THE VORONOVSKAYA THEOREM FOR SOME LINEAR POSITIVE OPERATORS IN EXPONENTIAL WEIGHT SPACES

L. Rempulska and M. Skorupka

Abstract \qquad
In this note we give the Voronovskaya theorem for some linear positive operators of the Szasz-Mirakjan type defined in the space of functions continuous on $[0,+\infty)$ and having the exponential growth at infinity.

Some approximation properties of these operators are given in [3], [4].

1. Preliminaries

1.1. Let $R_{0}:=[0,+\infty), N:=\{1,2, \ldots\}, N_{0}:=N \cup\{0\}$ and let $w_{r}(\cdot)$, $r>0$, be the weight function defined on R_{0} by the formula

$$
\begin{equation*}
w_{r}(x):=e^{-r x} \tag{1}
\end{equation*}
$$

Similarly as in [1] we denote by $C_{r}, r>0$, the space of real-valued functions f defined on R_{0} and such that $w_{r} f$ is a uniformly continuous and bounded function on R_{0}. The norm in C_{r} is defined by

$$
\|f\|_{r}:=\sup _{x \in R_{0}} w_{r}(x)|f(x)| .
$$

For a fixed $r>0$ let

$$
C_{r}^{2}:=\left\{f \in C_{r}: f^{\prime}, f^{\prime \prime} \in C_{r}\right\}
$$

1.2. In [3] were introduced the following operators of the Szasz-Mirakjan type for functions $f \in C_{r}, r>0$,

$$
\begin{equation*}
L_{n}^{(1)}(f ; x):=\sum_{k=0}^{\infty} p_{n, k}(x) f\left(\frac{2 k}{n}\right), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L_{n}^{(2)}(f ; x):=\sum_{k=0}^{\infty} p_{n, k}(x) \frac{n}{2} \int_{I_{n, k}} f(t) d t, \tag{3}
\end{equation*}
$$

Keywords. Voronowskaya theorem, linear positive operator. 1991 Mathematics subject classifications: 41A36.
$x \in R_{0}, n \in N$, where

$$
\begin{equation*}
p_{n, k}(x):=\frac{1}{\cosh n x} \frac{(n x)^{2 k}}{(2 k)!}, \quad k \in N_{0} \tag{4}
\end{equation*}
$$

$\sinh x, \cosh x, \tanh x$ are the elementary hyperbolic functions and $I_{n, k}:=$ $\left[\frac{2 k}{n}, \frac{2 k+2}{n}\right], k \in N_{0}$.
In [4] were introducend the operators

$$
\begin{equation*}
L_{n}^{(3)}(f ; x):=\frac{f(0)}{1+\sinh n x}+\sum_{k=0}^{\infty} q_{n, k}(x) f\left(\frac{2 k+1}{n}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
L_{n}^{(4)}(f ; x):=\frac{f(0)}{1+\sinh n x}+\sum_{k=0}^{\infty} q_{n, k}(x) \frac{n}{2} \int_{I_{n, k}^{*}} f(t) d t \tag{6}
\end{equation*}
$$

$x \in R_{0}, n \in N$, where

$$
\begin{equation*}
q_{n, k}(x):=\frac{1}{1+\sinh n x} \frac{(n x)^{2 k+1}}{(2 k+1)!} \tag{7}
\end{equation*}
$$

and $I_{n, k}^{*}:=\left[\frac{2 k+1}{n}, \frac{2 k+3}{n}\right]$ for $k \in N_{0}$.
We observe that the above operators are linear positive operators welldefined on every space $C_{r}, r>0$, and

$$
\begin{equation*}
L_{n}^{(i)}(1 ; x)=1, \quad 1 \leq i \leq 4, \tag{8}
\end{equation*}
$$

for all $x \in R_{0}$ and $n \in N$.
In [3] and [4] it was proved that $L_{n}^{(i)}, 1 \leq i \leq 4$, are operators from C_{r} into C_{s} for every fixed $s>r>0$ provided n is large enough. Moreover in [3], [4] some approximation properties of there operators were given. In particular in [3], [4] we proved the following

Theorem A. Suppose that r, s, n_{0} are fixed numbers such that $s>$ $r>0, n_{0} \in N$ and $n_{0}>r\left(\ln \frac{s}{r}\right)^{-1}$. If $f \in C_{r}$, then there exists a positive constant $M_{1} \equiv M_{1}\left(n_{0}, r, s\right)$ depending only on n_{0}, r, s such that for all $x \in R_{0}, n_{0}<n \in N$ and $1 \leq i \leq 4$

$$
w_{s}(x)\left|L_{n}^{(i)}(f ; x)-f(x)\right| \leq M_{1} \omega\left(f, C_{r} ; \sqrt{\frac{x+1}{n}}\right)
$$

where $\omega\left(f ; C_{r} ; \cdot\right)$ is the modulus of continuity of f, i.e.,

$$
\omega\left(f ; C_{r} ; t\right):=\sup _{0<h \leq t}\|f(\cdot+h)-f(\cdot)\|_{r} .
$$

