ON FINITE ABELIAN GROUPS
REALIZABLE AS MISLIN GENERA

PETER HILTON AND DIRK SCEVENELS

Abstract

We study the realizability of finite abelian groups as Mislin genera of finitely generated nilpotent groups with finite commutator subgroup. In particular, we give criteria to decide whether a finite abelian group is realizable as the Mislin genus of a direct product of nilpotent groups of a certain specified type. In the case of a positive answer, we also give an effective way of realizing that abelian group as a genus. Further, we obtain some non-realizability results.

1. Introduction

The (Mislin) genus ([5]) of a finitely generated nilpotent group N, denoted \(G(N) \), is the set of isomorphism classes of finitely generated nilpotent groups M having, at each prime \(p \), a localization isomorphic with that of N, i.e. \(M_p \cong N_p \) for all \(p \). It was shown in [2], [5] that \(G(N) \) may be given the structure of a finite abelian group, with the isomorphism class of N as identity element, if the commutator subgroup \([N, N]\) is finite. Thus we are led to study the class \(N_0 \) of finitely generated nilpotent groups with finite commutator subgroup.

No general method has yet been discovered for calculating \(G(N) \) when \(N \in N_0 \). However, in [1], a general method was given if \(N \in N_1 \), where \(N_1 \) is the following subclass of \(N_0 \). Here we describe \(N_1 \) by introducing the short exact sequence

\[
TN \rightarrowtail N \twoheadrightarrow FN
\]

associated with the nilpotent group N, where \(TN \) is the torsion subgroup of N and \(FN \) is the torsion-free quotient. Plainly the class \(N_0 \) is given by the conditions that \(TN \) be finite and \(FN \) free abelian of finite rank.
Then the class $\mathcal{N}_1 \subseteq \mathcal{N}_0$ is given by the supplementary conditions

1. TN is abelian;
2. $TN \to N \to FN$ splits on the right, so that N is the semidirect product for an action $\omega : FN \to \text{Aut} TN$;
3. $\omega(FN)$ lies in the centre of $\text{Aut} TN$.

Moreover, in the presence of (1), condition (3) is equivalent to

(3') given $\xi \in FN$, there exists a positive integer u such that the action of ξ on TN is given by $\xi \cdot a = ua$ for all $a \in TN$ (here, TN is written additively).

Let t be the height of $\ker \omega$ in FN, that is,

$$t = \max\{h \in \mathbb{N} \mid \ker \omega \subseteq hFN\}$$

(here, FN is written additively). Then it is shown in [1] that

(1.1) \[\mathcal{G}(N) \cong (\mathbb{Z}/t)^*/\{\pm 1\}, \]

where $(\mathbb{Z}/t)^*$ is the multiplicative group of units of \mathbb{Z}/t. It was further shown how to associate with every unit m of \mathbb{Z}/t a group N_m in the genus of N such that

$N_m \leftrightarrow [m]$ provides an isomorphism (1.1). Moreover, an algorithm was given for calculating t, knowing the exponent of TN and the positive integers u referred to in (3').

Unfortunately, the class \mathcal{N}_1 is very restricted; indeed, it was shown in [4] that, if a group N in \mathcal{N}_1 has non-trivial genus, then FN is cyclic. However, in [3], the systematic calculation of $\mathcal{G}(N)$ was extended from \mathcal{N}_1 to the class \mathcal{N}_2 consisting of direct products of groups in \mathcal{N}_1. It is plain that conditions (1) and (2) for membership of \mathcal{N}_1 are inherited by direct products, but, in general, condition (3) is not. Thus the class \mathcal{N}_2 is substantially larger than \mathcal{N}_1. Of course, membership of \mathcal{N}_0 is inherited by direct products.

The calculation of $\mathcal{G}(N)$, for N in \mathcal{N}_2, is somewhat technical, but, from our point of view in this paper, the salient facts are the following. First if $N = N_1 \times \cdots \times N_k$ (all $N_i \in \mathcal{N}_1$) and if FN_i is not cyclic for some i, then $\mathcal{G}(N)$ is trivial; indeed, we will generalize this result below (see Corollary 2.2). Now assume that FN_i is cyclic for all i ($1 \leq i \leq k$), and, in accordance with (1.1), suppose

\[\mathcal{G}(N_i) \cong (\mathbb{Z}/t_i)^*/\{\pm 1\}. \]
Let \(t = \gcd(t_1, \ldots, t_k) \) and let \(T_i = \{p_1, \ldots, p_{\lambda_i}\} \), where

\[
(1.2) \quad t = p_1^{\ell_1} \cdots p_{\lambda}^{\ell_\lambda}, \quad \ell_j \geq 1
\]

is the prime power factorization of \(t \). Then we determine from the ‘fine structure’ of the groups \(N_1, \ldots, N_k \) a subset \(P \) of \(T_i \) —any subset of \(T_i \) may arise— so that \(\mathcal{G}(N) \) is determined as follows:

