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CHOQUET INTEGRALS
IN POTENTIAL THEORY

David R. Adams

Abstract
This is a survey of various applications of the notion of the Cho-
quet integral to questions in Potential Theory, i.e. the integral of a
function with respect to a non-additive set function on subsets of
Euclidean n-space, capacity. The Choquet integral is, in a sense,
a nonlinear extension of the standard Lebesgue integral with re-
spect to the linear set function, measure. Applications include an
integration principle for potentials, inequalities for maximal func-
tions, stability for solutions to obstacle problems, and a refined
notion of pointwise differentiation of Sobolev functions.
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1. Introduction

The concept of capacity, as a generic set theoretic measuring device,
is intimately associated to the idea of a function space —in much the
same way that Lebesgue measure is related to the classical Lp spaces.
The sets of capacity zero are the exceptional sets for representatives
of the function space. The prime example of such function spaces are,
of course, the classical Sobolev spaces Wm,p(Ω), m a positive integer,
1 ≤ p ≤ ∞, and Ω a domain in Euclidean n-space Rn: the distributional
derivatives of orders ≤ m all belong to Lp(Ω). When mp ≤ n, such
spaces contain functions all of whose representatives are discontinuous
somewhere. The associated capacity, in this case, is nontrivial; it is the
variational capacity

C ′m,p(K) = inf{‖φ‖pWm,p : φ ∈ C∞0 , φ ≥ 1 on K}1

where K is a compact subset of Rn and Wm,p = Wm,p(Rn) with

‖φ‖pWm,p(Ω) =
∑
|σ|≤m

∫
Ω

|Dσφ|p dx

and σ is an n-tuple of non-negative integers (σ1, . . . , σn) such that
σ1 + · · · + σn ≤ m i.e. |σ| ≤ m. Dσφ is the usual partial differentia-
tion of φ, σk times in direction xk, x = (x1, . . . , xn). C∞0 (Ω) denotes
the usual space of infinitely differentiable functions on Ω with compact
support; C∞0 = C∞0 (Rn). It is easy to see that C ′m,p is never zero when
mp > n, and this coincides with the fact that each u ∈ Wm,p now has
an everywhere continuous representative.

It is well known how function spaces have become such an influencial
concept in analysis, especially in the modern theory of partial differential
equations. In particular, Sobolev spaces often provide just the right set-
ting to prove existence, uniqueness and regularity results for solutions.
Capacity has classically entered this picture through removable singu-
larity results and boundary regularity criteria. But recently, the concept
of capacity has become much more —a tool that is used in much the
same way as measure is used. And one manifestation of this is a desire
to “integrate with respect to capacity” as if it really were an additive
set function —which it clearly is not. One way around this difficulty is
to define such an integral using the distributional form of a Lebesgue

1Throughout this manuscript we shall endeavor to adhere to the notation and termi-
nology of our basic reference [AH].
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integral. This was first proposed by Choquet in his seminal work on
capacities [C]. And so we define∫

E

f dC ≡
∫ ∞

0

C({x ∈ E : f(x) > t}) dt

where f is a non-negative function and C(·) is a capacity. Such a concept
allows us to at least attempt to treat capacity as a set function much
like a measure for purposes of integrating representatives of our function
space. And it is precisely to such uses that this note is dedicated: appli-
cations that have been around for some time but which can be rephrased
in this language, or new uses of this tool. One such reinterpretation is
to write the famous Wiener boundary regularity criterion for harmonic
functions in domain Ω with specified continuous boundary values as: x0

is a regular boundary point (i.e. the solution takes on it boundary value
at x0 continuously) if and only if∫

Ωc∩B(x0,1)

|x− x0|2−n dC ′1,2(x) = +∞

for n > 2, Ω ⊂ Rn, Ωc = complement of Ω, and B(x0, r) is a ball centered
x0 of radius r. See [AH, p. 165], [H, p. 220], and [KM].

For an extensive discussion of the development of the concept of ca-
pacity and related ideas like equilibrium potential, thinness, Hausdorff
measures, energy etc. see the book [AH] and the survey paper [A1].
Many such concepts will be used or refered to in this presentation, and
the reader should consult these as well as other references quoted in the
bibliography.

The ideas presented here mainly reflect the interests of the author, but
their origin can be traced back to two papers, in addition to the funda-
mental article [C] of Choquet. The first of these, [Fu], is Fuglede’s 1971
interpretation of the concept of capacity as a nonlinear functional gen-
eralizing the well known idea of a measure as a linear functional. The
second, is the author’s 1978 paper [A4] where an interesting connection
was made between the Choquet integral and a certain capacity func-
tional through the “capacity strong type inequality”, (3.1) below. This
idea is expressed here as Theorem 2 of section 3(c). However, most of the
results presented here are quite recent —since the mid to late 1980’s—
and often they have not generally been available to the mathematical
community at large. Consequently, though this is a survey article, it
still seems desirable to supply the proofs or at least some indication of
the proofs in cases where these results have had little or no exposure.
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The topics included are loosely tied together by their common use of
the Choquet integral. The reader can regard each section as an indepen-
dent topic after a few introductory remarks from section 2. The topics
include a study of the Choquet space Lq(C) for various choices of the
capacity C. Here a special role is noted for the Hausdorff capacity (con-
tent) —section 4. And, as with the study of various function spaces, two
topics often of general interest are: a discussion of the dual spaces and
the embeddings of more familiar spaces into the new spaces. This we do
for Lp(Cα,p) in Theorems 3 and 4. In section 6, the Choquet integral is
used to express a general stability criterion for solutions to an obstacle
problem for the p-Laplace operator on a given bounded domain Ω of
n-space, Theorem 11. The use of the Choquet integral here allows for a
very broad class of obstacles, obstacles that need not be smooth or even
bounded. Finally, in section 6, we use the Choquet integral as a tool to
refine the usual pointwise differentiation theory for functions in Sobolev
spaces.

It is hoped that this survey will provide an introduction, of a sub-
stantional nature, for this circle of ideas, ideas that often provide a very
elegant and convenient language to express a complimentary notion to
the traditional (linear) integral of a function with respect to an additive
measure, i.e. the Choquet integral.

The author wishes to thank the editor, J. Verdera, for the invitation
to organize these ideas and present them through Publicacions Matemà-
tiques.

2. Capacity and integrals

(a) Bessel and Riesz capacity.
Calderon’s theorem ([AH, p. 13]) shows that every u ∈ Wm,p can be

represented as a Bessel potential: u(x) = Gm ∗f(x), x ∈ Rn and f ∈ Lp.
Gα is the L1 function with Fourier transform (1 + |ξ|2)−α/2, ξ ∈ Rn,
α > 0. With this, we have the following potential theoretic capacity,
equivalent to C ′m,p when α = m, an integer:

Cα,p(K) = inf{‖f‖pLp : Gα ∗ f ≥ 1 on K, f ≥ 0 a.e.}

for α > 0 and 1 < p < ∞. This capacity is often refered to as Bessel
capacity and denoted Bα,p in the literature. If we substitute the Riesz
kernel Iα(x) = γ(α) |x|α−n, 0 < α < n, (see [AH, p. 9]) for the Bessel
kernel Gα(x) above, then we write Ċα,p for the Riesz capacity. Ċα,p and
Cα,p are locally comparable when αp < n; see [AH, p. 131]. We can also
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replace the kernel Gα by any of several candidates g(x, y), by replacing
the convolution Gα ∗ f by

(2.1)
∫
Rn
g(x, y)f(y) dµ(y)

where µ is some Borel measure, say. For details here, the reader is refered
to [AH, p. 24f].

One important feature of the theory of capacities associated with oper-
ators like (2.1) is a so called dual theory; (see [AH, p. 34]). For example,
the Bessel capacity has the dual formulation:

Cα,p(K)1/p = sup{µ(K) : µ ∈M+(K), ‖Gα ∗ µ‖Lp′ ≤ 1}.

HereM(K) is the dual of C(K), the continuous real valued functions on
the compact set K, M+(K) the cone of positive measures on K. Also,
p′ will denote the Hölder conjugate exponent to p throughout,

1
p

+
1
p′

= 1.

If we let FK and νK be the extremals for the two versions of Cα,p(K)
above, then

‖FK‖pLp = Cα,p(K),(2.2)

FK = (Gα ∗ µK)p
′−1, µK = Cα,p(K)1/p

′
νK ,(2.3)

µK(K) = Cα,p(K).(2.4)

The capacitary potential or equilibrium potential is the function
Gα ∗ FK = Gα ∗ (Gα ∗ µK)p

′−1. Generally, we refer to the function

V µα,p(x) = Gα ∗ (Gα ∗ µ)p
′−1

as the nonlinear potential of the measure µ. Note that when p = 2,
V µα,p becomes the linear potential G2α ∗µ. The capacitary potential also
satisfies:

V µ
K

α,p ≥ 1, Cα,p-a.e. on K,(2.5)

V µ
K

α,p ≤ 1, on support of µK ,(2.6)

V µ
K

α,p ≤ A, on all of Rn,(2.7)

where A is a constant depending only on n, α, p. See [AH, p. 21, 40].
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Similar statements can be made about the Riesz capacity Ċα,p. We
will denoted the Riesz nonlinear potentials by V̇ µα,p. But note that
Ċα,p(K) ≡ 0 for all K when αp ≥ n due to the fact that Iα(x) /∈ Lp′ near
∞ when αp ≥ n. Such, of course, is not the case for Gα(x), it decays
exponentially as |x| → ∞; see [AH, p. 12].

Finally, we should note an important variant of the nonlinear poten-
tials, the Wolff potentials. These are:

Wµ
α,p(x) =

∫ 1

0

[rαp−nµ(B(x, r))]p
′−1 dr

r

and

Ẇµ
α,p(x) =

∫ ∞
0

[rαp−nµ(B(x, r)]p
′−1 dr

r
,

the non-homogeneous and homogeneous versions. These potentials are
associated to the Bessel and Riesz versions through the celebrated Wolff
inequality:

‖Gα ∗ µ‖p
′

Lp′
≤ A

∫
Wµ
α,p dµ.

See [AH, p. 109]. A similar estimate holds for Iα ∗ µ and Ẇµ
α,p. Also

one can easily show
V µα,p(x) ≥ AWµ

α,p(x)

for all x (and similarly for V̇ and Ẇ ). Hence it follows that

(2.8) ‖Gα ∗ µ‖Lp′ ∼
∫
Wµ
α,p dµ,

i.e. the first quantity is bounded by a constant multiple of the second
and vice versa.

Note the simple expression

Ẇµ
α,2(x) =

1
n− 2α

∫
|x− y|2α−n dµ(y),

for 2α < n.
Also, due to the equivalence (2.8), one can use the Wolff potentials in

the dual formulation of Cα,p and then obtain Wolff potential analogues
to (2.5)-(2.7) above; see [AH, p. 34, 108].
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(b) Function spaces and capacity.
Two important function space scales are the Besov scaleBp,qα =Bp,qα (Rn)

and the Lizorkin-Triebel scale F p,qα = F p,qα (Rn); α real and 0 < p, q ≤ ∞.
The reader is refered to [AH, chapter 4], for the necessary definitions
and properties of these function spaces. Suffice it to say here that the
space F p,2α coincides with the space of Bessel potentials of Lp(Rn) func-
tions when 1 < p < ∞, and the space of Bessel potentials of functions
(distributions) belonging to the classical real Hardy spaces Hp(Rn) when
0 < p ≤ 1. F∞,20 is the John-Nirenberg space of functions of bounded
mean oscillation, BMO, on Rn.

The spaces Bp,qα , for α > 0, are often refered to in the literature as
generalized Lipschitz classes and denoted by Λp,qα ; cf. [St]. One im-
portant connection between these two scales of spaces is the relation:
Bp,pα = F p,pα . This will be exploited below in section 4(c).

An interesting idea is to define a potential theory and a theory of
capacities based entirely on the Besov and Lizorkin-Triebel spaces. Such
capacities are denoted by C(·;X) in [AH], (see p. 105), where X can
stand for any one of the spaces given above (or others). For example,
one can write:

C(K;Bp,qα ) = inf{‖φ‖p
Bp,qα

: φ ∈ S, φ ≥ 1 on K}

where S denotes the Schwartz class of rapidly decreasing C∞-functions
on Rn: cf. [AH, p. 105]. Also, we clearly have

Cα,p(K) = C(K;F p,2α ).

It is a bit more subtle, however, to conclude that

(2.3) Cα,p(K) ∼ C(K;F p,qα )

for all q ∈ (0,∞); see [A2] and [Ne2]. Here again the symbol ∼ between
two set functions, means that their ratio is bounded above and below
by positive finite constants independent of the sets being measured. Re-
lationship (2.3) does not hold, however, for the Besov spaces —i.e. the
capacities based on the Besov spaces do depend very much on the second
exponent q in Bp,qα .

And this brings up an important subject with regard to such multiple
scaled collections of capacities: when are two such capacities equivalent
(as in (2.3)) or when are they strictly different? Or perhaps there is no
relationship between them. This general sorting out of the relationship
between these various capacities is sometimes refered to as the “classifi-
cation problem”. See [A2], [Ne1], [Ne2].
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Another capacity that we will discuss in detail in section 4 is the
Hausdorff capacity (also called Hausdorff content). It is defined by

Λ(∞)
α (K) = inf

{∑
i

rαi : K ⊂
∞⋃
i=1

B(xi, ri)

}

for α > 0, K ⊂ Rn. An equivalent form can be obtained replacing balls
by cubes in Rn. Another equivalent form occurs when we use dyadic
cubes to cover the compact K, as in

Λ̃(∞)
α (K) = inf

{∑
i

lαi : K ⊂ ∪
i
Q̃i

}

where Q̃i are dyadic cubes, i.e. tessellate Rn with cubes all of whose
verticies consist of integral multiples of 2k, k = 0, ±1, ±2, . . . . Here
li is the edge length of Qi. It is easy to show that Λ(∞)

α ∼ Λ̃(∞)
α . Also

it should be noted that the sets of zero Λ(∞)
α capacity coincide with the

sets of α-dimensional Hausdorff measure zero; see [AH, p. 132].
More generally, one can set

Λ(ε)
α (K) = inf

∑
i

rαi

where now the infimum is over all countable covers of K, but with
radii ri ≤ ε. Again, Λ(ε)

α ∼ Λ(∞)
α , for all ε > 0. Hausdorff measure

is:
lim
ε→0

Λ(ε)
α (K) = Λα(K);

see [Ca1], or [AH, p. 132].

