − α3) = X6 + aX3 + q3. It is
clear that if P (X) = X6 + aX3 + q3 then Q(α3) ( Q(α).

4.2. Example. We consider the modular curves X0(41)/Q,
X0(41)/F3, which have genus 3. Let A denote the jacobian of X0(41)/F3.

From the tables of Wada, we see that the characteristic polynomial of
the Hecke operator T3 acting in S2(X0(41)) is Q(X) = X3 − 4X + 2,
which is Q-irreducible. We consider the natural action of T3 as endo-
morphism of J0(41), the jacobian of X0(41), and its (mod 3)-reduction,
T̃3, as endomorphism of A. The Q-irreducible polynomial of T̃3 acting
in Ω1(A) is Q(X).

The real field L = Q(T̃3) has discriminant 22 · 37 and, thus,
L 6⊂ Q(µ7). The congruence of Eichler-Shimura establishes that
T̃3 = ϕ + ϕ′. Then Q(ϕ)/L is an imaginary quadratic extension and
the Q-irreducible polynomial of ϕ is

P (X) = X3Q(X + 3/X) = X6 + 5X4 + 2X3 + 15X2 + 27.

By 3.1 ii), r(A) = 3, because the (mod 3)-reduced polynomial Q(x)
has three non zero roots. Since A is defined over F3, then e = 1 and
End0

F3(A) = Q(ϕ).
Let α := 3ϕ, which is a Weil 33-number. We have that Q(αm) =

Q(ϕm) for all positive integers m. Let B/F27 be the abelian variety
associated to α. It has r(B) = 0, by 3.2 ii). The prime 3 is inert in L
and does not ramify in Q(α). The ideal (3) is not prime in Q(α) because
r(A) 6= 0. Then, we have that (3) = ℘℘c with f℘ = f℘c = 3 in Q(α).
Thus, the Brauer periode e of End0

F27(B) is 1. Therefore, dimB = 3 and
End0

F27(B) = Q(α).
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Since P (X) is not of type X6 + aX3 + 33 and Q(ϕ) 6= Q(µ7), we have
by 4.1 that Q(ϕ) = Q(ϕm), for all positive integers m. Thus, A and B
are absolutely simple and End0(A), End0(B) are isomorphic to Q(ϕ).
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[Ba-Go 97] P. Bayer and J. González, On the Hasse-Witt invari-
ants of modular curves, Experiment. Math. 6 (1997), 57–76.

[De 41] M. Deuring, Die Typen der Multiplikatorenringe elliptis-
cher Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941),
197–272.
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vol. I, Springer.

[St 79] H. Stichtenoth, Die Hasse-Witt-Invariante eines Kongruen-
zfunktionenkörpers, Arch. Math. 33 (1979), 357–360.

[Ta 66] J. Tate, Endomorphisms of abelian varieties over finite fields,
Invent. Math. 2 (1966), 134–144.

[Ta 68] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps
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