Theorem 1.1. The genus \(\mathcal{G}(N) \) is obtained from \((\mathbb{Z}/t)^*\) by factoring out \(-1\) and those residues \(m \mod t \) such that (see (1.2))

\[
m \equiv \begin{cases}
 \pm 1 \mod p_j^{\ell_j} & \text{if } p_j \in P \\
 1 \mod p_j^{\ell_j} & \text{if } p_j \notin P.
\end{cases}
\]

Notice that \(\mathcal{G}(N) \) is entirely determined by the two invariants \((t, P)\). It is not difficult to show that, given \((t, P)\) with \(P \subseteq T_i \), there is always a group \(N \in \mathcal{N}_2 \) yielding the invariants \((t, P)\) —see Section 4. We remark that if \(k = 1 \), so that \(N \in \mathcal{N}_1 \), then \(P \) is empty. For full details see [3, Theorem 1.6].

Our principal aim in this paper is to describe those finite abelian groups which arise as described in Theorem 1.1 and which can therefore be realized as a (Mislin) genus group \(\mathcal{G}(N) \), for some nilpotent group \(N \) in \(\mathcal{N}_2 \). We will thereby also obtain some non-realizability results.

In Section 2 we obtain some preliminary results which are of independent interest. We adopt the convention that \(\mathbb{Z}/n \) is written \(C_n \) when thought of as a multiplicative group.

2. Preliminary results

As in Section 1, let \(N = N_1 \times N_2 \times \cdots \times N_k \), where each \(N_i \in \mathcal{N}_1 \). There is then a function \(\Psi_i : \mathcal{G}(N_i) \rightarrow \mathcal{G}(N) \), given by

\[
(2.1) \quad \Psi_i(M_i) = N_1 \times \cdots \times N_{i-1} \times M_i \times N_{i+1} \times \cdots \times N_k.
\]

Proposition 2.1. The function \(\Psi_i \) of (2.1) is a surjective homomorphism.

Proof: In accordance with (1.1) we have the short exact sequence

\[
\{\pm 1\} \rightarrow (\mathbb{Z}/t_i)^* \rightarrow \mathcal{G}(N_i)
\]
that can be embedded in the commutative diagram
\[
\begin{array}{c}
\{\pm 1\} \xrightarrow{\alpha} (\mathbb{Z}/t_i)^* \rightarrow G(N_i) \\
\downarrow \quad \downarrow \\
H \xrightarrow{} (\mathbb{Z}/t)^* \rightarrow G(N)
\end{array}
\]

(2.2)

where \(H \) is the subgroup factored out of \((\mathbb{Z}/t)^* \) to yield \(G(N) \), and \(\alpha(m) = m \mod t \). Then (2.2) may be completed by a homomorphism \(\Psi_i : G(N_i) \rightarrow G(N) \) which will be surjective since \(\alpha \) is surjective. It remains to show that \(\Psi_i \) is given by (2.1). Of course, we may assume that \(FN_i \) is cyclic, say, \(FN_i = \langle \xi_i \rangle \). Then (see [1]) we have a commutative diagram

\[
\begin{array}{c}
TN_i \xrightarrow{} M_i \rightarrow FN_i \\
\| \quad \downarrow \phi_i \quad \downarrow \psi_i \\
TN_i \xrightarrow{} N_i \rightarrow FN_i
\end{array}
\]

where \(\psi_i(\xi_i) = m\xi_i, m \) being given by \(M_i \leftrightarrow [m] \) under the isomorphism (1.1) between \(G(N_i) \) and \((\mathbb{Z}/t_i)^*/\{\pm 1\} \). We may, and shall, choose \(m \) from its residue class mod \(t_i \) to be prime to the order of \(TN \).