(c) Choquet capacity and capacitability.
So far all the capacities discussed above have been defined only for

compact subsets K ⊂ Rn. It is natural to try to extend them to more
general sets. The usual way is to define so called inner and outer capac-
ities as:

CI(E) = sup{C(K) : K ⊂ E, K compact}

C0(E) = inf{CI(U) : U ⊃ E, U open}.

And when these two set functions agree, we say the set E is capac-
itable and this common value will be the capacity of the set E. Note
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C0(U) = CI(U) for all open U . And so the question becomes: what
conditions on C imply that the capacitable sets contain a significantly
large family of sets —say all Borel sets? The answer was given by Cho-
quet [C]: if C is a extended real valued set function on all subsets of Rn,
such that

C(∅) = 0;(2.9)
E1 ⊂ E2 ⇒ C(E1) ≤ C(E2);(2.10)

if Ki is a decreasing of compact sets, then

(2.11) C(∩
i
Ki) = lim

i→∞
C(Ki);

if Ei is a increasing of sequence of arbitrary sets, then

(2.12) C(∪
i
Ei) = lim

i→∞
C(Ei).

Then all Suslin sets, and in particular all Borel sets, are capacitable
for C.

A set function C that satisfies (2.9)-(2.12) will be refered to as a Cho-
quet capacity. However, not all set functions that we may want to con-
sider satisfy (2.11) or (2.12) —especially (2.11), which is refered to by
Choquet as “continuity on the right”. Hence it is desirable to have an-
other definition of capacity. We shall say that an extended real valued
set function C defined on all subsets of Rn is a capacity if it satisfies:
(2.9), (2.10) together with

(2.13) C(∪
i
Ei) ≤

∑
i

C(Ei),

i.e. C is monotone and countably subadditive. Of course, the reader will
identify these three conditions with the usual definition of outer measure.
In our case, however, most all of the set functions that we call capacities
can not be restricted to a nontrivial sigma algebra so as to be an additive
measure there. In fact they fail to be, what in measure theory is called,
a “metric outer measure”. Indeed, the “Newtonian capacity” Ċ1,2 of
Br ∪ ∂B1 is the same as the capacity of ∂B1 = boundary of B1; Br is
the ball centered at the origin of radius r, 0 < r ≤ 1, in Rn, n ≥ 3.

It is well known that Cα,p, Ċα,p, and Λ̃(∞)
α are Choquet capacities

which satisfy (2.13); see [AH, p. 28], [A3], [Fe].
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(d) Choquet integrals.
Assume now that C is a capacity satisfying (2.12) on the given set

Ω ⊂ Rn. We define the Choquet integral of a non-negative function
f : Ω→ R by ∫

Ω

f dC =
∫ ∞

0

C(Ω ∩ [f > t]) dt.

Here the integral on the right is the usual Lebesgue integral. Indeed,
h(t) = C(Ω ∩ [f > t]), t ≥ 0, is upper semi-continuous and hence
Lebesgue measureable. Note the following properties:∫

Ω

αf dC = α

∫
Ω

f dC, α ≥ 0

∫
Ω

f dC = 0↔ f = 0 C-a.e. on Ω

∫
Ω

χE dC = C(E), E ⊂ Ω,

where χE is the characteristic function on the set E.
The Choquet integral is not linear. One might, however, hope for

sublinearity, i.e. ∫
Ω

(f + g) dC ≤
∫

Ω

f dC +
∫

Ω

g dC.

Choquet [C] has shown through, that sublinearity is equivalent, to strong
subadditivity, i.e. for all E1, E2,

C(E1 ∪ E2) + C(E1 ∩ E2) ≤ C(E1) + C(E2).

Of course, there is a slight difference here between our formulation and
that of Choquet. He confines himself to upper semicontinuous inte-
grands f and Choquet capacities C. Our treatment allows a more general
function f but at a price: we may be giving up capacitability. See also
an alternative approach in [An]. The following theorem holds:

Theorem 1. The Choquet integral for a C satisfying (2.9), (2.10)
and (2.12) is sublinear if and only if C is strongly subadditive.

We will not pursue this point further, for it seems that there are only a
few capacities that are actually known to be strongly subadditive. These
include Cα,p and Ċα,p for α ≤ 1 as well as C ′1,p and dyadic Hausdorff
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capacity Λ̃(∞)
α . Hence the sublinearity of the Choquet integral will not

play much of a role in the following. Note, however, one trivially has:∫
Ω

(f + g) dC ≤ 2
[∫

Ω

f dC +
∫

Ω

g dC

]
and the constant 2 replaced by N when N -summands are used in the
integrand. Thus, although the Choquet integral may fail to define a
norm, one can easily eke out a very useful version of Hölder’s inequality
here, using the above:∫

Ω

fg dC ≤ 2
(∫

Ω

fp dC

)1/p(∫
Ω

gp
′
dC

)1/p′

.

(e) Quasi-additivity.
A capacity C is said to be quasi-additive with respect to a closed

set F ⊂ Rn if there is a countable tessellation of Rn \ F = ∪
k
Mk into

nonoverlapping regions such that

C(E) ≥ A
∑
k

C(E ∩Mk)

for any E ⊂ Rn \ F . A is a constant independent of E. This, with
countable subadditivity, gives

C(E) ∼
∑
k

C(E ∩Mk)

which implies ∫
∪
k
Ek

f dC ∼
∑
k

∫
Ek

f dC.

If F = {x0}, we can take the Mk to be annuli {2k ≤ |x − x0| < 2k+1},
k = 0,±1,±2, . . . with C = Ċα,p; see [A4]. If F is a set of Minkowski
dimension d < n − αp, then Mk can be taken to be the Whitney cube
decomposition of Rn \ F and again C = Ċα,p; see [Ai] and [AE]. Note
that for such a set F , Ċα,p(F ) = 0. This follows from the usual relations
between Hausdorff capacity and Riesz capacity; see [AH, chapter 5].

Quasi-additivity has been useful in dealing with the concepts of thin-
ness and the associated fine topology. In particular, it has been used
in the classification of the fine topologies associated with the capacities
Cα,p; see [AH, 6.5.8]. Also we employ it below in the proof of Proposi-
tion 3 of section 6(a) and in Theorem 15 of section 6(b).
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3. Spaces of quasi-continuous functions

(a) Quasi-continuity.
Often our interest is in the Choquet integral of a more regular class

of functions. A natural such class is the quasi-continuous functions. A
function φ : Ω → R is termed C-quasi-continuous on Ω if given any
ε > 0 there is a relatively open set G ⊂ Ω such that C(G) < ε and the
restriction of φ to the compliment of G,Gc, is continuous on Gc.

Note that the classical theorem of Egorov implies that any Lebesgue
integrable function φ on Ω is Ln-quasi-continuous there. Here Ln is the
usual Lebesgue n-measure of subsets of Ω ⊂ Rn, Ω measureable. Notice
also that the potential Gα ∗ f , f ∈ Lp, is Cα,p-quasi continuous on Rn;
see [AH, p. 156].

Proposition 1. If C is an outer capacity on subsets of Ω, an open
subset of Rn, (i.e. C = C0), and φk a sequence of continuous functions
on Ω with compact support with (p > 0)∫

Ω

|φk − φ|p dC → 0

as k →∞, then φ is C-quasi-continuous on Ω.

The proof can be found in [AH, Theorem 7.4.2].
We shall say that φ ∈ Lp(C; Ω) if φ is the limit of continuous func-

tions with compact support on Ω in the sense of Proposition 1. The
space Lp(C; Ω) will be refered to as a Choquet space and will be studied
below for various choices of C.

(b) Capacitary strong type inequalities (CSI).
From the definition of Cα,p, it easily follows that

Cα,p([Gα ∗ f > t]) ≤ t−p
∫
Rn
f(x)p dx

for any f ≥ 0 a.e. on Rn. Such an estimate is often refered to as a “weak
type inequality” in analogy to the situation of operators between mea-
sureable functions. Here, if we use the Lorentz space notation (see [SW]),
we are thinking of the operator

Gα : Lp → Lp,∞(Cα,p),
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i.e. Lp into the weak Choquet space. The corresponding “strong type
inequality” should be

(3.1)
∫
Rn

(Gα ∗ f)p dCα,p ≤ A
∫
Rn
f(x)p dx,

again for f ≥ 0 a.e. and 1 < p < ∞; A is a constant independent of f .
For a proof of (3.1) see [AH, p. 187].

The history of such inequalities really begins with Maz’ya in [Ma1],
where the CSI for first order variational capacity was given; see also
[Ma2] and [Ma3]. Here, for simplicity, we adopt the notation

Cp(K) = inf
{∫
|∇φ|p dx : φ ∈ C∞0 (Rn), φ ≥ 1 on K

}
.

The CSI for Cp is

(3.2)
∫
|u|p dCp ≤ A

∫
|∇u|p dx,

1 < p < n. We discuss extensions of (3.2) below. The technique involves
the notion of “truncation”, i.e. if u ∈W 1,p, then H ◦u ∈W 1,p whenever
H is a Lipschitz function with H(0) = 0. An attempt to extend (3.2)
to higher order derivatives using “smooth truncation” has only been
partially successful, i.e. replacing H by a smoother version. For a more
complete account of the background for CSI, see [AH, section 7.6.2 and
7.7]. Also section 7.5 of [AH] gives an alternative approach to CSI, this
time for the Lizorkin-Triebel spaces.

(c) Choquet spaces Lp(Cα,p).
For 1 < p < ∞, we see by (3.1) that any φ ≥ 0 and Cα,p-quasi-

continuous on Rn, for which there is an f ∈ Lp such that φ ≤ Gα ∗ f ,
Cα,p-a.e. in Rn, belongs to Lp(Cα,p). Also, by our earlier remarks about
the sublinearity of the Choquet integral, we do not know whether or not
the quantity

(3.3)
(∫

Rn
|f |p dCα,p

)1/p

always defines a norm on Lp(Cα,p). Note though that when αp > n,

Lp(Cα,p) ⊂ L∞(Cα,p)

and then (3.3) is just the Cα,p-ess. sup. norm. This is because Cα,p > 0
for all sets 6= ∅ when αp > n.
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Two questions arise:

(i) can we characterize the membership in Lp(Cα,p) by the above
domination principle, and,

(ii) is it possible to norm the space Lp(Cα,p)?

To answer both of these questions, we introduce a functional capacity

Γα,p(u) = inf{‖f‖pLp : f ∈ Ku}

where Ku = {f ∈ Lp : f ≥ 0, Gα ∗ f ≥ |u| in Rn}. Clearly, Γα,p(χK) =
Cα,p(K). We also have:

Theorem 2. The functional Γα,p(·)1/p defines a norm on C0(Rn), the
continuous functions with compact support, and there exists a constant A
such that

(3.4)
1
4
Γα,p(u) ≤

∫
|u|p dCα,p ≤ AΓα,p(u).

For a proof of Theorem 2, see [AH, p. 199].
Thus we see that if φ ∈ Lp(Cα,p), then there must exist an f ∈ Lp

such that Gα ∗ f ≥ |φ|, Cα,p-a.e., and the domination principle is a
characterization of membership in Lp(Cα,p). Further, with Theorem 2,
it follows that Lp(Cα,p) is a Banach space.

Duality: The dual of the space Lp(Cα,p) is known:

Theorem 3. The dual of the space Lp(Cα,p), 1 < p < ∞, can be
identified with the space of all µ ∈ M(Rn) such that Gα ∗ |µ| ∈ Lp

′
.

Further, if u ∈ Lp(Cα,p) and µ ∈ Lp(Cα,p)∗, then u ∈ L1(|µ|) and
duality is given by

〈µ, u〉 =
∫
Rn
u dµ.

The norm of µ is
‖µ‖ = ‖Gα ∗ |µ| ‖Lp′ .

For the proof of Theorem 3, see [AH, p. 202].

Embedding: The space of Bessel potentials can be embedded into the
Choquet-Lorentz spaces. Such a result is given by:
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Theorem 4. (i) The map Gα : Lp → Lp,q(Cα,p) is continuous for
1 < p ≤ q ≤ ∞, i.e.{∫ ∞

0

(tpCα,p[Gα ∗ f > t])q/p
dt

t

}1/q

≤ A‖f‖Lp

for q <∞, with the usual modifications for q =∞.

(ii) The map Gα : Lp → Lp,q(Cα,r) is compact for 1 < r < p ≤ q ≤ ∞,
α > 0.

Proof: (i) follows easily from the weak and strong inequalities men-
tioned above. Note that Lp,q(Cα,p) is a Choquet space of the Lorentz
type; see [SW]. For the proof of (ii) we follow the main ideas of [AP].
We will consider only the case α = m = positive integer. The reader
is refered to [RS, p. 363] for the necessary results to make the general
case work. The main idea is to first use the equivalent Sobolev norm and
show

(3.5) ‖(Gm ∗ f)p/r‖Wm,r ≤ A(‖Gm ∗ f‖p/r−1
Lp ‖f‖Lp + ‖Gm ∗ f‖p/rLp ).

Then, if {fk} is a sequence in Lp that tends weakly to zero, there is a
subsequence {fk′} such that Gm∗fk′ tends to zero strongly in Lp,q(Cm,r),
r < p, since

‖Gm ∗ f‖qLp,q(Cm,r) =
∫ ∞

0

(
srCm,r[Gm ∗ f ≥ sr/p]

) qr/p
r dt

t

≤ A‖(Gm ∗ f)p/r‖qr/pWm,r .

Now just use (3.5).
To see (3.5), we compute

|Dm(Gm ∗ f)p/r| ≤ A(Gm ∗ f)p/r−1(|Kf |+Mf)

via the celebrated lemma of Hedberg [He1]: 0 < θ < 1,

Iαθ ∗ f ≤ A(Iα ∗ f)θ(Mf)1−θ.