2. Auxiliary results

In this part we shall give some properties of the operators $L_{n}^{(i)}$. Let

$$
\begin{align*}
S(n x) & :=\frac{\sinh n x}{1+\sinh n x} \\
T(n x) & :=\frac{\cosh n x}{1+\sinh n x}, \tag{9}\\
V(n x) & :=1-\tanh n x
\end{align*}
$$

for $n \in N$ and $x \in R_{0}$. By elementary calculations from (2)-(8) and (9) we obtain

Lemma 1. For all $x \in R_{0}$ and $n \in N$ we have

$$
\begin{aligned}
& L_{n}^{(1)}(t-x ; x)=-x V(n x), \\
& L_{n}^{(1)}\left((t-x)^{2} ; x\right)=\left(2 x^{2}-\frac{x}{n}\right) V(n x)+\frac{x}{n}, \\
& L_{n}^{(1)}\left((t-x)^{4} ; x\right)=\left(8 x^{4}-\frac{12 x^{3}}{n}+\frac{4 x^{2}}{n^{2}}-\frac{x}{n^{3}}\right) V(n x)+\frac{3 x^{2}}{n^{2}}+\frac{x}{n^{3}}, \\
& L_{n}^{(2)}(t-x ; x)=-x V(n x)+\frac{1}{n}, \\
& L_{n}^{(2)}\left((t-x)^{2} ; x\right)=\left(2 x^{2}-\frac{3 x}{n}\right) V(n x)+\frac{x}{n}+\frac{4}{3 n^{2}}, \\
& \left.L_{n}^{(2)}(t-x)^{4} ; x\right)=\left(8 x^{4}-\frac{28 x^{3}}{n}+\frac{32 x^{2}}{n^{2}}-\frac{21 x}{n^{3}}\right) V(n x)+\frac{12 x}{n^{3}}+\frac{16}{5 n^{4}}, \\
& L_{n}^{(3)}(t-x ; x)=x(T(n x)-1), \\
& L_{n}^{(3)}\left((t-x)^{2} ; x\right)=x^{2}(S(n x)-2 T(n x)+1)+\frac{x}{n} V(n x), \\
& L_{n}^{(3)}\left((t-x)^{4} ; x\right)=x^{4}(7 S(n x)-8 T(n x)+1)+\frac{12 x^{3}}{n}(T(n x)-S(n x)) \\
& \quad+\frac{x^{2}}{n^{2}}(7 S(n x)-4 T(n x))+\frac{x}{n^{3}} T(n x), \\
& L_{n}^{(4)}(t-x ; x)=x(T(n x)-1)+\frac{1}{n} S(n x), \\
& L_{n}^{(4)}\left((t-x)^{2} ; x\right)=x^{2}(S(n x)-2 T(n x)+1) \\
& \quad+\frac{2 x}{n}(T(n x)-S(n x))+\frac{4}{3 n^{2}} S(n x), \\
& L_{n}^{(4)}\left((t-x)^{4} ; x\right)=x^{4}(7 S(n x)-8 T(n x)+1)+\frac{28 x^{3}}{n}(T(n x)-S(n x)) \\
& \quad+\frac{x^{2}}{n^{2}}(35 S(n x)-32 T(n x))+\frac{17 x}{n^{3}} T(n x) .
\end{aligned}
$$

Using Lemma 1, we shall prove two lemmas.
Lemma 2. For every fixed $x_{0} \in R_{0}$ one has

$$
\lim _{n \rightarrow \infty} n L_{n}^{(i)}\left(t-x_{0} ; x_{0}\right)=\left\{\begin{array}{cl}
0 & \text { if } i=1,3 \tag{10}\\
1 & \text { if } i=2,4
\end{array}\right.
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n L_{n}^{(i)}\left(\left(t-x_{0}\right)^{2} ; x_{0}\right)=x_{0} \quad \text { for } \quad 1 \leq i \leq 4 \tag{11}
\end{equation*}
$$

Proof: We shall prove only (10) and (11) for $i=3$, because the proof for $i=1,2,4$ is analogous.