Let \(T \) be the set of primes \(p \) such that \(TN \) has \(p \)-torsion. Set \(M = N_1 \times \cdots \times N_{i-1} \times M_i \times N_{i+1} \times \cdots \times N_k \). The homomorphisms \(\phi_i, \psi_i \) determine, in an obvious way, homomorphisms

\[
\phi : M \rightarrow N, \quad \psi : FN \rightarrow FN,
\]

yielding a commutative diagram

\[
\begin{array}{c}
TN \xrightarrow{} M \rightarrow FN \\
\| \quad \downarrow \phi \quad \downarrow \psi \\
TN \xrightarrow{} N \rightarrow FN
\end{array}
\]

and \(\psi \) is a \(T \)-automorphism with \(\det \psi = m \). Thus, in the bottom row of (2.2), \([m] \in (\mathbb{Z}/t)^*\) goes to \(M \) in \(G(N) \), completing the proof. \(\blacksquare \)

Corollary 2.2. Let \(N_1, \ldots, N_k \in \mathbb{N} \) and set \(N = N_1 \times \cdots \times N_k \). Then \(G(N) = 0 \) if \(G(N_i) = 0 \) for any \(i \).

From the explicit description in [3] of the set of primes \(P \) which appears in our statement of Theorem 1.1 the following conclusions are plain.
Proposition 2.3. Any finite abelian group realizable as $G(N)$ with $N \in N_2$, is realizable as $G(N_1 \times N_2)$, where $N_1, N_2 \in N_1$.

This will simplify our choice of examples in Section 3.

Proposition 2.4. Let $N_1, \ldots, N_k \in N_1$ and set $N = N_1 \times \cdots \times N_k$. Then $G(N \times N_j)$ for $1 \leq j \leq k$ is obtained from Theorem 1.1 (applied to $G(N)$) by taking P to be T_i itself. In particular, $G(N \times N_j)$ is independent of j.

3. Realizing an abelian group as a Mislin genus

We first enunciate two relevant lemmas on finite abelian groups. For these lemmas we will adopt additive notation; and p will always denote a prime.

Lemma 3.1. Let $G = \bigoplus_{i=1}^\lambda \mathbb{Z}/m_i$, where $m_i = p^{r_i+1}n_i$, $r_i \geq 0$, $p \nmid n_i$, and let $r_1 = \min_i r_i$. Let a_i be a generator of \mathbb{Z}/m_i. If G' is obtained from G by adding the relation $\sum_{i=1}^\lambda p^{r_i}a_i = 0$, then

$$G' \cong \bigoplus_{i=1}^\lambda \mathbb{Z}/\overline{m}_i = \langle \overline{a}_1, a_2, \ldots, a_\lambda \rangle,$$

where

$$\overline{m}_i = \begin{cases} p^{r_i}n_1, & i = 1 \\ m_i, & i \geq 2. \end{cases}$$

Proof: We have $\mathbb{Z}/m_1 = \mathbb{Z}/p^{r_1+1} \oplus \mathbb{Z}/n_1 = \langle b_1, c_1 \rangle$, where $b_1 = n_1a_1$, $c_1 = p^{r_1+1}a_1$. Then $p^{r_1}a_1 = p^{r_1}b_1$, so the new relation is given by $p^{r_1}b_1 + \sum_{i=2}^\lambda p^{r_i}a_i = 0$, or

$$p^{r_1} \left(b_1 + \sum_{i=2}^\lambda p^{r_i-r_1}n_ia_i \right) = 0.$$

Set $b' = b_1 + \sum_{i=2}^\lambda p^{r_i-r_1}n_ia_i$. Then

$$G = \langle b', a_1, a_2, \ldots, a_\lambda \rangle = \mathbb{Z}/p^{r_1+1} \oplus \mathbb{Z}/n_1 \oplus \mathbb{Z}/m_2 \oplus \cdots \oplus \mathbb{Z}/m_\lambda,$$

and the new relation is $p^{r_1}b' = 0$. Thus

$$G' = \langle \overline{b'}, a_1, a_2, \ldots, a_\lambda \rangle = \mathbb{Z}/p^{r_1} \oplus \mathbb{Z}/n_1 \oplus \mathbb{Z}/m_2 \oplus \cdots \oplus \mathbb{Z}/m_\lambda,$$

and we set $\overline{a}_1 = \overline{b'} + c_1$.

Our second lemma is very elementary; the proof will be omitted.
Lemma 3.2. Let $G = \mathbb{Z}/p \oplus B$, where the first summand is generated by a, and let $b \in B$ with $pb = 0$. If we obtain G from G by adding the relation $a + b = 0$, then $G \cong B$.