Here Kf is a Calderon-Zygmund singular integral operator and Mf is
the usual Hardy-Littlewood maximal function. Thus (3.5) follows from
the Lp boundedness of the operatorsK andM and Hölder’s inequality.

One can also obtain a compact embedding result

Gα : Lp → Lr(Cα,r), r < p

from the above by multiplying Gα ∗ f by a smooth cutoff function with
compact support and estimating the part near infinity uniformly in f .
See [AP], where this is done for bounded domains Ω ⊂ Rn, instead, as
here, for the whole space Rn.
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One can also translate the results of Theorem 4 into continuous and
compact embeddings of Bessel potentials (and hence Sobolev functions)
into Lebesgue spaces taken with respect to a Borel measure µ supported
somewhere in Rn. The usual condition is

(3.6) µ(K) ≤ Cα,p(K)q/p

for all compact sets K ⊂ Rn. This gives,

Gα : Lp → Lq(µ)

is continuous for 1 < p ≤ q < ∞. When q > p condition (3.6) can
be weakened to require only that K be merely a closed ball, any center
and any radius ≤ 1. See [AH, section 7.2]. Also, the reader should
be aware that there is a sharp compact embedding result into Lq(µ), in
[AH, section 7.3], that does not follow from Theorem 4(ii).

(d) Choquet spaces Lq(Cα,p), q 6= p.
Because the CSI seems to be so closedly related to the space Lp(Cα,p)

—and even leads to a method of norming it— it is an interesting question
to find an analogue of CSI for Lq(Cα,p), q 6= p, that at least gives some
sort of domination principle for membership, as we have noted earlier
for the case q = p.

We begin with the variational capacity Cp rewritten as

Cp(K) = inf
{∫
|∇φ|p dx : φ ∈ Ẇ 1,p(Rn), φ ≥ χK , Cp-a.e.

}
.

Here Ẇ 1,p(Rn) is the homogeneous Sobolev space normed by

‖φ‖Lp∗ + ‖∇φ‖Lp

p∗ = np/(n− p), 1 ≤ p < n. Modifying this a bit, we define

Cqp(K) = inf
{∫
|∇φ|pφq−p dx : φq/p ∈ Ẇ 1,p(Rn), φ ≥ χK , Cp-a.e.

}
.

Also, for ψ ≥ 0, set

Γqp(ψ) = inf
{∫
|∇φ|pφq−p dx : φq/p ∈ Ẇ 1,p(Rn), φ ≥ ψ, Cp-a.e.

}
.

Note that Cpp (K) = Cp(K), Cp(K) ∼ Ċ1,p(K), and Γqp(χK) = Cqp(K),
and that (∫

|ψ|q dCp
)1/q

is a norm for 1 ≤ q <∞ since Cp is strongly subadditive. We now have:
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Theorem 5. The following equivalences hold, for 1 < p < n and all
q > 0:

Cp(K) ∼ Cqp(K),(3.7)

Γqp(ψ) ∼
∫
ψq dCp.(3.8)

Proof: We first note that

Cqp(K) ≤ AĊ1,p(K).

Let φ = (I1 ∗ f)p/q, f = capacitary extremal for Ċ1,p(K). Then

|∇φ| = p

q
(I1 ∗ f)p/q−1|∇I1 ∗ f |,

hence∫
|∇φ|pφq−p dx ≤

(
p
q

)p ∫
|∇I1 ∗ f |p dx ≤ A

∫
fp dx = AĊ1,p(K).

Next, we show
Cp(K) ≤ A · Cqp(K).

This proof gives the basics for the CSI (3.2). In fact, it gives∫
ψq dCp ≤ A · Γqp(ψ).

Take φ ≥ ψ, φq/p ∈ Ẇ 1,p, then∫
φq dCp ≤ (2q − 1)

∑
k

Cp([φ > 2k])2kq

≤ (2q − 1)
∑
k

∫
|H ′

(
φ

2k

)
|p|∇φ|p2k(q−p) dx

= (2q − 1)2p
∑
k

∫
[2k<φ<2k+1]

|∇φ|p2k(q−p) dx

≤ A
∫
|∇φ|pφq−p dx
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where H(t) is the Lipschitz function
0, t ≤ 1/2

2t− 1, 1/2 < t < 1

1, t ≥ 1.

Thus it remains to show

Γqp(ψ) ≤ A ·
∫
ψq dCp.

Without loss of generality, we can assume that the right side is finite.
Then ψ <∞, Cp-a.e., hence

Γqp(ψ) = Γqp(ψ · χ∪Ak)

where Ak = [2k ≤ ψ < 2k+1], k = 0,±1,±2, . . . . We now show

Γqp(ψ · χ∪Ak) ≤
∑
k

Γqp(ψχAk),(3.9)

Γqp(ψχAk) ≤ 2(k+1)qCqp(Ak).(3.10)

With these, we argue as follows:

Γqp(ψ) ≤ A
∑
k

2kqCp(Ak) ≤ A
∫
ψq dCp

using (3.7).
For (3.9) let φk ≥ ψχAk , Cp-a.e. and set Φ = supk φk. Then

Φ ≥ ψχ∪Ak , Cp-a.e. and∫
|∇Φ|pΦq−p dx ≤

∑
k

∫
[Φ=φk]

|∇Φ|pΦq−p dx

=
∑
k

∫
[Φ=φk]

|∇φk|pφq−pk dx

≤
∑
k

∫
|∇φk|pφq−pk dx.

The proof of (3.10) is just a homogeneity argument.
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The results of Theorem 5 suggest that the right CSI for the spaces
Lq(Ċα,p) might be

(3.11)
∫

(Iα ∗ f)q dĊα,p ≤ A
∫
fp(Iα ∗ f)q−p dx.

Indeed, according to the above argument, we could get

Γ̇qα,p(Iα ∗ f) ≤ A ·
∫

(Iα ∗ f)q dĊα,p

provided we can show

(3.12) Ċqα,p(K) ≤ A · Ċα,p(K).

Here, we have set

Γ̇qα,p(ψ) = inf
{∫

fp · (Iα ∗ f)q−p dx : f ≥ 0, Iα ∗ f ≥ ψ, Ċα,p-a.e.
}

and Ċqα,p(K) = Γ̇qα,p(χK). Indeed, for any smooth non-negative func-
tion φ of compact support,

φ ≤ A · Im ∗ |Dmφ|

hence
φq−p ≥ A(Im ∗ |Dmφ|)q−p

for q ≤ p. Thus ∫
|Dmφ|pφq−p dx ≥ A · Ċqm,p(K).

But if we take φ = (Im∗f)p/q, where f is the Ċm,p(K) capacity extremal,
then∫
|Dmφ|pφq−p dx ≤ A

∫
(Im ∗ f)(p/q−1)p(|Kf |+Mf)(Im ∗ f)p/q(q−p) dx

≤ A
∫
fp dx = A · Cm,p(K)

by our earlier argument using the Hedberg lemma. Thus (3.12) follows
for q ≤ p.
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This suggests that (3.11) might be correct. The following verifies the
conjecture for 1 ≤ q < p+ n

n−m , m < n.∫
(Im ∗ f)q dĊm,p =

∫
[(Im ∗ f)q/p]p dĊm,p

≤ A
∫
|Dm(Im ∗ f)q/p|p dx

≤ A
∫

(|Kf |+Mf)p(Im ∗ f)q−p dx.

So what is needed here is for (Im ∗f)q−p to be an Ap-weight. This is true
for 1 ≤ q ≤ p by the argument of [APe]. Furthermore, one can easily
verify that (Im ∗ f)q−p ∈ A1 for p < q < n

n−m . Note that we have shown∫
ψq dĊα,p ∼ Γ̇qα,p(ψ)

for 1 ≤ q ≤ p.

(e) An Lq-integration principle for potentials.
In potential theory, whether we are dealing with Riesz potentials,

Bessel potentials or even Green potentials —of a positive measure with
compact support in Rn— there are several basic principles that allow
one to think that the worst possible behavior of such potentials actu-
ally occurs on the support of the measure. Below, we shall look only
at Riesz potentials for simplicity, but similar things can be said about
other potentials of positive measures. So, for 0 < α < n and µ a positive
measure with compact support, consider the Riesz potential Iα ∗ µ(x).
The Boundedness Principle (BP) can be stated as:

(BP) If Iα∗µ(x) is bounded by A for x in the support of µ, then Iα∗µ(x)
is bounded for all x in Rn (by 2n−αA). Note that the BP applies
as well to the Wolff potentials.

The Continuity Principle (CP) states:

(CP) If Iα ∗µ(x) is continuous for x restricted to the support of µ, then
Iα ∗ µ(x) is continuous for all x in Rn.

The (CP) is sometimes called the Evans-Vasillesco continuity principle;
see [H]. There are also higher order vesions —Hölder continuity and
Hölder continuity of the first derativatives; for a excellent presentation
of this, see [CK].
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However, in this section, we are interested in a lower order version
of these ideas, a so called Lq-Integration Principle. Roughly, it should
state:

(IP) If Iα ∗ µ(x) is Lq-integrable on the support of µ, then it is in Lq

on the whole space.

But the difficulty here is what to use as the integrating measure?
Ideally one would like to take some connonical measure on Rn. But
Lebesgue n-measure will not work here since the support of µ could have
Lebesgue n-measure zero. Lower dimensional Hausdorff measure may be
finite on the support of µ, but it is well known to be infinite on balls
in Rn, where the potential may in fact be very well behaved. Hence,
it would seem natural to try some sort of capacity here, Hausdorff or
potential theoretic, and interpret Lq-integration as Choquet integration.
The Integration Principle can be formally stated as:

Theorem 6. Let µ ∈M+(Rn) with compact support and such that µ
is absolutely continuous with respect to the capacity Ċα,p (i.e. Ċα,p(e) = 0
implies µ(e) = 0 for e Borel: µ ¿ Ċα,p). If 0 < p − 1 < q < ∞, then
there is a constant A = A(α, p, n, q) such that∫

Rn
(Ẇµ

α,p)
q dĊα,p ≤ A

∫
Sµ

(Ẇµ
α,p)

q dĊα,p.

Furthermore, if q = p− 1 > 0,

Ċα,p([Ẇµ
α,p > t]) ≤ A

tp−1

∫
Sµ

(Ẇµ
α,p)

p−1 dĊα,p.

Sµ = support of µ.

Here Ẇµ
α,p is the homogeneous Wolff potential and, when p = 2, this

includes the case of Riesz potentials Iα ∗ µ as noted earlier. Other ver-
sions of Theorem 6 can be given that include weighted capacity (see
section 6(b)) or the various versions of nonlinear potentials for other
capacities, i.e. those associated to other function spaces.

For a proof of Theorem 6, we need two facts from potential theory:

(3.13)
Ċα,p(K) ≥ A · µ(K), for any µ ∈M+ such that

Ẇµ
α,p(x) ≤ 1 on support of µ.
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(See [AH, Theorem 2.5.5]. Here we have freely used the fact that

an equivalent Ċα,p(K) can be obtained by replacing
∫

(Iα ∗ µ)p
′
dx by∫

Ẇµ
α,p dµ in the dual definition, via Wolff’s inequality.)

(3.14) Ċα,p([Ẇµ
α,p > t]) ≤ Aµ(Rn) · t1−p.

(See [AH, Proposition 6.3.12].)

Lemma 1. Let µ ∈M+(Rn) with µ¿ Ċα,p. Then there is a constant
A = A(α, p, n) such that

µ(e) ≤ A
∫
e

(Ẇµ
α,p)

p−1 dĊα,p,

for all Borel sets e.

Proof: Set Ek = [2k ≤ (Ẇµ
α,p)

p−1 < 2k+1] ∩ e and

µk = 2−k−1µEk

i.e. µ restricted to the set Ek times 2−k−1. Then

(Ẇµk
α,p)

p−1 ≤ 2−k−1(Ẇµ
α,p)

p−1 ≤ 1

on Ek. Thus by (3.13) above,

Ċα,p(Ek) ≥ Aµ(Ek)2−k.

By (3.14), we have Ċα,p[Ẇµ
α,p = +∞] = 0, so µ[Ẇµ

α,p = +∞] = 0 by
hypothesis. Hence

µ(e) =
∑
k

µ(Ek) ≤ A
∑
α

2kĊα,p(Ek)

≤ A
∑
k

Ċα,p(E ∩ [(Ẇµ
α,p)

p−1 ≥ 2k])2k

≤ A
∫ ∞

0

Ċα,p(e ∩ [(Ẇµ
α,p)

p−1 > t]) dt.
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Proof of Theorem 6:

Step 1: We first show

∫
(Ẇα,p)q dĊα,p ≤ A

∫
(Ẇµ

α,p)
q−p+1 dµ

for q > p− 1.

To see this set µt = µGt , where Gt = [Ẇµ
α,p > t/2] and µt = µ − µt.

Note Ẇµt
α,p(x) ≤ t/2 on Sµt . The Boundedness Principle applied to Ẇµt

α,p

yields: Ẇµt
α,p(x) ≤ At for all x, some constant A. Hence by (3.14), there

are constants A1 and A2 such that

Ċα,p[Wµ
α,p > A1t] ≤ A2µ(Gt) · t1−p.

Consequently,

∫
(Ẇµ

α,p)
q dĊα,p ≤ A

∫ ∞
0

t1−p
∫

[Ẇµ
α,p>t]

dµdtq = A

∫
(Ẇµ

α,p)
q−p+1 dµ.

Step 2: We show now that

∫
(Ẇµ

α,p)
q−p+1 dµ ≤ A

∫
Sµ

(Ẇµ
α,p

)q dĊα,p.

Indeed, from Lemma 1, it follows that

∫ ∞
0

µ[Ẇµ
α,p > t] dtq−p+1

≤ A
∫ ∞

0

∫ ∞
0

Ċα,p(Sµ ∩ [Ẇµ
α,p > s] ∩ [Ẇµ

α,p > t]) dsp−1 dtq−p+1

= A′
∫ ∞

0

Ċα,p(Sµ ∩ [Ẇµ
α,p > t]) dtq.