By Lemma 1 and (9) we have

$$
\begin{aligned}
n L_{n}^{(3)}(t-x ; x) & =\frac{n x}{e^{2 n x}(1+\sinh n x)}-\frac{n x}{(1+\sinh n x)}, \\
n L_{n}^{(3)}\left((t-x)^{2} ; x\right) & =\frac{n x^{2}}{1+\sinh n x}-\frac{2 n x^{2}}{e^{n x}(1+\sinh n x)}+\frac{x \cosh n x}{1+\sinh n x},
\end{aligned}
$$

for every $x \in R_{0}$ and $n \in N$, which immediately yield (10) and (11).
Lemma 3. For every fixed $x_{0} \in R_{0}$ there exists a positive constant $M_{2}\left(x_{0}\right)$, depending only on x_{0}, such that for all $n \in N$

$$
\begin{equation*}
L_{n}^{(i)}\left(\left(t-x_{0}\right)^{4} ; x_{0}\right) \leq M_{2}\left(x_{0}\right) n^{-2}, \quad 1 \leq i \leq 4 \tag{12}
\end{equation*}
$$

Proof: For example we shall prove (12) for $L_{n}^{(1)}$. By (9) we have for $n \in N, p \in N$ and $x \in R_{0}$

$$
0 \leq x^{p} V(n x)=\frac{2 x^{p}}{e^{2 n x}+1} \leq 2^{1-p} p!n^{-p}
$$

Applying the above inequality to the formula given in Lemma 1, we obtain

$$
L_{n}^{(1)}\left(\left(t-x_{0}\right)^{4} ; x_{0}\right) \leq \frac{47}{n^{4}}+\frac{3 x_{0}^{2}}{n^{2}}+\frac{x_{0}}{n^{3}} \leq M_{2}\left(x_{0}\right) n^{-2}
$$

for every fixed $x_{0} \geq 0$ and for all $n \in N$.
The proof of (12) for $i=2,3,4$ is similar.
In the papers [3] (for $\left.L_{n}^{(i)}, i=1,2\right)$ and [4] (for $\left.L_{n}^{(i)}, i=3,4\right)$ we proved the following two lemmas.

Lemma 4. Let $s>r>0$ and let n_{0} be a natural number such that

$$
\begin{equation*}
n_{0}>r\left(\ln \frac{s}{r}\right)^{-1} \tag{13}
\end{equation*}
$$

Then there exists a positive constant $M_{3} \equiv M_{3}\left(r, s, n_{0}\right)$ depending only on r, s, n_{0} such that for all $n>n_{0}$ and $i=1,2,3,4$

$$
\left\|L_{n}^{(i)}\left(\frac{1}{w_{r}(t)} ; \cdot\right)\right\|_{s} \leq M_{3}
$$

Lemma 5. Suppose that r, s and n_{0} are a numbers as in Lemma 4. Then there exists a positive constant $M_{4} \equiv M_{4}\left(r, s, n_{0}\right)$ depending only on r, s, n_{0} such that for all $x \geq 0, n>n_{0}$ and $i=1,2,3,4$

$$
\begin{equation*}
w_{s}(x) L_{n}^{(i)}\left(\frac{(t-x)^{2}}{w_{r}(t)} ; x\right) \leq M_{3} \frac{x+1}{n} . \tag{14}
\end{equation*}
$$

Applying the above lemmas, we shall prove
Lemma 6. Suppose that x_{0} is a fixed point on R_{0} and $\varphi\left(\cdot ; x_{0}\right)$ is a function belonging to a give space $C_{r}, r>0$, such that $\lim _{t \rightarrow \infty} \varphi\left(t ; x_{0}\right)=$ 0 , $\left(\lim _{t \rightarrow 0_{+}} \varphi(t ; 0)=0\right)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{(i)}\left(\varphi\left(t ; x_{0}\right) ; x_{0}\right)=0 \quad \text { for } \quad 1 \leq i \leq 4 \tag{15}
\end{equation*}
$$

Proof: We shall prove (15) for $i=1$, because the proof of (15) for $i=2,3,4$ is analogous.