Both these lemmas will be applied with $p = 2$. We now apply Theorem 1.1 to prove our main theorem. We denote the Euler totient function by Φ.

Theorem 3.3. The finite abelian groups which are realizable as the genus of a group in N_2 are precisely the groups of the form

$$C_{2^\ell} \times \prod_{p_i \in P} C_{\frac{1}{2}\Phi(p_i^{\ell_i})} \times \prod_{p_j \in Q} C_{\Phi(p_j^{\ell_j})},$$

where $\ell \geq 0$, $\ell_i \geq 1$, $\ell_j \geq 1$ and P, Q are disjoint (finite) sets of odd primes.

Proof: We will prove that the finite abelian groups which are realizable as the genus of a group in N_2 are precisely those groups which, in multiplicative notation, are obtained through the following process:

Step 1: Take $\prod_{i=1}^{\lambda} C_{\Phi(p_i^{\ell_i})}$, where the p_i are distinct odd primes and $\ell_i \geq 1$.

Step 2: Reduce the order of μ of the factors $C_{\phi(p_i^{\ell_i})}$ to $\frac{1}{2}\Phi(p_i^{\ell_i})$, $0 \leq \mu \leq \lambda$.

Step 3: Take the direct product of the result of Step 2 with C_{2^ℓ}, $\ell \geq 0$.

We recall from Theorem 1.1 that $N = N_1 \times \cdots \times N_k$ determines a certain natural number t and that $G(N)$ is obtained from \mathbb{Z}/t^* by factoring out the residue class -1 and residue classes m such that $m \equiv \pm 1 \mod p_i^{\ell_i}$ for $p_i \in P$, where P is a certain subset (perhaps empty) of T_i, the set of prime divisors of $t = \prod_{i=1}^{\lambda} p_i^{\ell_i}$, and $m \equiv 1 \mod p_i^{\ell_i}$ for $p_i \in T_i - P$. Obviously, this is equivalent to factoring out -1 and the residue classes m_i, where $p_i \in P$ and

$$m_i \equiv \begin{cases} -1 \mod p_i^{\ell_i} \\ 1 \mod p_j^{\ell_j}, \quad j \neq i. \end{cases}$$

Assume first that t is odd, so that each p_i is odd. Then \mathbb{Z}/t^* is given by Step 1. Factoring out m_i simply reduces $C_{\Phi(p_i^{\ell_i})}$ to $C_{\frac{1}{2}\Phi(p_i^{\ell_i})}$; it follows from Lemma 3.1 that factoring out -1 reduces $C_{\phi(p_i^{\ell_i})}$ to $C_{\frac{1}{2}\Phi(p_i^{\ell_i})}$, where
p_j is chosen among the primes in $T_i - P$ to be such that the 2-valuation of $p_j - 1$ is minimal. If $P = T_i$, then this last part of Step 2 is void (because then $-1 = \prod_{p_i \in T_i} m_i$). Step 3 is also void if t is odd, that is, we take $\ell = 0$.

Assume now that t is even. Notice that if $t = 2t'$, with t' odd, then $(\mathbb{Z}/t)^* \cong (\mathbb{Z}/t')^*$ and the process proceeds just as above with $(\mathbb{Z}/t')^*$, using the same subset P and ignoring the prime 2. Thus we may assume that $4 \mid t$; and we change notation to write

$$t = 2^{\ell+2} \prod_{i=1}^\lambda p_i^{\ell_i}, \quad \ell \geq 0.$$

Then

$$(3.2) \quad (\mathbb{Z}/t)^* \cong C_2 \times C_2^\ell \times \prod_{i=1}^\lambda C_{\Phi(p_i^{\ell_i})}.$$

To pass to $G(N)$, we first factor out the m_i defined as in (3.1) with $p_i \in P$. This is achieved by a partial Step 2 of the process, applied to $\prod_{i=1}^\lambda C_{\Phi(p_i^{\ell_i})}$. If $2 \in P$, we erase C_2 on the right of (3.2) and then factor out -1 (if $P \neq T_i$) just as in the case of t odd, by reducing the order of a suitable $C_{\Phi(p_i^{\ell_i})}$ with $p_j \in T_i - P$. If $2 \not\in P$, then we apply Lemma 3.2, factoring out -1 by effectively erasing C_2. We are thus left with the direct product of $C_{2^\ell}, \ell \geq 0$, and the result of Step 2 applied to $\prod_{i=1}^\lambda C_{\Phi(p_i^{\ell_i})}$.