Finally, we note that the weak type inequality, for q = p−1 of Theorem 6,
is just a combination of Lemma 1 (with e = Sµ) and (3.14) above.
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4. Hausdorff capacity

(a) A capacity for p = 1.
So far we have considered capacities only for p > 1, Bessel, Riesz

and variational capacities. Of course, there are also the function space
capacities C(·;X) as mentioned earlier where X might be a Besov or
Lizorkin-Triebel space. In this latter setup, especially with regard to
the Lizorkin-Triebel spaces F p,qα , where F p,2α coincides with the space of
Bessel potentials of Lp-functions, 1 < p <∞, it is of interest to identify
F 1,2
α . As noted earlier, it can be characterized as the space of Bessel

potentials of f ∈ H1(Rn), the real Hardy space.

H1(Rn) = {f ∈ L1(Rn) : Rj ∗ f ∈ L1(Rn), j = 1, . . . , n}

where Rj is the jth Riesz transform, i.e. the singular integral opera-
tor f → xj

|x|n+1
∗ f . Similarly, Ḟ 1,2

α is the space of Riesz potentials of

f ∈ H1(Rn). What makes these cases so interesting is that with the
machinery the H1-BMO duality, one can show (see [A3]) that the ca-
pacities Cα,1 and Ċα,1 are equivalent to Λ(1)

n−α and Λ(∞)
n−α, respectively.

In particular, they have the same null sets.
Also, set

Γα,1(ψ) = inf{‖f‖H1 : f ∈ S00, Iα ∗ f ≥ ψ on support of ψ},

where ‖f‖H1 = ‖f‖L1 +
∑
k ‖Rj ∗f‖L1 and ψ is a non-negative bounded

function with compact support. S00 is the subclass of the Schwartz
rapidly decreasing C∞-functions on Rn such that the Fourier transform
has compact support disjoint from the origin; see [St2]. Then we have
an analogue of the Choquet integral characterization for p > 1, namely

Γ̇α,1(ψ) ∼
∫
ψ dΛ(∞)

n−α,

for 0 < α < n; see [A3].
It appears to be a bit easier to approach the case p = 1 through

variational capacity, i.e. something like C ′m,1 (using our earlier notation
from section 1) or what we might call Ċ ′m,1 by replacing ‖φ‖Wm,1 by∫

Rn
|Dmφ| dx,

i.e. all derivatives of order m on φ only. But again one can show that
Ċ ′m,1 is just Λ(∞)

n−m; see [T] for a nice account of this approach.
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Since Λ̃(∞)
n−α, the dyadic Hausdorff capacity, is strongly subadditive,

[∫
|ψ|q dΛ̃(∞)

n−α

]1/q
is a norm for q ≥ 1. However, what is not yet developed is a charac-
terization of membership via a domination principle as we have discuss
earlier in the cases p > 1. Perhaps via the variational capacity methods

one can determine such a principle using the integral
∫
|Dmφ|φq−1 dx.

See section 3(d) above.

(b) Maximal functions.
Here we use the Choquet integral with respect to Hausdorff capacity

to extend some well known estimates for various maximal operators. For
0 ≤ α < n, set

Mαf(x) = sup
r>0

rα��
∫
B(x,r)

|f(y)| dy,

the fractional maximal function of f of order α. The barred integral
denotes the usual integral average, in this case, over the ball B(x, r).
Notice that when α = 0, M0 = M , the usual Hardy-Littlewood maximal
operator. Our interest here lies with

Theorem 7. Let 0 < d ≤ n, 0 ≤ α < n.

(a) For p ≤ q,
(i) let d/n < p < d/α and set δ = q(d − αp)/p, then there is a

constant A1 (independent of f) such that

(4.1) ‖Mαf‖Lq,p(Λ(∞)
δ

)
≤ A1‖f‖Lp(Λ(∞)

d
)
;

(ii) for p = d/n, there is a constant A2 such that

(4.2) ‖Mαf‖Lq,∞(Λ
(∞)
δ

)
≤ A2‖f‖Ld/n(Λ

(∞)
d

)
,

with q = δ/(n− α), δ ≥ d

n
(n− α);

(iii) for p = d/α, there is a constant A3 such that

(4.3) ‖Mαf‖L∞ ≤ A3‖f‖Ld/α(Λ
(∞)
d

)
.
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(b) For q < p, there is a constant A4 such that

(4.4) ‖Mαf‖Lq(wdΛ(∞)
d−αp)

≤ A4‖f‖Lp(Λ(∞)
d

)

if and only if

(4.5) ‖w‖
Lp/(p−q)(Λ(∞)

d−αp)
<∞

when
d

n
< p <

d

α
. Estimates similar to parts (ii) and (iii) of part (a)

also hold here.

In the above, we are employing the Choquet-Lorentz space notation
as used earlier in Theorem 4. Note that the meaning of the left side of
(4.4) is ∫

(Mαf)qw dΛ(∞)
d−αp =

∫ ∞
0

Λ(∞)
d−αp([Mαf)q · w > t]) dt.

Some special cases, including when d = n and/or α = 0, occur in the
literature. For example, when d = n, (4.1) contains a result originally
due to E. Sawyer [Sa], though not phrased there interms of Choquet
integrals. In [A5], it was stated simply as∫

(Mαf)p dΛ(∞)
n−αp ≤ A‖f‖pLp

i.e. for q = p and d = n; here 1 < p < n/α. The special case p = 1 here
is a consequence of the simple Vitali covering lemma; see [AH, Theo-
rem 1.4.1]. This gives (4.2) with δ = n − α, d = n. See also [BZ]. The
case p = n/α, d = n is just a simple consequence of Hölder inequality.

When α = 0 and d = n, (4.1) is the classical estimate of Hardy-
Littlewood. But when α = 0 and d < n, the result is a recent one due
to Orobitg-Verdera [OV]. Their result came out of their effort to under-
stand the special case α = 0, d < n, and p = 1 that first appeared in [A3]
—a result of the H1-BMO duality theory applied to the characterization
of the Riesz capacities Ċα,1, as discussed above. The Orobitg-Verdera
proof is a modification of arguments due to Carleson [Ca2] and Hor-
mander [Ho]. The key to all of these is a covering lemma. The version
we need is also the one employed by Orobitg-Verdera, and is due to
Melnikov [Me].
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Lemma 2. Let {Qj} be a family of non-overlapping dyadic cubes.
There exists a subfamily {Qjk} such that

(i)
∑

Qjk⊂Q
l(Qjk)d ≤ 2l(Q), Q dyadic,

(ii) Λ(∞)
d (∪jQj) ≤ 2

∑
k

l(Qjk)d

for 0 < d ≤ n and l(Q) the edge length of Q.

The method of proof of Theorem 7 follows [OV], with minor modifi-
cations. It is important there to work first with the dyadic version of
Mαf ,

M̃αf(x) = sup
Q3x

l(Q)α��
∫
Q

|f(y)| dy

where Q is a dyadic cube containing x. Then to get to Mαf one needs
the obvious M̃αf(x) ≤ A ·Mαf(x) for some constant A, and from [GF,
p. 136]:

Λ(∞)
d ([Mαf > t]) ≤ A1Λ

(∞)
d ([M̃αf > A2 · t])

for some constants A1 and A2.
We modify the proof in [OV] with

Lemma 3. Let χQ be the characteric function of the cube Q, then

‖Mα(χQ)‖p
Lq,p(Λ

(∞)
δ

)
≤ A · l(Q)d

for some constant A = A(α, p, d, n).

In fact, what is needed is the computation:

Mα(χQ)(x) ≤
{
A · l(Q)n|x− xQ|α−n, |x− xQ| > 2l(Q)
A · l(Q)α, |x− xQ| ≤ 2l(Q)

where xQ is the center of Q.
And finally, we need the following inequality to pass from integration

with Lebesgue n-measure to the Hausdorff capacities:∫
f(x) dx ≤ n

d

(∫
fd/n dΛ(∞)

d

)n/d
for 0 < d ≤ n; see [OV]. In fact, it is clear that something like this is
necessary to prove (4.3).
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To see (4.4) first apply Hölder’s inequality to the left side, reducing
it to the desired integral in w and an application of the case (4.1) with
q = p. For the converse, we argue in much the same way as we did
when characterizing membership in the Choquet spaces using the func-
tionals Γ. We begin by setting

Hd
α,p(K) = inf

{∫
fp dΛ(∞)

d : Mαf ≥ χK
}
.

We first note that Hd
α,p∼Λ(∞)

d−αp for αp < d. Indeed, since MαχB(x,r)∼rα
on B(x, r),

Hd
α,p(B(x, r)) ∼ rd−αp,

hence Hd
α,p ≤ A ·Λ

(∞)
d−αp. For the other direction, we see from, (4.1) that

Λ(∞)
d−αp([Mαf > t]) ≤ At−p‖f‖p

Lp(Λ
(∞)
d

)
,

hence Λ(∞)
d−αp ≤ A ·Hd

α,p.
Now set

ξdα,p(ψ) = inf
{∫

fp dΛ(∞)
d : Mαf ≥ ψ

}
.

Then as before, one easily argues that

ξdα,p(ψ) ≤ A ·
∫
ψp dΛ(∞)

d−αp.

Consequently, if (4.4) holds, then take f such that Mαf ≥ w1/(p−q).
This gives ∫

wp/(p−q) dΛ(∞)
d−αp ≤ A4ξ

d
α,p(w

1/(p−q))q/p

which gives the result.

(c) Bessel and Riesz capacity for p < 1.
In section 3(a), we noted that

Cα,1(K) = C(K;F 1,2
α ) ∼ Λ(1)

n−α(K)

and
Ċα,1(K) = C(K; Ḟ 1,2

α ) ∼ Λ(∞)
n−α(K).

Here we wish to make a few remarks about the case p < 1, i.e. identify
C(K;F p,2α ) and C(K; Ḟ p,2α ). As mentioned earlier, these spaces corre-
spond to potentials of functions (distributions) that belong to the real
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Hardy spaces Hp(Rn), p < 1; see [St2] for a full discussion of these
spaces.

In the middle 1980’s, it was conjectured that

Ċα,p(K) ∼ Λ(∞)
n−αp(K)

for all compact K whenever 0 < p ≤ 1 and αp < n. In 1988, J. Orobitg
verified this for p ∈ (n/(n + α), 1]. However, it wasn’t until 1989 that
Yu. V. Netrusov completely settled this question, in [Ne1]. But what
is rather interesting was how it was done. He did this by studying the
Besov capacities C(·;Bp,qα ). The connection is: F p,pα = Bp,pα and the fact
that the capacities C(·;F p,qα ) do not depend on q, 0 < q <∞. Thus

Cα,p = C(·;F p,2α ) ∼ C(·;F p,pα ) = C(·;Bp,pα ).

Hence it suffices to identify C(·;Bp,pα ) for 0 < p ≤ 1. This follows from
[Ne1]; see also [Ne2].

The important observation is:

C(K;Bp,qα ) ∼ Λ(1)
n−αp,q/p(K)

where either 0 < q < 1, 0 < p < ∞ or 0 < p ≤ 1, 0 < q < ∞, when
αp < n. Here, the set function on the right is the Netrusov capacity:

Λ(ε)
d,θ(K) = inf

( ∞∑
i=0

(mi2−id)θ
)1/θ

where the infimum is taken over all countable coverings of K by balls
whose radii rj do not exceed ε, while mi is the number of balls from
this covering whose radii rj belong to the interval (2−i−1, 2−i],
i = 0, 1, 2, . . . . Also,

C(K; Ḃp,qα ) ∼ Λ(∞)
n−αp,q/p(K).

Note that Λ(ε)
d,1 = Λ(ε)

d , 0 < ε ≤ ∞, and Λ(ε)
d,θ ≤ Λ(ε)

d,σ for σ ≤ θ, ε > 0.
This verifies the conjecture.

Embedding: An interesting estimate for Riesz potentials of f ∈Hp(Rn),
the Hardy space 0 < p < 1, is the Choquet integral inequality

(4.6)
∫

(MΦ(Iα ∗ f))p dΛ(∞)
n−αp ≤ A · ‖f‖pHp
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for all f ∈ S00, the rapidly decreasing C∞-functions on Rn with Fourier
transforms compactly supported away from the origin, and a suitable
Φ ∈ C∞0 (Rn). In the notation of [St2, Chapter III],

MΦ(g)(x) = sup
t>0
|Φt ∗ g(x)|.

The reader can verify (4.6) using the techniques of [K]; here, of course,
0 < p ≤ 1 and αp < n. In particular, (4.6) gives

Iα(Hp) ⊂ Lp(Λ(∞)
n−αp).

Duality: We introduce the Morrey space of signed Borel measures
L1,λ(Rn), for 0 < λ < n, as those µ satisfying the condition

sup
r>0
x∈Rn

|µ|(B(x, r)) · r−λ <∞.

Then using the ideas of [A3, Proposition 1], we have

Lp(Λ(∞)
n−αp)

∗ ∼= L1,n/p−α

for 0 < α < n, and n/(n + α) ≤ p ≤ 1. The key idea here is to observe
the estimate ∣∣∣∣∫ f dµ

∣∣∣∣ ≤ A(∫ |f |p dΛ(∞)
n−αp

)1/p

.

This follows by writing∫
|f | d|µ| ≤

∑
k

2k+1|µ|(Ek) ≤
∑
k

∑
j

|µ|(Bj)

≤ A
∑
k

∑
j

r
n/p−α
j ≤ A

∑
k

∑
j

rn−αpj

1/p

≤ A
∑
k

(Λ(∞)
n−αp(Ek) + ε2−|k|)1/p

≤ A
(∫
|f |p dΛ(∞)

n−αp + ε

)1/p

,

where Ek = [2k < |f | ≤ 2k+1], k = 0,±1,±2, . . . , and the cover {Bj} is
chosen so that ∑

j

rn−αpj < Λ(∞)
n−αp(Ek) + ε2−|k|.
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When 0 < p < n/(n+ α) each bounded linear functional on Lp(Λ(∞)
n−αp)

vanishes identically. This follows from the standard argument that one
uses to deal with the case of n-dimensional Lebesgue measure in Rn.

