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THE CLOSED CONVEX HULL OF THE
INTERPOLATING BLASCHKE PRODUCTS

Knut Øyma

Abstract
The closed convex hull of the interpolating Blaschke products con-
tains any bounded analytic function of sufficiently small norm.

Let H∞ be the set of bounded analytic functions on the open unit
disc D. Each f ∈ H∞ has a non-tangential limit f(eiθ) at almost every
point eiθ ∈ T = ∂D. An inner function f is a bounded analytic function
satisfying |f(eiθ)| = 1, a.e. eiθ ∈ T .

If {zn} ⊂ D satisfies
∑

(1 − |zn|) < ∞, then

∞∏
n=1

−zn

|zn|
z − zn

1 − znz

is called the Blaschke product with zeros {zn}. If zn = 0, replace −zn

|zn|
by 1. A Blaschke product is an inner function. These products have a lot
of interesting properties: If f ∈ H∞ then there is a Blaschke product B
and a non-vanishing g ∈ H∞ such that f = Bg. If I is an inner function
then

I − λ

I − λI

is a Blaschke product for λ in a dense subset of D. Therefore the Blaschke
products are dense in the inner functions in the uniform norm. The
closed convex hull of the Blaschke products is the unit ball of H∞. See
[G] for the proof of these and many other properties of the Blaschke
products.

A square is a set of the form

Q = {reiθ : 1 − h < r < 1, θ0 < θ ≤ θ0 + h}.
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The length of Q is |Q| = h. The pseudohyperbolic metric on D is defined
by

ρ(z, w) =
∣∣∣∣ z − w

1 − zw

∣∣∣∣ .
A sequence {zn} ⊂ D is called interpolating if the mapping H∞ →
�∞ : f(z) → {f(zn)} is onto. Carleson, see [G], proved that {zn} is
interpolating if and only if

inf
m�=n

ρ(zn, zm) > δ > 0,

and ∑
zn∈Q

(1 − |zn|2) < C|Q|

for all squares.

Given an square Q, its top half is T (Q) =
{
reiθ ∈ Q : r < 1 − 1

2 |Q|
}
.

A Blaschke product whose zero set is an interpolating sequence is
called an interpolating Blaschke product. These products have been
studied in great detail, and they play a significant role in the theory of
H∞, see [G]. An important open problem is whether or not they are
dense in the set of inner functions. In this paper we study the closed
convex hull K of the interpolating Blaschke products.

Theorem. If ‖f‖ ≤ 10−7, then f ∈ K.

The proof of this modest result is long and technical. The ideas may
disappear in the formalism, so I delete details at some points.

Let B(z) be a Blaschke product with zeros {zn}. Assume that ρ(z, zn)
is close to 1 for all n. Then

log
1

|B(z)|2 = (1 + 0(1))
∑ (1 − |zn|2)(1 − |z|2)

|1 − znz|2
.

Assume that the zeros are contained in disjoint squares Qk and that
|Qk| � (1 − |z|). Choose ξk ∈ Qk ∩ T . By the density of Q w.r.t. B we
mean

1
|Q|

∑
zn∈Q

(1 − |zn|2).
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Assume that the density of all Qk is smaller than a number d. Then

log
1

|B(z)|2 = (1 + 0(1))
∑

k

∑
zn∈Qk

(1 − |z|2)(1 − |zn|2)
|1 − ξkz|2

≤ (1 + 0(1))
∑

k

(1 − |z|2)|Qk|d
|1 − ξkz|2

≤
(

(1 + 0(1))d
∫ 2π

0

1 − r2

|1 − rei(θ−t)|2 dt

)
= (1 + 0(1))d 2π.

Here z = reiθ. This proves

Lemma 0. Under the above assumptions, |B(z)| ≥ e−πd(1+0(1)).

Lemma 1. Given a square Q, and constants κ < 1, 1/2 > δ > 0,
1 > a � 1 − |Q|, there exist a finite Blaschke product B with zeros on
(|z| = a) ∩Q and a region R of the unit disc, such that

1. The zeros of B are uniformly distributed on |z| = a

2. The density of Q w.r.t. B ≤ (1 + 0(1)) 1
π log 1

δ

3. If z ∈ Q, |z| < a, then ρ(z,R) ≤ A < 1, A = A(κ, δ)
4. If z ∈ R, then |B(z)| ≤ δκ.

Below we consider only the dyadic squares:

Q =
{
reiθ :

2πk
2n

< θ <
2π(k + 1)

2n
, 1 − 2−n ≤ r < 1

}
.