Choose $\varepsilon>0$ and M_{3} as in Lemma 4. Then by the properties of $\varphi\left(\cdot ; x_{0}\right)$ there exist positive constants $\delta \equiv \delta\left(\varepsilon, M_{3}\right)$ and M_{5} such that

$$
\begin{array}{ll}
w_{r}(t)\left|\varphi\left(t ; x_{0}\right)\right|<\frac{\varepsilon}{2 M_{3}} & \text { for }\left|t-x_{0}\right|<\delta, \\
w_{r}(t)\left|\varphi\left(t ; x_{0}\right)\right|<M_{5} & \text { for } t \geq 0
\end{array}
$$

Denoting by $Q_{n, 1}:=\left\{k \in N_{0}:\left|\frac{2 k}{n}-x_{0}\right|<\delta\right\}$ and $Q_{n, 2}:=\left\{k \in N_{0}:\right.$ $\left.\left|\frac{2 k}{n}-x_{0}\right| \geq \delta\right\}$, we get for $s>r$ and $n>n_{0}$ by (1)-(4) and Lemma 4

$$
\begin{aligned}
w_{s}\left(x_{0}\right)\left|L_{n}^{(1)}\left(\varphi\left(t ; x_{0}\right) ; x_{0}\right)\right| \leq & w_{s}\left(x_{0}\right) \sum_{k=0}^{\infty} p_{n, k}\left(x_{0}\right)\left|\varphi\left(\frac{2 k}{n} ; x_{0}\right)\right| \\
= & w_{s}\left(x_{0}\right) \sum_{k \in Q_{n, 1}} p_{n, k}\left(x_{0}\right)\left|\varphi\left(\frac{2 k}{n} ; x_{0}\right)\right| \\
& +w_{s}\left(x_{0}\right) \sum_{k \in Q_{n, 2}} p_{n, k}\left(x_{0}\right)\left|\varphi\left(\frac{2 k}{n} ; x_{0}\right)\right| \\
:= & \sum_{1}+\sum_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{1}<\frac{\varepsilon}{2 M_{3}} w_{s}\left(x_{0}\right) \sum_{k=0}^{\infty} p_{n, k}\left(x_{0}\right)\left(w_{r}\left(\frac{2 k}{n}\right)\right)^{-1}<\frac{\varepsilon}{2} \\
& \sum_{2} \leq M_{5} w_{s}\left(x_{0}\right) \sum_{k \in Q_{n, 2}} p_{n, k}\left(x_{0}\right)\left(w_{r}\left(\frac{2 k}{n}\right)\right)^{-1}
\end{aligned}
$$

Since $1 \leq \delta^{-2}\left(\frac{2 k}{n}-x_{0}\right)^{2}$ if $\left|\frac{2 k}{n}-x_{0}\right| \geq \delta$, we have

$$
\begin{aligned}
\sum_{2} & \leq M_{5} \delta^{-2} w_{s}\left(x_{0}\right) \sum_{k \in Q_{n, 2}} p_{n, k}\left(x_{0}\right)\left(w_{r}\left(\frac{2 k}{n}\right)\right)^{-1}\left(\frac{2 k}{n}-x_{0}\right)^{2} \\
& \leq M_{5} \delta^{-2} w_{s}\left(x_{0}\right) L_{n}^{(1)}\left(\frac{\left(t-x_{0}\right)^{2}}{w_{r}(t)} ; x_{0}\right)
\end{aligned}
$$

wich by (14) and (13) yields

$$
\sum_{2} \leq M_{5} M_{4} \frac{x_{0}+1}{n \delta^{2}} \quad \text { for all } \quad n>n_{0}
$$

It is obvious that for fixed numbers $\varepsilon>0, \delta>0, M_{3}>0, M_{4}>0$, $n_{0} \in N$ and $x_{0} \geq 0$ there exist a natural number $n_{1}>n_{0}$ depending on the above parameters such that for all $n_{1}<n \in N$

$$
M_{4} M_{5} \frac{x_{0}+1}{n \delta^{2}}<\frac{\varepsilon}{2} .
$$

Hence we have

$$
\sum_{2}<\frac{\varepsilon}{2} \quad \text { for all } \quad n>n_{1}
$$

Consequently,

$$
w_{s}\left(x_{0}\right)\left|L_{n}^{(1)}\left(\varphi\left(t ; x_{0}\right) ; x_{0}\right)\right|<\varepsilon \quad \text { for } \quad n>n_{1}
$$

which proves that

$$
\lim _{n \rightarrow \infty} w_{s}\left(x_{0}\right) L_{n}^{(1)}\left(\varphi\left(t ; x_{0}\right) ; x_{0}\right)=0
$$

From this and (1) assertion (15) follows for x_{0} and $i=1$. Thus the proof is completed.

3. Theorems of the Voronovskaya type

The Voronovskaya theorem for the Bernstein operators is given in [2]. We shall prove a similar theorem for the operators $L_{n}^{(i)}$.