The simplier case p = 1 was treated in [A3]. But this can be considered
as a special case of p ≥ 1 as well. This is treated next.

(d) Lp(Λ(∞)
d ), 1 ≤ p <∞: duality.

As we have seen, the dual of L1(Λ(∞)
n−α) is a Morrey space of signed

measures. The condition can be rephrased using the maximal function

Mdµ(x) ≡ sup
r>0

r−d|µ|(B(x, r)),

0 < d < n. Thus, µ ∈ L1,d iffMdµ ∈ L∞.
This leads to

Theorem 8. The dual space to Lp(Λ(∞)
d ) is the set of all µ ∈M(Rn)

such that {∫
(Mdµ(x))p

′
dΛ(∞)

d

}1/p′

<∞,

1 ≤ p <∞. Furthermore, if l is a bounded linear functional on Lp(Λ(∞)
d ),

then
l(φ) =

∫
φdµ

for all φ ∈ C0(Rn). The norm of µ is

‖Mdµ‖Lp′ (Λ(∞)
d

)
≤ A‖l‖,

for some constant A depending only on d.

Proof: We use techniques similar to those of Theorem 6 to show that
there is a constant A such that

(4.7)
∫

(Mdµ)p
′
dΛ(∞)

d ≤ A
∫

(Mdµ)p
′−1 d|µ|.

Consequently, if l is a bounded linear functional on Lp(Λ(∞)
d ) ⊃ C0(Rn),

then l(φ) =
∫
φdµ for all φ ∈ C0(Rn). Hence

∣∣∣∣∫ φdµ

∣∣∣∣ ≤ ‖l‖(∫ |φ|p dΛ(∞)
d

)1/p
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for all such φ, and, by passing to a limit, for all lower semicontinuous φ.
Then setting φ = (Mdµ)p

′−1 gives∫
(Mdµ)p

′−1 d|µ| ≤ ‖l‖
(∫

(Mdµ)p
′
dΛ(∞)

d

)1/p

and the bound for ‖Mdµ‖Lp′(Λ(∞)
d

)
in terms of ‖l‖ is evident.

Thus turning our attention to (4.7), we set Gt = [Mdµ > t/2] and
µt = µGt , µt = µ− µt. Then

Λ(∞)
d [Mdµ > 2d+1t] ≤ Λ(∞)

d [Mdµ
t > 2dt] + Λ(∞)

d [Mdµt > 2dt].

But, in analogy to the boundedness principle (section 3(e)), we have

Mdµt(x) ≤ 2dMdµt(x′) ≤ 2dMdµ(x′) ≤ 2d−1t

where x′ ∈ suppµt = [Mdµ ≤ t/2]. Hence

Λ(∞)
d [Mdµ > 2d+1t] ≤ A

t
|µ|([Mdµ > t/2])

by the weak type inequality —i.e. a direct consequence of the simple
Vitali lemma (as noted earlier). So∫

(Mdµ)p
′
dΛd =

∫ ∞
0

Λ(∞)
d [Mdµ > t] dtp

′

≤ A
∫ ∞

0

t−1|µ|([Mdµ > t/2]) dtp
′

≤ A
∫

(Mdµ)p
′−1 d|µ|.

For the converse, we note that for all φ ∈ C0(Rn)+,

(4.8)
∫
φd|µ| ≤ A

∫
φMdµdΛ

(∞)
d ,

for some constant A depending only on n and d. The result follows from
(4.8) via Hölder’s inequality. So to see (4.8), we first work with a “linear
capacity”, i.e. a measure ν such that on all balls ν(B(x, r)) ≤ rd, r > 0.
Then it easily follows that∫

r−d
∫
B(x,r)

φ(y) dν(y) dµ(x) ≤
∫
Mdµ(y)φ(y) dΛ(∞)

d (y).
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Now we apply Frostman’s lemma (see [Ca1, p. 7]): there is a con-
stant A depending only on the dimension such that for every compact set
K ⊂ Rn, there is a measure ν —as above— such that ν(K) ≥ A ·
Λ(∞)
d (K). Hence, we have

A

∫
r−d

∫
B(x,r)

φ(y) dΛ(∞)
d (y) dµ(x) ≤

∫
MdµφdΛ

(∞)
d .

Now use the lower semi-continuity of the integral as r → 0.

(e) Lq(Cα,p), 1 ≤ q <∞: duality.
It is easy to see that the dual to L1(Cα,p) is

{µ ∈M : |µ|(K) ≤ A · Cα,p(K), K = compact set in Rn}

for some constant A, since it easily follows that∣∣∣∣∫ φdµ

∣∣∣∣ ≤ A ∫ |φ| dCα,p.
For 1 < q <∞, we have

Theorem 9. The dual to the space Lq(Cα,p) is the set of all µ ∈M,
|µ| ¿ Cα,p and such that{∫

(W |µ|α,p)
(p−1)q′ dCα,p

}1/q′

<∞,

1 < q <∞. Furthermore, if l is a bounded linear functional on Lq(Cα,p),
then

l(φ) =
∫
φdµ

for all φ ∈ C0(Rn). The norm of µ is

‖(W |µ|α,p)
p−1‖Lq′ (Cα,p) ≤ A‖l‖

for some constant A depending only on α, p and n.

Proof: We use the techniques of earlier results. For the necessity, we
follow Theorem 8 replacing (4.7) by∫

(W |µ|α,p)
(p−1)q′ dCα,p ≤ A

∫
(W |µ|α,p)

(p−1)(q′−1) d|µ|

with almost an identical argument as in Theorem 8. For the sufficiency
use Lemma 1 of section 2(e).
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Notice that the result of Theorem 9 agrees with Theorem 3 when q = p
since one has

Wµ
α,p(x) ≤ A · V µα,p(x)

for all x; see section 2(a). Thus∫
(Wµ

α,p)
p dCα,p ≤ A‖Gα ∗ µ‖p

′

Lp′

by (3.1). The reverse inequality follows from Lemma 1.

5. Obstacle problems

A problem intimately connected to the concept of the Choquet inte-
gral is the well studied “harmonic obstacle problem”: find the smallest
superharmonic function u on the bounded domain Ω, anchored at ∂Ω
—i.e. u fixed at ∂Ω— and such that it dominates a given function ψ on
Ω; ψ < boundary values of u at ∂Ω. This can also be interpreted as
“stretching a thin elastic membrane” over a fixed obstacle in Ω. See [R,
p. 2-6] or [KS, p. 6-7]. It can be achieved by minimizing the Dirichlet

integral
∫

Ω

|∇v|2 dx over all v ∈W 1,2(Ω) such that v− θ ∈W 1,2
0 (Ω) and

v ≥ ψ on Ω. Here θ represents the fixed boundary values of the solution
—extended into Ω so that θ ∈W 1,2(Ω); ψ < θ on ∂Ω.

If the obstacle function is of class C2(Ω̄), then it can be shown ([KS,
p. 129]) that the solution has bounded second derivatives throughout
Ω, but is generally not of class C2 in Ω. Also, Ω can be written as
the disjoint union C ∪ N , where the closed set C is the coincidence set
{x ∈ Ω : u(x) = ψ(x)} and N = Ω \ C, the non-coincidence set. On
N , u is harmonic and u and ∇u agree with ψ and ∇ψ on ∂C, the free
boundary.

But such obstacle problems are also well-defined for a much larger class
of obstacles. In particular, if we let ψ = χK = characteristic function
of the compact subset K ⊂ Ω, then the solution is just the capacitary
potential function —in this case Gµ, the Green function of a measure µ
supported on K. Here we have taken θ ≡ 0. Actually, all that is needed
to get existence of a solution to the obstacle problem is a version of
Theorem 5, restricted to bounded domains Ω, i.e.∫

Ω

ψ+ dCΩ
2 <∞.

See Theorem 10 below. Also, the differential operator —Laplacian here—
can be replaced by any other linear or nonlinear elliptic second order op-
erator. Below we consider the special case of the p-Laplace operator ∆p,
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a prototype for many quasi-linear second order elliptic operators. See
especially [HKM] for a full discussion of the traditional questions for
the Laplace operator ∆ = ∆2 treated for the p-Laplace operator, p 6= 2.
But our main concern will be to show how the Choquet integral enters
the picture, especially with regard to the tricky problem of the stability
of the solution under a perturbation in the obstacle data.

After consideration of the ∆p-obstacle problem, we say a few brief
words along these same lines for other such problems, namely a bihar-
monic obstacle problem and then an obstacle problem for second order
systems. All of these problems make important uses of the Choquet
integral.

(a) The p-harmonic problem.
Let Ω be a bounded domain in Rn, with smooth boundary ∂Ω. Fur-

ther, let θ ∈ W 1,p(Ω), 1 < p < ∞, and ψ an extended real valued
function defined on Ω. Set

Kψ,θ(Ω) = {u ∈W 1,p(Ω) : u− θ ∈W 1,p
0 (Ω), u ≥ ψ, C1,p-a.e. on Ω}.

Here, as usual, W 1,p(Ω) is the Sobolev space of functions on Ω, pth

power integrable on Ω along with their first order distribution derivatives.
W 1,p

0 (Ω) is the usual closure of C∞0 (Ω) with the norm of W 1,p(Ω), i.e.

‖u‖Lp(Ω) +
n∑
j=1

‖Dju‖Lp(Ω).

The p-harmonic obstacle problem, with data θ and ψ, is the problem

min
∫

Ω

|∇u|p dx

where the minimum is taken over all u ∈ Kψ,θ. When p = 2, it is refered
to simply as the “harmonic obstacle problem” on Ω. The p-harmonic
problem can also be written as a variational inequality:

find u ∈ Kψ,θ such that 〈−∆pu, v − u〉 ≥ 0 for all v ∈ Kψ,θ.

Here ∆pu ≡ div(|∇u|p−2∇u), the p-Laplace operator, and the brack-
ets 〈, 〉 denote the duality paring.

The connection between the Choquet integral and the p-harmonic
problem is made explicit by:
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Theorem 10. With the above notation, the following are equivalent:

1. Kψ,θ is non-empty; (5.1)
2. there exists a unique uψ,θ ∈ Kψ,θ such that∫

Ω

|∇uψ,θ|p dx = inf
u∈Kψ,θ

∫
Ω

|∇u|p dx; (5.2)

3.
∫

Ω

[(ψ − θ)+]p dCΩ
p <∞. (5.3)

Furthermore,

(5.4) inf
∫

Ω

|∇u|p dx ∼ ‖(ψ − θ)+‖p
Lp(CΩ

p )
.

Here, we have modified the capacity Cp of section 3(b) and (d), to

CΩ
p (K) = inf

{∫
Ω

|∇φ|p dx : φ ∈ C∞0 (Ω), φ ≥ χK
}
,

i.e. everything is now defined relative to Ω.

The proof of this result can be found in [AN], but it is, in fact, a
simple varient of the corresponding result for p = 2 found in [A6], and
hence will not be discussed here in detail. What we wish to concentrate
on here is the use of the Choquet spaces in characterizing the stability
of solutions to the p-harmonic obstacle problem under a change in the
obstacle. This result is the main thrust of [AN]. A similar but weaker
result appears in [LM].

We shall say that solutions to the p-harmonic obstacle problem are
stable if the solution operator Sθ(ψ) = uψ,θ is continuous from Lp(CΩ

p )
into W 1,p(Ω). We intend to show a bit more, namely that Sθ is locally
Hölder continuous with exponent

αp = min
(

1
p
,
1
2

)
for 1 < p <∞.

Theorem 11. There is a constant A that depends on the quantities
n, p, ‖θi‖W 1,p(Ω), ‖ψi‖Lp(CΩ

p ), i = 1, 2, such that

‖Sθ(ψ1)− Sθ(ψ2)‖W 1,p(Ω) ≤ A · ‖ψ1 − ψ2‖αpLp(CΩ
p )
.

Furthermore, the exponent αp is sharp for p ≥ 2.
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Proof: The proof proceeds via several steps, the first of which is to
solve an approximate problem (the so called “penalized problem”).

Step 1: Let η(t) ∈ C∞(R) such that η(t) ≡ 0 for all t ≥ 0, η(t) < 0
for t < 0, and 0 ≤ η′(t) ≤ 2 for all t. Set ηε(t) = ε−1η(t) for ε > 0. The
penalized problem is

(5.5)
{ −∆puε = −ηε(uε − ψ), in Ω
uε = θ, in ∂Ω.

A unique classical solution to (5.5) exists by standard fixed point argu-
ments together with the estimates given below.

We first estimate uε in W 1,p(Ω) independent of ε.

‖∇uε‖pLp(Ω) =
∫

Ω

|∇uε|p−2∇uε∇(uε − θ) dx+
∫

Ω

|∇uε|p−2∇uε∇θ dx

≤ −
∫

Ω

ηε(uε − ψ)(uε − θ) dx+ ‖∇uε‖p−1
Lp(Ω)‖∇θ‖Lp(Ω).

The first term does not exceed

−
∫

Ω

ηε(uε − ψ)(uε − ψ) dx−
∫

Ω

ηε(uε − ψ)(ψ − θ) dx

≤ −
∫

Ω

ηε(uε − ψ)w dx ≤ ‖∇uε‖Lp‖∇w‖Lp(Ω)

where w ∈W 1,p
0 (Ω) satisfies: w ≥ (ψ − θ)+ on Ω. Thus we get

‖∇uε‖Lp(Ω) ≤ A
{(∫

Ω

(ψ − θ)+ dCΩ
p

)1/p

+ ‖∇θ‖Lp(Ω)

}
,

from Theorem 10.