Let

Ba,N (z) =
zN − aN

1 − aNzN
,

where a is close to 1 and aN = δ. The zeros are zk = ae
2πi
N k. Now

N log a = log δ and

N ∼ log 1
δ

1 − a

since a is close to 1. Also

1
2π

∑
(1 − |zk|2) <

1
π

∑
(1 − |zk|) =

1
π
N(1 − a) = (1 + 0(1))

1
π

log
1
δ
.

If Q is a square such that |Q| � 1 − a, then the density of Q is
(1 + 0(1)) 1

π log 1
δ since {zk} are uniformly distributed.
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Also, |Ba,N (z)| = ρ(zN , aN ) ≤ ρ(−|z|N , aN ). Assume that |z| = aM ,
M > 1. Then

|Ba,N (z)| ≤ ρ(−aNM , aN ) = ρ(−δM , δ) ≤ δ + δM .

Let R ⊂ Q be the region bounded by Γ = {z ∈ Q : |z| = aM} and a
circle intersecting Γ in a small angle γ, as in Figure 1.

γ R

|z| = a
T

Γ

Q

Figure 1. R is bounded by Γ and another circle. The angle of inter-
section, γ, is small. The corners of R are far, but not too far, from the
endpoints of Γ.

The figure does not tell the truth: Most of Q ∩ {z : |z| < a} is con-
tained in R, that is: All points in Q ∩ {|z| < a} are “close” to R in the
pseudohyperbolic metric. The argument proving Lemma 0 shows that
for z ∈ R the contribution to |Ba,N (z)| coming from the zeros outside Q
is close to 1, provided the corners of R are moved away from the end-
points of Γ. By making γ small and increasing the distance from the
corners of R to the endpoints of Γ, we obtain |B(z)| ≤ (δ + δM )κ′

for
z ∈ R, κ′ close to 1. It is also easy to see that if z ∈ Q, |z| < a, then
ρ(z,R) < A = A(δ, κ′) < 1.

By increasing M , decreasing κ′ slightly and making γ small, we finish
the proof.

Lemma 2. Any Blaschke product B can be factored B(z) = B1(z) ·
B2(z) where

lim sup
r→1

min
|z|=r

|Bi(z)| = 1

for i = 1, 2.

Proof: See [Ø].
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Lemma 3. Let B(z) be a B-product with zeros {zn}. Assume that
there exists constants A < 1, η > 0 such that for all n there exists z∗n
satisfying ρ(zn, z

∗
n) < A, |B(z∗n)| > η. Then B(z) is a finite product of

interpolating B-products.

Proof: See [G-N].

Lemma 4. Any finite product of interpolating B-products can be uni-
formly approximated by an interpolating B-product.

Proof: See [M-S]. A consequence of Lemma 4 is that the closed convex
hull of the interpolating B-products is closed under multiplication.

By Lemmas 4 and 2, we may assume that the conclusion of Lemma 2
holds.

Given δ > 0 close to 1. Let 0 < δ < β < 1 to be chosen later. Choose
r1 < 1, r1 close to 1 such that |B(z)| > β if |z| = r1. We may assume
that |B(0)| > β.

Let Q1
1, Q

2
1, . . . be the maximal dyadic squares such that

1. inf
z∈T (Q)

|B(z)| < δ.

2. T (Q) ∩ {z : |z| < r1} �= ∅.
These are the squares of the first generation. The proof of Lemma 0
shows that ∑

B(zn)=0,zn∈Qk
1

(1 − |zn|2) < C(δ)|Qk
1 |

where
C(δ) → 0 when δ → 1.

Choose r2 < 1, (1 − r1)/(1 − r2) large, such that |B(z)| > β if |z| = r2.
The second generation are the maximal dyadic squares such that

1. inf
z∈T (Q)

|B(z)| < δ.

2. T (Q) ∩ {z : |z| < r2} �= ∅.
3. T (Q) ∩ {z : |z| < r1} = ∅.

Continue inductively. If β is large then

(1)
∑

k:Qk
n⊂Qj

n−1

|Qk
n| < ε|Qj

n−1|.