We see, conversely, that every group achieved by executing the three steps is realizable as $G(N)$ with $N \in \mathcal{N}_1$ — but certainly not uniquely. There is not even always a unique pair (t, P) giving rise to a given finite abelian group. However, if the group we want to realize is

$$A = C_2 \phi \times \prod_{p_i \in P} C_{\phi(p_i^{\ell_i})} \times \prod_{p_j \in Q} C_{\phi(p_j^{\ell_j})},$$

where P, Q are disjoint finite sets of odd primes, then we realize A by the pair (t, P), where

$$t = 2^{\ell+2} \prod_{p_i \in P} p_i^{\ell_i} \prod_{p_j \in Q} p_j^{\ell_j},$$

and $2 \not\in P$ (of course, P or Q may be empty). This completes the proof.

We close this section with two observations supplementary to Theorem 3.3. First we characterize those finite abelian groups which can be realized as $G(N)$ for $N \in \mathcal{N}_2$. We recall that this is equivalent to characterizing the finite abelian groups which can be realized as $G(N)$ for $N \in \mathcal{N}_2$ with P empty. This provides the proof of the following.
Proposition 3.4. The finite abelian groups which are realizable as the genus of a group in \mathcal{N}_1 are precisely those groups which, in multiplicative notation, are obtained through the following process:

Step 1: Take a group $\prod_{i=1}^{\lambda} C_{\Phi(p_i^{\ell_i})}$, where the p_i are distinct odd primes and $\ell_i \geq 1$.

Step 2:Either (i) reduce the order of some $C_{\Phi(p_i^{\ell_i})}$ to $\frac{1}{2} \Phi(p_i^{\ell_i})$, where p_i is chosen so that the 2-valuation of $p_i - 1$ is minimal; or (ii) take the direct product with C_{2^t}, $t \geq 0$.

Notice that we may simply stop at Step 1.

Our second observation relates to Step 2 in Theorem 3.3. Obviously Step 2 involves factoring out of the group taken in Step 1 an elementary abelian 2-subgroup. An easy extension of Lemma 3.1 establishes

Theorem 3.5. If H is any elementary abelian 2-subgroup of the group described in Step 1 of Theorem 3.3, then the quotient of this group by H may be achieved by a suitably chosen Step 2.

4. Examples and supplementary results

We first give some examples of realizability and non-realizability.

Example 4.1. We may realize the group $G = \mathbb{Z}/4 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/3$ as $\mathcal{G}(N)$ for $N \in \mathcal{N}_1$. For, in multiplicative notation, $G = C_4 \times C_{\Phi(3)}$ so $G \cong (\mathbb{Z}/t)^* / \{\pm 1\}$ for $t = 144$. Of course, other values of t will also serve, e.g. $t = 104, 112$. It is shown in [1] or [4] how any t may be realized by a group N in \mathcal{N}_1.

Example 4.2. We cannot realize the group $\mathbb{Z}/5 \oplus \mathbb{Z}/9$ as $\mathcal{G}(N)$ for $N \in \mathcal{N}_1$. This follows from the fact that 90 is not a value taken by the Euler totient function Φ. For if $\Phi(t) = 90$, then we easily eliminate $t = p, p^2, p^3$ (p odd); but if $t = 2^{\ell+2}p^m$ ($\ell \geq 0$) or $t = mpq$ (q odd), then $4 \mid \Phi(t)$.

On the other hand, we can realize $\mathbb{Z}/5 \oplus \mathbb{Z}/9$ as $\mathcal{G}(N)$ for $N \in \mathcal{N}_2$. For if we start with $C_{\Phi(11)} \times C_{\Phi(19)} = C_{10} \times C_{18}$, we reduce the order of both factors to get $C_5 \times C_9$ and Step 3 is void. This realization amounts to choosing N so that $t = 836$ and $P = \{11, 19\}$. (We will see later how to realize any (t, P) by a group N in \mathcal{N}_2).

We next prove a theorem on the realizability of cyclic groups of prime power order.
Theorem 4.3. Let p be a prime number and $m \geq 1$. Then C_{p^m} may be realized as $G(N)$, $N \in \mathcal{N}_2$, if and only if $p = 2$, $p = 3$ or $2p^m + 1$ is prime.