Step 2: Since {uε}ε>0 is a bounded set in W 1,p((Ω)), it follows from
weak compactness that there is a subsequence {uε′} for which uε′ tends
weakly in W 1,p(Ω) to some u ∈W 1,p(Ω). But from the well known Rel-
lich compactness theorem (see [KS, p. 62]), W 1,p((Ω) can be compactly
embedded in Lp(Ω). Hence, there is a further subsequence (still denoted
by uε′) such that uε′ converges strongly to u in Lp(Ω). Furthermore, it
follows that u ≥ ψ a.e. on Ω. To see this last fact, we write

−
∫
η(uε′ − ψ)φdx ≤ ε′‖∇uε′‖Lp(Ω)‖∇φ‖Lp(Ω)

which tends to zero with ε′. On the otherhand, the left side tends to

−
∫
η(u− ψ)φdx

by the Lp-convergence of uε′ . Here φ ∈ C∞0 (Ω). Thus η(u− ψ) = 0 a.e.
on Ω and the result follows.
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Step 3: ∇uε′ tends to ∇u strongly in Lp(Ω). To see this, write∫
|∇uε|p−2∇uε − |∇u|p−2∇u)∇(uε − u) dx

= −
∫
ηε(uε − ψ)(uε − u) dx−

∫
|∇u|p−2∇u∇(uε − u) dx.

The first term is ≤ 0 since uε ≤ ψ ≤ u when η is non-zero, and the
second term tends to zero by weak convergence.

Now to get our desired estimate on the difference ∇(uε − u), we need
two basic inequalities associated with the p-Laplace operator:

for ξ, ζ ∈ Rn, and p ≥ 2, there is a constant λ > 0 such that

(5.6) (|ξ|p−2ξ − |ζ|p−2ζ) · (ξ − ζ) ≥ λ|ξ − ζ|p;

for 1 < p < 2,

(5.7) (|ξ|p−2ξ − |ζ|p−2ζ) · (ξ − ζ) ≥ (p− 1)|ξ − ζ|2(|ξ|+ |ζ|)p−2.

For a proof of (5.6) see [BI] and for (5.7) see [AN].
Clearly when p ≥ 2, our result follows. However, when 1 < p < 2, we

estimate as follows:∫
Ω

|∇(uε − u)|p dx ≤
(∫

Ω

|∇(uε − u)|2(|∇uε|+ |∇u|)p−2 dx

)p/2
·
(∫

Ω

(|∇uε|+ |∇u|)p dx
)1−p/2

via Hölder’s inequality. And now the result for p < 2 follows.

Step 4: u is the unique solution to the p-harmonic problem. We show
that u is a solution, uniqueness follows in a standard way. In fact, if
V ∈ Kψ,θ, then∫

Ω

|∇u|p−2∇u∇(V − u) dx = lim
ε→0

∫
Ωj

|∇uε|p−2∇uε∇(V − uε) dx

= − lim
ε→0

∫
Ω

ηε(uε − ψ)(V − uε) dx ≥ 0,

since V ≥ ψ ≥ uε when ηε is non-zero.
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Step 5: Let u = Sθ(ψ1), v = Sθ(ψ2). Then we will produce the Hölder
estimate in the statement of the Theorem. We begin with∫

Ω

(|∇uε|p−2∇uε − |∇vε|p−2∇vε) · ∇(uε − vε) dx

= −
∫
ηε(uε − ψ1)(uε − ψ1) dx−

∫
ηε(vε − ψ2)(vε − ψ2) dx

−
∫
ηε(uε − ψ1)(ψ2 − v) dx−

∫
ηε(vε − ψ2)(ψ1 − u) dx

−
∫
ηε(uε − ψ1)(ψ1 − ψ2) dx−

∫
ηε(vε − ψ2)(ψ2 − ψ1) dx

−
∫
ηε(uε − ψ1)(v − vε) dx−

∫
ηε(vε − ψ2)(u− uε) dx.

The first 4 terms are non-positive. The 5th and 6th can be estimated by

‖∇uε‖p−1
Lp ‖∇w1‖Lp + ‖∇vε‖p−1

Lp ‖∇w2‖Lp

where wi ∈ W 1,p
0 (Ω), w1 ≥ (ψ1 − ψ2)+, w2 ≥ (ψ2 − ψ1)+. The last two

terms are estimated by

‖∇uε‖p−1
Lp ‖∇(v − vε)‖Lp + ‖∇vε‖Lp : ‖∇(u− uε)‖Lp .

Now let ε tend to zero. The result follows using Theorem 10 and (5.6)
and (5.7).

To see that the exponent αp = 1/p, p ≥ 2, is sharp, let

hr,R(t) =


1, 0 ≤ t ≤ r

At(p−n)/(p−1) +B, r ≤ t ≤ R

0, t ≥ R

with constants A and B determined so that hr,R(t) is continuous on
[0,∞). Now set ψε(x) = h(1−ε)r,R(|x|), for 0 ≤ ε < 1/2, and uε = S0(ψε).
Then a short calculation gives

‖∇(uε − u0)‖Lp(B(0,R)) ≥ A · ε1/p

and
|ψε(x)− ψ0(x)| ≤ A′ · ε

for all x : |x| ≤ R; A and A′ are two constants that depend only on
n, p, r, R.
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We close this subsection with an application of the ideas of Theorem 6
applied to solutions to the equation

(5.8)
{ −∆pu = µ, in Ω

u ∈W 1,p
0 (Ω)

µ a Borel measure compactly supported in Ω. In fact by [KM], we know
that any such u must satisfy

A1W
µ
p (x,R) ≤ u(x) ≤ A2 inf

B(x,R)
u+A3 ·Wµ

p (x, 2R),

where B(x, 3R) ⊂ Ω and

Wµ
p (x,R) =

∫ R

0

[rp−nµ(B(x, r)]1/(p−1) dr

r
,

a non-homogeneous Wolff potential of the measure µ. Of course when
p = 2, such an estimate is well known —in fact in that case u is exactly a
Green potential of µ on Ω. Thus, because u = S0(ψ) satisfies (5.8), where
µ is a measure supported on the coincidence set —assuming ψ ∈ C(Ω)
and ψ < 0 near ∂Ω implies [u = ψ] b Ω— we can derive local Lq(CΩ

p )
integrability result for such u. In fact, one can easily deduce, in the
spirit of Theorem 6, that for any Ω′ b Ω, the solution to the p-harmonic
obstacle problem u = S0(ψ) must satisfy∫

Ω′
uq dCΩ

p ≤ A ·
∫

Ω

(ψ+)q dCΩ
p

for any q ≥ p; A depends only on n, p, q and the distance Ω′ to ∂Ω.

(b) The biharmonic problem.
One version of the biharmonic obstacle problem is:

min
{∫

Ω

(∆u)2 dx : u ∈W 1,2
0 (Ω) ∩W 2,2,(Ω), u ≥ ψ a.e. on Ω

}
.

Here ψ is the given obstacle, an extended real valued function on Ω,
and ∆ is the Laplacian in Rn; Ω ⊂ Rn a bounded domain. One might
refer to this version of the biharmonic obstacle problem as the “hinged”
case, since a natural boundary condition that appears, assuming that the
data ψ is smooth —say C2(Ω)— is ∆u = 0 on ∂Ω. The “clamped” case
corresponds to replacing W 1,2

0 (Ω) ∩W 2,2(Ω) by W 2,2
0 (Ω); this forces u

and its normal derivative to vanish at ∂Ω. For simplicity, we will discuss
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only the hinged case here. For a full treatment of this problem, the
author should consult [CF], [A7], [A8]. This last reference is relevant
here since one can view the hinged problem as a 2×2 second order system
with the obstacle in the first component.

The appearance of the Choquet integral in the context of the bihar-
monic obstacle problem involves both the question of existence (as for
the p-harmonic obstacle problem —Theorem 10) and of regularity of so-
lutions. Of course, if the obstacle is of class C2(Ω) and negative near the
∂Ω, then there is generally no need for Choquet integrals. In fact in that
case, one can easily show that the solution u is in W 2,∞(Ω) ∩W 3,2(Ω);
see [CF]. However, for more general ψ one needs the concept of capacity
and Choquet integrals. For this we set

CΩ
2,2(K) = inf

{∫
Ω

|∆φ|2 dx : φ ∈ C∞0 (Ω),

φ superharmonic, φ ≥ 1 on K
}
.

Then from [Ha] one has

∫
u2 dCΩ

2,2 ∼ inf
{∫
|∆φ|2 dx : φ ∈W 2,2(Ω) ∩W 1,2

0 Ω,

φ superharmonic, φ ≥ ψCΩ
2,2-a.e. Ω

}
.

Our result is:

Theorem 12. (a) The hinged biharmonic obstacle problem has a
unique solution if and only if

∫
Ω

(ψ+)2 dCΩ
2,2 <∞.

(b) The solution of part (a) belongs to the Sobolev space W 3,2(Ω) if

∫
Ω

[(−∆ψ)+]2 dCΩ
2 <∞.
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We outline the proof of (b). As in the proof of Theorem 11, we must
first solve a penalized problem, obtain estimates on its solution uε in-
dependent of ε and then pass to the limit for a suitable subsequence,
ε′ → 0. This proceedure will then show that the solution u to the hinged
biharmonic obstacle problem satisfies∫

Ω

|∇∆u|2 dx ≤ A
∫

[(−∆ψ)+]2 dCΩ
2

which is the conclusion of (b). Thus we solve

∆2uε = −ηε(uε − ψ), in Ω

uε = 0
∆uε = 0

}
on ∂Ω,

where ηε is as in Theorem 11. Then∫
Ω

|∇∆uε|2 dx =
∫
ηε(uε − ψ)∆(uε − ψ) dx

+
∫
ηε(uε − ψ)∆ψ dx

≤ −
∫
η′ε(uε − ψ)|∇(uε − ψ)|2 dx

−
∫
ηε(uε − φ)(−∆ψ)+ dx

≤ −
∫
ηε(uε − ψ)w dx ≤ ‖∇∆uε‖L2(Ω) · ‖∇w‖L2(Ω)

where w ≥ (−∆ψ)+ on Ω and w ∈W 1,2
0 (Ω). Thus∫

Ω

|∇∆uε|2 dx ≤ A
∫

[(−∆ψ)+]2 dCΩ
2 ,

with A independent of ε. Now we use lower-semi-continuity with respect
to weak convergence in W 3,2(Ω), since the weak limit will be the unique
solution to the problem.

Results extending these ideas together with stability questions for the
biharmonic and polyharmonic obstacle problems will appear in the forth-
coming paper [AV]. Such stability questions have previously been con-
sidered by Schild in [S], but only in very special cases —with real an-
alytic obstacles given on lower dimensional subsets in R2, the so called
smooth thin obstacle case. But using Choquet integrals, the more gen-
eral “rough” situation will be treated in [AV].
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(c) Systems of second order obstacle problems.
There are many papers on systems of variational inequalities, and,

in particular, on the obstacle problem, with obstacles in each compo-
nent direction; see esp. [HW] and [F] among others referenced in [To]
or [R]. But our main concern here is with the appearance of the Cho-
quet integral in some natural way in these problems. One such curious
appearence was noted in [AL]. There a 2×2 nonlinear systems was inves-
tigated, for existence, uniqueness, and regularity —a sort of nonlinear
version of “cooperative systems”. The basic operators involved are a
version of the p-Laplace operator. Without going into the details of the
existence proof here, the main relevant point is that one would expect
existence of a solution to a second order system to somehow only depend
on information about no more that two derivatives of the data —the ob-
stacle in this case. However, it was found that using standard Sobolev
space techniques that it was necessary to know (−∆pψ)+ ∈ L2(Ω) and
∇(−∆pψ)+ ∈ Lp(Ω), to get existence. This seemed unnatural. Indeed,
it turns out that one can replace this third derivative statement by a
weaker statement, one that depends only on second derivatives:∫

Ω

[(−∆pψ)+]p dCΩ
p <∞.

Notice that because of the CSI, such an integral is finite when the gra-
dient of (−∆pψ)+ belongs to Lp(Ω).

The reader, interested in systems of second order variational inequal-
ities —and the use of the Choquet integral— might also be interested
in the recent paper [A11] on N ×N systems. This paper has a curious
mixture of Choquet integral techniques together with abstract group the-
oretic devices to determine existence, regularity and stability of solutions
to a unilateral obstacle problem that among other things, generalizes the
“hinged plate” biharmonic problem. See also [A8].

6. Differentiation

(a) The differentiation of functions.
(i) Introduction. There are several ways of saying that a given real

valued function, defined at x0 ∈ Rn, is differentiable or even continuous
at x0. Here we consider three such notions for Sobolev functions and
present a unified approach —ultra fine differentiability. One advantage
to this approach is that it produces a stronger notion of differentiability
when αp < n, and uses the ideas of “maximal smoothing operators” of
[CFR], i.e. the existence of the limit is controlled by a maximal function.
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So suppose we are given a function F (x) = F (x;x0), then we say:

(1) F (x;x0) tends to zero at x0 pointwise if F (x;x0)→ 0 as x→ x0

in the usual sense;

(2) F (x;x0) tends to zero at x0 in the mean with exponent q > 0 if

�
�

∫
B(x0,r)

|F (x;x0)|q dx→ 0

as r → 0;

(3) F (x;x0) tends to zero at x0 in the fine topology if there is a set E,
thin at x0, such that

F (x;x0)→ 0 as x→ x0, x /∈ E.

Our notion of thinness will be that introduced by N. G. Meyers (see
[AH, sec. 6.3]), so called (α, p)-thinness, i.e. a set E is termed (α, p)-thin
at x0 if ∫ 1

0

[rαp−nCα,p(E ∩B(x0, r))]p
′−1 dr

r
<∞.

This can be rephrased using Choquet-Lorentz space notation as

χE(x) · |x− x0|αp−n ∈ L1,p′−1(Cα,p)

locally. A set G is an open neighborhood of x0 in the (α, p)-fine topology
iff the complement of G is (α, p)-thin at x0. Thus it follows that

Proposition 2. F tends to zero in the (α, p)-fine topology iff for all
ε > 0 the set {x : F (x;x0) ≥ ε} is (α, p)-thin at x0.

For a proof see [AH, sec. 6.4].