(See [G, p. 332].)
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Denote (Qk
n\T (Qk

n))∩{z : |z| ≤ rn} = Sk
1,n∪Sk

2,n and Γk
i,n = Sk

i,n∩{z :
|z| = rM

n }, where M , Γk
i,n and Rk

i,n come from Lemma 1 and its proof.
See figure below.

T
|z| = rn

Qk
n

Sk
2,nSk

1,n

Rk
1,n

−→−

Figure 2

Decompose B(z) = B1(z)B2(z) where Bi(z) has zeros in
⋃
n,k

Sk
i,n. Con-

struct Bk
1,n as in Lemma 1 with a = rn, Q = Sk

1,n. All Bk
1,n of generation

n share the same a (= rn).
Let

B1,n =
∏
k

Bk
1,n, B∗

1 =
∏
n

B1,n.

The estimate (1) shows B∗
1 is an interpolating B-product and if β is

close to 1, then |B∗
1(z)| ≈ |B1,n(z)| when z is close to Γk

1,n.
By choosing δ close to 1 we obtain

∑
B1B∗

1 (zi)=0

zi∈Qk
n

(1 − |zi|2) ≤ [1 + 0(1)]
1
2π

(
log

1
δ

)
|Qk

n|.

That is: We have control over the density of Qk
n w.r.t. B1B

∗
1 . For z ∈

Rk
1,n, |B∗

1(z)| < δκ. Choose r < κ; r slightly smaller. Then r is close to
1. By Frostman’s theorem we can choose r such that

B1B
∗
1 − δr

1 − δrB1B∗
1

= C1

is a B-product.
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Claim. C1 is a finite product of interpolating B-products.

The proof uses Lemma 3. Assume that C1(w) = 0. Then
B1(w)B∗

1(w) = δr. Let w∗ ∈ D, Argw∗ = Argw and 10(1 − |w∗|) =
(1 − |w|).

Split B1(z)B∗
1(z) = BQ(z)B∼

Q(z) where BQ takes care of the zeros
inside Qw (see Figure 3), and consider the following three different situ-
ations.

Case 1: ρ(w, zn) is large for all n and every Sk
1,n meeting Qw is small,

say,
|Sk

1,n|
1 − |w| < η.

Since |B∼
Q(w)| > δr one has

r log
1
δ
≥ log

1
|B∼

Q(w)| = (1 + 0(1))
1
2

∑
zn /∈Qw

(1 − |w|2)(1 − |zn|2)
|1 − znw|2

= A

and

log
1

|B∼
Q(w∗)| = (1 + 0(1))

1
2

∑
zn /∈Qw

(1 − |w∗|2)(1 − |zn|2)
|1 − znw∗|2

<
1
4
A <

r

4
log

1
δ
.

Therefore |B∼
Q(w∗)| > δ

r
4 . The world looks like this:

T
w∗

w

Sk
1,n−→−

Figure 3. Situation in Case 1.
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Let us consider all the disjoint dyadic subsquares of Qw, of length
100η(1 − |w|). Then the density of all these small, but not too small,
subsquares of Qw is less than

(1 + 0(1))
1
2π

log
1
δ
.

By Lemma 0, |BQ(w∗)| ≥ δ
1
2 (1+0(1)) > δ0.51.

Hence |B1(w∗)B∗
1(w∗)| > δ

r
4 ·δ0.51 > δ

4
5 r since r is close to 1. Therefore

|C1(w∗)| = ρ(B1(w∗)B∗
1(w∗), δr) ≥ ρ(δr, δ

4
5 r). Lemma 3 does the trick.

Case 2: ρ(w, zN ) is small for some N .
Here small means not close to 1. Then zN plays the same role as w∗

in Case 1.

Case 3: One Sk
1,N meeting Qw is “not small”, that is, |Sk

1,n|
1−|w| > η, for

some n. Then there exists w∗ ∈ Rk
1,N such that ρ(w,w∗) is “not large”.

Lemma 1 gives

|B1(w∗)B∗
1(w∗)| < |B∗

1(w∗)| < δκ < δr.

Use Lemma 3 again.