Theorem 1. Let $f \in C_{r}^{2}$ with some $r>0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{L_{n}^{(i)}(f ; x)-f(x)\right\}=\frac{x}{2} f^{\prime \prime}(x) \tag{16}
\end{equation*}
$$

for every $x \in R_{0}$ and $i=1,3$.
Proof: Let $x_{0} \geq 0$ be an arbitrary fixed point and $i=1$. By the Taylor formula we have for $t \geq 0$
(17) $f(t)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(t-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(t-x_{0}\right)^{2}+\psi\left(t ; x_{0}\right)\left(t-x_{0}\right)^{2}$, where $\psi\left(\cdot ; x_{0}\right)$ is a function belonging to the space C_{r} and $\lim _{t \rightarrow x_{0}} \psi\left(t ; x_{0}\right)=$ 0 . By (2), (8) and (17) we get

$$
\begin{align*}
& L_{n}^{(1)}\left(f(t) ; x_{0}\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) L_{n}^{(1)}\left(t-x_{0} ; x_{0}\right) \tag{18}\\
& \quad+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) L_{n}^{(1)}\left(\left(t-x_{0}\right)^{2} ; x_{0}\right)+L_{n}^{(1)}\left(\psi\left(t ; x_{0}\right)\left(t-x_{0}\right)^{2} ; x_{0}\right)
\end{align*}
$$

for every $n \in N$. Using Lemma 2, we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} n L_{n}^{(1)}\left(t-x_{0} ; x_{0}\right)=0 \\
& \lim _{n \rightarrow \infty} n L_{n}^{(1)}\left(\left(t-x_{0}\right)^{2} ; x_{0}\right)=x_{0} \tag{19}
\end{align*}
$$

By (2) and the Hölder inequality we have for every $n \in N$
(20) $\left|L_{n}^{(1)}\left(\psi\left(t ; x_{0}\right)\left(t-x_{0}\right)^{2} ; x_{0}\right)\right|$

$$
\leq\left\{L_{n}^{(1)}\left(\psi^{2}\left(t ; x_{0}\right) ; x_{0}\right)\right\}^{\frac{1}{2}}\left\{L_{n}^{(1)}\left(\left(t-x_{0}\right)^{4} ; x_{0}\right)\right\}^{\frac{1}{2}}
$$

Since for the function $\varphi\left(t ; x_{0}\right):=\psi^{2}\left(t ; x_{0}\right), t \geq 0$, we have $\varphi\left(\cdot ; x_{0}\right) \in$ $C_{2 r}$ and $\lim _{t \rightarrow x_{0}} \varphi\left(t ; x_{0}\right)=0$, we get by Lemma 6

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{(1)}\left(\psi^{2}\left(t ; x_{0}\right) ; x_{0}\right) \equiv \lim _{n \rightarrow \infty} L_{n}^{(1)}\left(\varphi\left(t ; x_{0}\right) ; x_{0}\right)=0 \tag{21}
\end{equation*}
$$

Applying (21) and (12) to (20), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n L_{n}^{(1)}\left(\psi\left(t ; x_{0}\right)\left(t-x_{)}\right)^{2} ; x_{0}\right)=0 \tag{22}
\end{equation*}
$$

Now we immediately obtain (16) for a given x_{0} and $i=1$ from (18) by (19) and (22). This proves the desired assertion for $i=1$.

Similarly we can prove the following

Theorem 2. Suppose that $f \in C_{r}^{2}$ with some $r>0$. Then

$$
\lim _{n \rightarrow \infty} n\left\{L_{n}^{(i)}(f ; x)-f(x)\right\}=f^{\prime}(x)+\frac{x}{2} f^{\prime \prime}(x)
$$

for every $x \in R_{0}$ and $i=2,4$.

References

1. M. Becker, D. Kucharski and R. J. Nessel, Global approximation theorems for the Szasz-Mirakjan operators in exponential weight spaces, in "Linear Spaces and Approximation," Proc. Conf. Oberwolfach, 1977, Birkhäuser Verlag, Basel.
2. P. P. Korovkin, "Linear operators and Approximation Theory," Moscow, 1959 (Russian).
3. M. Leśniewicz and L. Rempulska, Approximation by some operators of the Szasz-Mirakjan type in exponential weight spaces, Glas. Mat. Ser. III, (in print).
4. L. Rempulska and M. Skorupka, On approximation of functions by some operators of the Szasz-Mirakjan type, Fasc. Math. 26 (1996), 123-134.

Institute of Mathematics
Poznań University of Technology
Piotrowo 3A
60-965 Poznań
POLAND

Primera versió rebuda el 9 de Juliol de 1996, darrera versió rebuda el 18 de Novembre de 1996