The idea now is to set

F (x;x0) =
|u(x)− P (x− x0)|

|x− x0|k

where u is a given Sobolev function, say u ∈ Wm,p
loc , at least in some

neighborhood of x0, m ≥ k, and P a polynomial in x − x0 (with coeffi-
cients depending on x0) of degree ≤ k; m, k ∈ Z+ = {0, 1, 2, . . . }. With
this, we have three notions of differentiability of degree k at x0.
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In the literature, the notion of Lq-differentiation has drawn some at-
tention; see [CZ] and [Z]. In fact an extensive collection of results and
terminology has arisen, especially the so called T qk and tqk spaces. The
first indicates that the averages

r−kq��
∫
B(x0,r)

|u(x)− P (x− x0)|q dx

are bounded as r → 0, where as the second implies that these averages
tends to zero as r → 0. It is easy to see that being kth order differentiable
in the mean with exponent q implies that the function belongs to the
space tqk at x0.

The notion of (α, p)-fine differentiability is due to Mizuta; see [M1]
and [M2].

(ii) Thin functions. To introduce our notion of differentiability
(using Choquet integrals), we first need an analogue of the Brelot-Meyers
idea of thinness for sets, extended to functions. Thus we say that the
extended real valued function F , defined in a neighborhood of x0, is
(α, p)-thin at x0 if

∫ 1

0

(
rαp−n

∫
B(x0,r)

|F |p : dCα,p

)p′−1
dr

r
<∞.

Clearly, χE is (α, p)-thin at x0 iff E is (α, p)-thin at x0. Also, it follows
that if F is (α, p)-thin at x0, then not only does F tends to zero in the
(α, p)-fine topology, but the averages

�
�

∫
B(x0,r)

|F |p dCα,p → 0

as r → 0, which in turn implies that F tends to zero in the mean with ex-
ponent p∗ = np/(n−αp), when αp < n. This is due to the “isoperimetric
inequality”

|E|1−αp/n ≤ A · Cα,p(E)

where |E| denotes the Lebesgue n-measure of E ⊂ Rn; see [AH, Chap-
ter 5]. When αp = n, it is even possible to show that the exponential
averages

�
�

∫
B(x0,r)

[exp(b|F |p′)− 1] dx→ 0

as r → 0, for some constant b > 0; see [A5, Chapter III].
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Notice that the function F (x;x0) = χK(x)·|x−x0|σ is thin at x0 when
σ > 0, even if K is not thin there. For any σ ∈ R, the (α, p)-thinness of
this F is equivalent to∫ 1

0

[rαp−nCα,p(K ∩B(x0, r))]p
′−1 · rσp′ dr

r
<∞.

(iii) Ultra-fine differentiability (Ufd). The mode of differentia-
bility that will supersede the three mentioned above, is the following:

an extended real valued function u defined in a neighborhood of
the point x0 is (α, p)-ufd of order k at x0 if there exists a function
φ differentiable of order k at x0 in the usual pointwise sense such
that

|u(x)− φ(x)| · |x− x0|−k

is (α, p)-thin at x0.

Thus if we write

u− P
|x− x0|k

=
u− φ
|x− x0|k

+
φ− P
|x− x0|k

and note the previous discussion, then taking P to be the polynomial
determined by the differentiability of φ at x0, we see that the notion of
(α, p)-ufd is stronger than the three modes considered above.

(iv) Maximal smoothing operators. For our estimates below, we
will use certain maximal operators that are known to control differenti-
ation in Lp; see [CFR]. We set

M∗ku(x) = sup
|h|>0

|∆k
hu(x)|
|h|

where ∆k
hu denotes the kth difference operator: ∆hu(x) = u(x+h)−u(x),

∆k
hu = ∆k−1

h ∆hu, k = 1, 2, 3, . . . . In particular from [CFR], we have
(k ≤ m)

‖M∗ku‖Lp ≤ A‖u‖Wm,p .

Employing the same methods, yields

Cm−k,p([M∗ku > t]) ≤ At−p‖u‖pWm,p
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for m ≥ k; for m = k, replace the capacity by Lebesgue measure. By
standard methods, such estimates immediately give the required differ-
entiability, Cm−k,p-a.e. Our main results below is an attempt to upgrade
this capacitary weak type inequality to a strong type inequality.

(v) Ufd of Sobolev functions. Since every u ∈ Wm,p(Rn) can
be represented as the Bessel potential of order m of an Lp function,
u = Gm ∗f , Cm,p-a.e., we can assume throughout, without loss of gener-
ality, that f ≥ 0. Hence Gm ∗ f is defined everywhere. With this, notice
that we can write

u(x) = g(x;x0) + b(x;x0)

the “good and bad” parts of u, with g(x0;x0) = u(x0) and b(x0;x0) = 0.
In fact just take

g(x;x0) =
∫
|x−y|≥ 1

2 |h|
Gm(x− y)f(y) dy

b(x;x0) =
∫
|x−y|< 1

2 |h|
Gm(x− y)f(y) dy,

where h = x− x0.
With this in mind, we state our main result

Theorem 13. For Cm,p-a.e. x0 each u ∈ Wm,p(Rn) can be written
as

u(x) = g(x) + b(x)

with g(x0) = u(x0), b(x0) = 0 Cm,p-a.e., and

I. if mp < n, 0 ≤ k ≤ m,

‖M∗k g‖Lp(Cm−k,p) ≤ A · ‖u‖Wm,p ,(6.1)

|x− x0|−kb(x) is (m, p)-thin at x0;(6.2)

II. if mp = n, 0 ≤ k ≤ m,

(6.1) again holds,(6.3)

∫ 1

0

{
r(m−k)q−n

∫
B(x0,r)

|b(x)|q dCm,q(x)
}p′/q

dr

r
<∞,(6.4)

for 1 < q ≤ p;
III. if n < mp ≤ kp+ n, 0 ≤ k ≤ m,

(6.5) ‖M∗ku‖Lp(Cm−k,p) ≤ A‖u‖Wm,p .
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It is interesting to note the difference in condition (6.2) when mp = n
and condition (6.4) when q = p. As we shall see, they are fundamentally
different. But first note

Proposition 3. For αp < n and 0 < r ≤ 1, set

J1(x0, r) =
∫
B(x0,r)

| |x− x0|−kb(x)|p dCα,p(x)

and

J2(x0, r) =
∫ r

0

s−kp

(∫
B(x0,s)

|b(x)|p dCα,p(x)
)
ds

s
.

Then J1(x0, r) ∼ J2(x0, r) for every x0.

From this result, we have

Proposition 4. For αp ≤ n and k < α, set

J3(x0) =
∫ 1

0

(
rαp−n

∫
B(x0,r)

| |x− x0|−kb(x)|p dCα,p(x)
)p′−1

dr

r

and

J4(x) =
∫ 1

0

(
r(α−k)p−n

∫
B(x0,r)

|b(x)|p dCα,p(x)
)p′−1

dr

r
.

Then for αp < n, J3(x0) ∼ J4(x0), but when αp = n, J4(x0) ≤ A ·J3(x0)
and J3(x0) can be +∞ when J4(x0) <∞.

Proof of Proposition 3: Writing the ball B(x0, r) as the disjoint union
of annuli [2−j−1r ≤ |x − x0| < 2−jr] and using the countable subaddi-
tivity of Cα,p, we have

J1(x0, r) ≤ 2p
∞∑
j=0

(2−jr)−kp
∫
B(x0,2−jr)

|b(x)|p dCα,p(x).

But on the other hand,

J2(x0, 2r) ≥
(

1− 2−p

p

) ∞∑
j=0

(2−jr)−kp
∫
B(x0,2−jr)

|b(x)|p dCα,p(x).
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To go the other way, we use quasi-additivity; see section 2(e). So with
annuli again, we can write

J1(x0, r) ≥ A
∞∑
j=0

(2−jr)−kp(aj − aj+1)

where aj =
∫
B(x0,2−jr)

|b(x)|p dCα,p(x). If b is smooth, it is obvious that∑
2jkpaj <∞ for k < α. Hence, our lower bound can be written as

J1(x0, r) ≥ A′
∞∑
j=0

(2−jr)−kpaj .

A similar upper bound holds for J2(x0, r).

Proof of Proposition 4: For simplicity set

Q(x0, r) =�
�

∫
B(x0,r)

|b|p dCα,p,

then by Proposition 3,

J3(x0) ∼
∫ 1

0

(
rαp−n

∫ r

0

s−kpQ(x0, s)
ds

s

)p′−1
dr

r

=
∫ 1

0

(
rαp−n

∫ r

0

s−kpQ(x0, s) · χ[s≤1](s)
ds

s

)p′−1
dr

r
.

We now apply Hardy’s inequality for p ≤ 2, and get

J3(x0) ≤ A · J4(x0).

For p > 2, we write the integral over [0, r] as a sum of integrals over
[2−j−1r, 2−jr], j = 0, 1, 2, . . . , and apply Jensen’s inequality. The reverse
inequality is trivial.

When αp = n, neither Hardy’s inequality nor Jensen’s inequality ap-
plies, though clearly J3(x0) ≥ AJ4(x0) always holds. But notice that if
p = 2, then

J3(x0) =
∫ 1

0

Q(x0, s)s−2k log 1/s
ds

s
,

whereas

J3(x0) =
∫ 1

0

Q(x0, s)s−2k ds

s
.
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Proof of Theorem 13: We shall confine ourselves to parts I and III
and, for simplicity, treat only the case k = 1; the other part as well
as k > 1 follow in a similar manner. So write u ∈ Wm,p as u(x) =
g(x;x0) + b(x;x0), as indicated earlier. Then for mp < n,

∆hu(x0) = u(x)− u(x0) = g(x;x0)− g(x0;x0) + b(x;x0)

where x = x0 + h. Hence

|∆hg| ≤
∫
|x−y|≥ 1

2 |h|
|Gm(x− y)−Gm(x0 − y)|f(y) dy

+
∫
|x−y|<2|h|

Gm(x0 − y)f(y) dy

≤ A|h| ·Gm−1 ∗ f(x0)

Thus
M∗1 g(x0) ≤ A ·Gm−1 ∗ f(x0).

Applying the CSI (section 3(b)), we get (6.1). Next,

|x− x0|−1b(x) ≤ |h|−1

∫
|x0−y|≤2|h|

Gm(x− y)f(y) dy

≤ A
∫
B(x0,2r)

Gm(x− y)f(y)|x0 − y|−1 dy

when x ∈ B(x0, r). And again using CSI, we have∫
B(x0,r)

[|x− x0|−1b(x)]p dCm,p(x) ≤ A
∫
B(x0,2r)

f(y)p|x0 − y|−p dy

= A

∫ 2r

0

s−p
∫
B(x0,s)

f(y) dy
ds

s
.

So (6.2) follows via Hardy’s inequality and the non-homogeneous Wolff
potential estimate

Cm,p([Wµ
m,p > t]) ≤ Aµ(Rn) · t1−p

analogous to (3.14). See [AH, p. 169]. Here the measure µ is played by
f(y) dy.
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For mp > n, we argue as in [CFR]. Take n/m < q < p, then

b(x) ≤ A|h|m−n/q
(∫
|x0−y|<2|h|

f(y)q dy

)1/q

So
sup
|h|>0

|h|−1b(x) ≤ A(M(m−1)qf
q(x0))1/q,

and when (m− 1)p < n,∫ (
sup
|h|>0

|h|−1b(x)

)
dCm−1,p(x) ≤ A

∫
(M(m−1)qf

q(x0))p/q dΛ
(∞)
n−(m−1)p

≤ A‖f‖pLp ,

using Theorem 7(a) and the standard estimate for Cα,p in terms of
Λ(∞)
n−αp; see [AH, p. 134]. When (m − 1)p = n the estimate on

sup |h|−1b(x) is simple.

(vi) The Kellogg property for thin functions. The idea here is to
apply the standard Kellogg property for thin sets —see [AH, p. 175]—
to produce an analogue for thin functions. Our result states:

Cα,p({x : F (x) 6= 0} ∩ {x : F is (α, p)-thin at x}) = 0,

for 1 < p ≤ n/α. Indeed, if we set Eλ = [F > λ], λ > 0, then it easily
follows that Eλ is (α, p)-thin at points where F is (α, p)-thin. Hence by
the standard Kellogg property

Cα,p(Eλ ∩ [Eλ is (α, p)-thin]) = 0.

Thus ∞∑
j=−∞

Cα,p(E2j ;∩[E2j ; is (α, p)-thin]) = 0.

(b) The differentiation of weighted capacity.
A form of weighted capacity that naturally occurs is variational

weighted capacity, given here by

CΩ
p (K;w) = inf

{∫
|∇φ|pw dx : φ ∈ C∞0 (Ω), φ ≥ 1 on K

}
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where K is a compact subset of the (bounded) domain Ω ⊂ Rn. w
is the weight, a non-negative locally integrable function on Rn. This
set function is needed in the study of the local regularity properties of
certain degenerate second order elliptic partial differential equations on
Ω,

(6.6)
n∑

i,j=1

∂

∂xj
(aij(x)uxi) = 0.

Here the assumption on the coefficients is generally

λ · w(x)|ξ|2 ≤
∑
i,j

aij(x)ξiξj ≤ Λ · w(x)|ξ|2,

for all x ∈ Ω and ξ = (ξ1, . . . , ξn) ∈ Rn; λ > 0 and |ξ|2 = ξ21 + · · · +
ξ2n. Generally, more than local integrability of w is needed to build a
complete theory —a theory of local regularity reproducing as much of
the theory of harmonic functions as can be expected. One usually makes
some assumption like w−1 ∈ A∞, i.e. it is an A∞ weight in the sense
of Muckenhoupt; see [GF]. Throughout, for simplicity we shall usually
assume w ∈ A1, i.e. on any cube Q ⊂ Rn with sides parallel to the
coordinates axes,

�
�

∫
Q

w dx ≤ A · inf
Q
w.

The weighted variational capacity closely associated with this degenerate
equation is, of course, CΩ

2 (·;w). When p 6= 2, the prototype equation is
a degenerate form of the p-Laplace equation, e.g.

div(w(x)|∇u|p−2∇u) = 0.

We shall restrict our attention here mainly to p = 2, although most
results discussed have p 6= 2 analogues; see [KM], [M], [MZ].