Remark. This argument will be repeated later, but we will not repeat
the details. The parameter of the Frostman transform, δr, satisfied two
conditions:

1. δr > δκ ≥ max
z∈Rk

1,n

|B∗
1(z)| for all n, k.

2. The density d of Qk
n w.r.t. B1B

∗
1 satisfied e−πd > δκ.

Therefore the argument with a Frostman parameter δ∗ works if

max
z∈Rk

1,n

|B∗
1(z)| < |δ∗| < e−Πd.

It is easy to see that the unimodular constants belong to the closed
convex hull K of the interpolating B-products. We have

B1B
∗
1 =

C1 + δr

1 + δrC1
=

∞∑
0

anC
n
1 .

Since δ > 0, a computation proves that
∑

|an| = 1 + 2δr, hence B1B
∗
1 ∈

(1 + 2δr)K.



Convex hull of interpolating Blaschke products 667

Alternatively. Repeat the argument with δr replaced by δreiθ. For
almost all θ the function

Cθ =
B1B

∗
1 − δreiθ

1 − δre−iθB1B∗
1

is a finite product of interpolating B-products.
Approximating with Riemann sums we see that

1
2π

∫ π

−π

B1B
∗
1 − δreiθ

1 − δre−iθB1B∗
1

dθ ∈ K.

This leads to B1B
∗
1 ∈ 1

1−δ2r K. This estimate is better than the previous
one if δr is small.

We now want to repeat the argument with B∗
1 replaced by

B∗∗
1 =

B∗
1 − σ

1 − σB∗
1

.

The zeros of B∗∗
1 are close to the zeros of B∗

1 if σ is not too large. The
zeros of B∗

1 are concentrated on arcs |z| = rn, one arc for each generation

T

|z| = rn = a

|z| = b

×××

Figure 4. The zeros of B∗
1 and B∗∗

1 are marked by crosses and dots
respectively.

The zeros of B∗
1 are marked by crosses. Close to these zeros |B∗

1(z)| ≥
(1 + 0(1))|B1,n(z)|. Figure 4 shows that if |σ| < ρ(aN , bN ), aN = δ,
b = as, s < 1 then the zeros of B∗∗

1 are concentrated as indicated by the
dots. If a is close to 1 we obtain

|σ| < ρ(aN , bN ) = ρ(δ, δs) =
δ − δs

1 − δs+1
.
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Hence

∑
zi∈Qk

n,B∗∗(zi)=0

(1 − |zi|2) ≤ (1 + 0(1))
s

2π
log

1
δ
|Qk

n|.

If z ∈ Rk
1,n then |B∗

1(z)| < δκ. Therefore

|B∗∗
1 (z)| = ρ(σ,B∗

1(z)) ≤ ρ(−|σ|, δκ) =
|σ| + δκ

1 + |σ|δκ
.

Therefore the argument works for B∗∗
1 replacing B∗

1 if we choose the
parameter δ∗ in the Frostman transform such that

(2)
|σ| + δκ

1 + |σ|δκ
< |δ∗| < e−π s

2π log 1
δ = δ

s
2 .

Then we obtain B1B
∗∗
1 ∈ (1 + 2δ∗)K.

Choose δ = 0.8, s = 1.4, σ = 0.1647, δ∗ = 0.8524.
Then (2) is satisfied (since r and κ are close to 1 we may think of them

as being equal to 1) and we obtain:

B1B
∗
1 ∈ (1 + 2δ)K = 2.6K

B1B
∗∗
1 ∈ (1 + 2δ∗)K ⊂ 2.8K.

Hence

B1(B∗
1 −B∗∗

1 ) = B1
σ − σ(B∗

1)2

1 − σB∗
1

∈ 5.4K.

This leads to B1 ∈ 40.81K.
Therefore each of the subproducts of Lemma 2 belongs to (40.81)2K.

Therefore every B-product belongs to (40.81)4K ⊂ 3 · 106K.
This proves the theorem since every function in the unit ball of H∞

is contained in the closed convex hull of the B-products.

Editor’s note. Professor Knut Øyma had formed links with our De-
partment, and we note with sadness that he died suddenly on
July 18, 1996. This article is based on a draft version found among
his papers; we felt that his approach would be of interest to other people
working in the area, and that it deserved to be published. We thank
A. Nicolau and A. Stray for preparing the paper for publication, and the
referee for many useful remarks.
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