The case p = 2, w ≡ 1 is treated in [LSW], whereas the case p = 2, w
a general weight, in [FJK] —for the regularity theory of equation (6.6).
In Choquet space notation, the Wiener boundary regularity test can be
phrased as: if n > 2,

σ(x, s) = s2−n

(
�
�

∫
B(x,s)

w−1

)
,

with ∫ 1

0

σ(x0, s)
ds

s
= +∞,
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then the point x0 ∈ ∂Ω is a regular point for solutions to equation (6.6)
iff ∫

E∩B(x0,1)

Φ(x0, y) dCΩ
2 (y;w) = +∞

where
Φ(x, y) ≡

∫ ∞
|x−y|

σ(x, s)
ds

s
.

However, our task here is not to give a discription of this rich boundary
behavior theory, but to try to understand the nature of weighted capac-
ity: is it possible to find an alternate form (possibly in terms of Choquet
integrals) that more clearly reveals how weighted capacity acts? The
conjecture might be:

CΩ
p (K;w) ∼

∫
K

w dCΩ
p ,

i.e. to represent weighted capacity as an equivalent capacity obtained by
integrating the weight with respect to unweighted capacity —sort of a
“Radon-Nikodym type” result. Our first result is of this type; it has
appeared in [A9]. Here, we consider only Ω = Rn, n > 2.

Theorem 14. (a) If w ∈ L2(C2)+, then

(6.7) lim
r→0

�
�

∫
B(x,r)

w dC2 = w(x)

for C2-a.e. x ∈ Rn;
(b) if w ∈ A2 ∩ L2(C2)+, then

(6.8) lim
r→0

C2(B(x, r);w)
C2(B(x, r))

= w(x)

for C2-a.e. x;

(c) if w is superharmonic in Rn, then there is a constant A such that

(6.9) C2(K;w) ≤ A ·
∫
K

w dC2

for all compact K;

(d) if w = I2 ∗ v, v ∈ A1, then there is a constant A such that

(6.10)
∫
K

w dC2 ≤ A · C2(K;w).
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Proof: We prove (6.9) and (6.10) here; see [A9] for the rest. For
φ ∈ C∞0 (Rn),∫

|∇φ|2w dx =
∫

(−∆φ) · φw dx+
1
2

∫
φ2∆w

after integration by parts. Passing to a limit, we may replace φ by
the Newtonian potential I2 ∗ µ, where µ is the Ċ1,2 capacitary extremal
measure for K. Then φ = 1 on K, φ ≤ 1 everywhere, and −∆φ = µ.
Hence ∫

|∇φ|2w dx ≤
∫
K

w dµ

since ∆w ≤ 0. The result (6.9) easily follows now since µ(e) ≤ Ċ1,2(e) ∼
C2(e), for all Borel sets e.

For (6.10), we use CSI for C2 (or Ċ1,2):∫
K

w dC2 ≤
∫

[w1/2φ]2 dC2 ≤ A
∫ ( |∇w|2

w
φ2 + |∇φ|2w

)
dx,

for some φ ∈ C∞0 (Rn) with φ ≥ 1 on K. Since w = I2 ∗ v, the Hedberg
inequality (cf. section 3(c)) gives

|∇w|2
w

≤ AMv ≤ Av,

since v ∈ A1. Thus∫ |∇w|2
w

φ2 dx ≤ A
∫
φ2v dx = 2A

∫
φ∇φ∇I2 ∗ v dx

≤ A′
(∫

φ2 |∇w|2
w

dx

)1/2(∫
|∇φ|2w

)1/2

.

So ∫ |∇w|2
w

φ2 dx ≤ A
∫
|∇φ|2w dx.

An alternate approach to such a “Radon-Nikodym type” result is to
work with weighted Riesz capacity

Ċα,p(K;w) = inf
{∫

f(x)pw(x) dx : f ≥ 0 and Iα ∗ f ≥ 1 on K
}
.
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To insure that Ċα,p(·;w) is non-trivial, one must make some assumptions
on w, say w ∈ Ap and for αp < n

(6.11)
∫ ∞

1

[
tαp

W (B(x, t))

]p′−1
dt

t
<∞.

Actually, another way to deal with this is to modify w near ∞ so
that (6.11) holds. And since we are usually only interested in local
properties, this is quite reasonable. This can be accomplished using
[GF, Theorem IV.5.6]: modify w near ∞ so that w ∼ 1 there.

With this we prove the following result:

Theorem 15. Let w ∈ Ap and choose an x0 ∈ Rn such that

(6.12) αp < n− dw(x0),

where dw(x0) = inf

{
d : sup

0<r≤1
rd��
∫
B(x0,r

w <∞
}

;

(6.13) lim
r→0

Ċα,p(B(x0, r);w)
r−αpw(B(x0, r))

> 0;

there is a constant Aσ such that

(6.14)

sup
Ak;σ(x0)

w ≤ Aσ · inf
Ak;σ(x0)

w

Ak;σ(x0) = {x : 2−k−σ ≤ |x− x0| < 2−k+1}

for each fixed σ > 1 and all k ≥ k0. Then

(6.15) Ċα,p(K;w) ∼
∫
K

w dĊα,p

for all compact K sets in some fixed neighborhood of x0.

Note that if w is (α, p)-quasi-continuous, then dw(x0) = 0 for Ċα,p-a.e.
x0. Also, it is not hard to see that one also has (6.13) holding for Ċα,p-
a.e. x0 —note the weighted capacity of the ball is computed, at least
asymptotically as r → 0, in [A10]. Thus the real determination of the
validity of the result is whether or not (6.14) holds at almost all points
x0. For the weight w(x) = |x|−σ, −n(p− 1) < σ < n, dw(0) = σ.
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Recall: w ∈ Ap iff for coordinate cubes Q

sup
Q

�
�

∫
Q

w ·
(
�
�

∫
Q

w−1/(p−1)

)p−1

<∞.

Proof: Using subadditivity,

Ċα,p(K;w) ≤
∞∑
k=0

Ċα,p(Ak;σ ∩K;w)

≤ A
∑
k

(sup
Ak;σ

w) · Ċα,p(Ak;σ ∩K)

≤ A
∑
k

( inf
Ak;σ

w) · Ċα,p(Ak,σ ∩K)

≤ A
∑
k

∫
Ak;σ∩K

w dĊα,p ≤ A
∫
K

w dĊα,p,

where αp < n − dw(x0) allows us to use Lemma 8.1 of [A10] —which
effectively factors out the weight— together with the quasi-additivity of
Ċα,p; see [A4]. For the reverse inequality, we need (6.13) to guarantee
that the weighted Riesz capacity is quasi-additive in a neighborhood of
x0 —the proof is similar to that given in [A4], although an adaptation
of the methods of [Ai] also seem possible. The reverse inequality is now
established by a similar argument.

7. Additional remarks

(a) Poincare type inequalities.
The simplest form of an inequality that we wish to describe here is: let

u ∈ W 1,p(Ω), Ω a bounded domain in Rn with smooth boundary, then
there exists constants a0 and A0 such that

(7.1)
(∫

Ω

|u− a0|p dx
)1/p

≤ A0

(∫
Ω

|∇u|p dx
)1/p

,

with

(7.2) |a0| ≤��
∫
K

|u| dC1,p,

K a compact subset of Ω̄, and

(7.3) A0 ≤ A · C1,p(K)−1/p · |Ω|1/p.
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The barred integral in (7.2) is the integral average —divide by C1,p(K).
Thus in particular, if u vanishes on K, C1,p(K) > 0, then a0 = 0.
The classical Poincare inequality follows by taking K = ∂Ω. And if
Ω = B(x0, r), then it follows that A0 ≤ Ar, as is well known.

Higher order versions of (7.1) are given in [AH, sec. 8.3]. There a0

is replaced by a polynomial P of degree ≤ m − 1 when the right side
of (7.1) becomes the norm of |Dmu|, the pure mth order derivatives.
But again, the Choquet integrals appear, to estimate sup

Ω
P in terms of

capacity integral averages.

(b) Bounded point evaluations.

Let P (x,D) =
∑
|σ|≤m

aσ(x)Dσ be an elliptic operator of order m < n

with infinitely differentiable coefficients defined in an open set Ω ⊂ Rn.
LetK be a compact subset of Ω and η(K) the set of solutions u, defined in
some neighborhood of K which satisfy the equation P (x,D)u = 0 in this
neighborhood. A question studied by several authors (see in particular
[FP] and [He2]) is to determine when η(K) is dense in Lp(K), 1 ≤
p < ∞. An answer can be given in terms of bounded point evaluations
(BPE). The point x0 ∈ K is a BPE for η(K) ⊂ Lp(K) if there is a
constant A such that

|u(x0)| ≤ A
(∫

K

|u|p dx
)1/p

for all u ∈ η(K). See [FP, Theorem 5]. Our interest here is noting that
the necessary and sufficient condition for a BPE given in [FP] can be
expressed via Choquet integrals rather nicely. It is: x0 is a BPE for
η(K) ⊂ Lp(K) iff∫

Kc∩B(x0,1)

|x0 − x|(m−n)p′ dCm,p′(x) <∞;

see Theorem 3 of [FP].

(c) Mosco convergence.
Let {Kj} be a sequence of convex sets in W 1,p

0 (Ω). We say Kj → K in
the sense of Mosco (see [Mo]) if both Ms and Mw hold:

(Ms) for all v ∈ K there is {vj} ⊂ Kj such that

vj → v strongly in W 1,p
0 ;

(Mw) if {vjk} is a subsequence, vjk ∈ Kjk with vjk → v weakly in W 1,p
0 ,

then v ∈ K.
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We apply this notion to the convex unilateral sets that occur with
obstacle problems:

Kj = {v ∈W 1,p
0 (Ω) : v ≥ ψj , C1,p-a.e. on Ω}

and
K = {v ∈W 1,p

0 (Ω) : v ≥ ψ, C1,p-a.e. on Ω}.
From [AP] one can use the Choquet integral to determine Mosco con-
vergence: let ψj and ψ be (1, p)-quasi-continuous on Ω such that∫

[(ψj − ψ)+]p dC1,p → 0, j →∞,(Hs)

for all t > 0, C1,p([(ψ − ψj)+ > t])→ 0, j →∞.(Hw)

It then follows that

(Hs) implies (Ms)

(Hw) implies (Mw).

Furthermore, if ψ ∈ Lp(C1,p), then (Ms) implies (Hs).
Thus one has a very nice set of sufficient conditions for the Mosco

convergence of convex unilateral sets in obstacle problems. And this
would seem like a good tool to establish stability results for obstacle
problems —as noted in section 5 above. Indeed, from [Mo] one can
say that given a differential operator —linear and coercive— and the
Mosco convergence of the unilateral convex sets, then the solution uj
to a variational problem for obstacle ψj converges strongly (in W 1,p

0 ) to
the solution to the “limit problem”. The key here, however, is: what is
the limit problem? With stability, we demand that the limit problem
be of the same type. What can happen with Mosco convergence is the
“appearence of strange terms” in the limit problem; see e.g. [CM]. It
seems that Mosco convergence is a good tool when one is dealing with
a sequence of problems that converges to something, but does not seem
to be strong enough to guarantee stability as noted in section 5 above.
Mosco convergence has also been useful in dealing with questions of
homogenization in partial differential equations —see e.g. [BM].

(d) Probability.
Functionals like Γα,p, of section 3(c) above, are appearing in the theory

of probability —as capacities on function spaces, e.g. Wiener space. See
[FLP] or the short survey article [Mn]. Hence, using these functionals,
Feyel and de La Pradelle have considered Choquet spaces in a probability
setting.
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tional functions, Math. USSR Sbornik 8 (1969), 115–124.

[M1] Y. Mizuta, Fine differentiability of Riesz potentials, Hiroshima
Math. J. 8 (1978), 505–514.

[M2] Y. Mizuta, “Potential Theory in Euclidean Spaces,” Gakuto In-
ternational Series, Mathematical Sciences and Applications 6,
Gakkotosho, Tokyo, Japan, 1996.

[M] P. Mikkonen, On the Wolff potential and quasilinear elliptic
equations involving measures, Ann. Acad. Sci. Fenn. Ser. A I Math.
104 (1996), 1–71.

[MZ] J. Maly and W. P. Ziemer, “Fine Regularity of Solutions of
Elliptic Partial Differential Equations,” Amer. Math. Society Math.
Monographs 51, 1997.

[Mo] U. Mosco, Convergence of convex sets and solutions of varia-
tional inequalities, Adv. Math. 3 (1969), 510–585.

[Ne1] Netrusov, Metric estimates for the capacities of sets in Besov
spaces, Trudy Mat. Inst. Steklov. 190 (1989), 159–185 (Russian);
Engl. trans.: Proc. Steklov Inst. Math. 190 (1992), 167–192.

[Ne2] Netrusov, Estimates of capacities associated with Besov
spaces, Azpiski Nauchn. Semin. LOMI 201, xx92), 124-156 (Rus-
sian); Engl. trans.: J. Soviet Math..

[OV] J. Orobitg and J. Verdera, Choquet integrals, Hausdorff
content and the Hardy-Littlewood maximal operator, Bull. London



      

66 D. R. Adams

Math. Soc. 30 (1998), 145–150.
[RS] T. Runst and W. Sickel, “Sobolev Spaces of Fractional Order

Nemytskij Operators, and Nonlinear Partial Differential Equations,”
de Gruyter, 1996.

[R] J.-F. Rodrigues, “Obstacle Problems in Mathematical Physics,”
Math. Studies 134, North-Holland, 1987.

[Sa] E. Sawyer, Weighted norm inequalities for fractional maximal
operators, Canad. Math. Soc. Conference Proc. 1 (1981), 283–309.

[S] B. Schild, On the coincidence set in biharmonic variational in-
equalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa 13
(1986), 559–616.

[St1] E. Stein, “Singular Integrals and Differentiability of Functions,”
Princeton U. Press, 1970.

[St2] E. Stein, “Harmonic Analysis: Real-variable methods orthogo-
nality, and oscillatory integrals,” Princeton U. Press, 1993.

[SW] E. Stein and G. Wiess, “Introduction to Fourier Analysis on
Euclidean Spaces,” Princeton U. Press, 1971.

[TW] M. Taibleson and G. Weiss, The molecular characterization
of certain Hardy spaces, Astérisque 77 (1980), 67–149.
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