Proof: It is plain that if $p = 2$, $p = 3$, or $2p^m + 1$ is prime, then C_{p^m} may even be realized as $G(N)$ for some N in \mathcal{N}_1. To prove the converse, suppose that C_{p^m} is obtained from $(\mathbb{Z}/t)^*$ by factoring out some elementary abelian 2-subgroup H. We assume henceforth that $p \neq 2$. Let $t = 2^\ell \prod_{i=1}^{\lambda} p_i^{\ell_i}$, where each p_i is odd and $\ell_i \geq 1$. Since $|G(N)|$ is to be odd, it is clear that $\ell = 0, 1$ or 2 (the case $\ell = 1$ can be ignored in practice) and that all possible reductions of order must take place. Thus

$$C_{p^m} \cong \prod_{i=1}^{\lambda} C_{\frac{2}{2}(p_i - 1)p_i^{\ell_i - 1}}.$$

If any $\ell_i \geq 2$ then (4.1) implies that $p_i = p$ and $\frac{2}{2}(p_i - 1) = 1$, so $p = p_i = 3$. If each $\ell_i = 1$, then each group on the right of (4.1) is a p-group, so there can be only one non-trivial factor, say the ith factor, yielding $\frac{2}{2}(p_i - 1) = p^m$. Thus $2p^m + 1 = p_i$ is prime. ■

Remarks.

(a) Notice that, in fact, t can only have, at most, two odd prime factors, namely 3 and $2p^m + 1$.

(b) We find a source of genera which are cyclic 2-groups by taking t to be a Fermat prime. Of course, we may take t to be a product of distinct Fermat primes to yield genera which are non-cyclic 2-groups.

(c) Mendelsohn (see [6]) has proved that there exist infinitely many primes p such that 2^np is not a value of the Φ-function, for any $n \geq 1$. For such primes p, no group of order 2^mp, $m > 0$, can be realizable.

We close by showing how to realize a pair (t, P), where $P \subseteq T_t$, by a group N in \mathcal{N}_2. We first take $P = \emptyset$ and realize t by a group N in \mathcal{N}_1. The procedure given in [1] or [4] is as follows. Let t be odd, say, $t = p_1^{\ell_1} \ldots p_\lambda^{\ell_\lambda}$. Set $TN = \mathbb{Z}/n$, where $n = p_1^{\ell_1 + 1} \ldots p_\lambda^{\ell_\lambda + 1}$ and let $FN = \langle \xi \rangle$ act on TN by $\xi \cdot a = ua$, where $u = 1 + p_1 \ldots p_\lambda$. If N is the semidirect product for this action, then N is nilpotent and $G(N) = (\mathbb{Z}/t)^*/\{ \pm 1 \}$. Now let t be even, say $t = 2^\ell p_1^{\ell_1} \ldots p_\lambda^{\ell_\lambda}$. Set $TN = \mathbb{Z}/n$, where $n = 2^{\ell + 2}p_1^{\ell_1 + 1} \ldots p_\lambda^{\ell_\lambda + 1}$ and let $FN = \langle \xi \rangle$ act on TN.
by $\xi \cdot a = ua$, where $u = 1 + 4p_1 \ldots p_\lambda$. If N is the semidirect product for this action, then N is nilpotent and $G(N) = (\mathbb{Z}/t)^*/\{\pm 1\}$. Certainly, in both cases, $N \in N_1$.

We now pass to the general case; as indicated earlier, we will be able to realize (t, P) by a group in N_2 of the form $N_1 \times N_2$, with N_1, N_2 in N_1. We first realize t just as above by a group N_1 in N_1. The group N_2 is constructed just as N_1 except that, for the order n' of $TN_2 = \mathbb{Z}/n'$, we raise the power of those primes outside P (including, perhaps, the prime 2) by 1. Of course, if $P = T$, then this recipe yields $N_2 = N_1$.

Example 4.4. Let $t = 165$, $P = \emptyset$. Then we construct N in N_1 by taking $TN = \mathbb{Z}/n$, $n = 27225$; and $FN = (\xi)$ acts on TN by $\xi \cdot a = 166a$. We may describe N as

$$N = \langle x, y \mid x^{27225} = 1, yxy^{-1} = x^{166}\rangle.$$

Then $G(N) = (\mathbb{Z}/165)^*/\{\pm 1\} = C_4 \times C_{10}$.

Now take $P = \{5\}$. Then we construct N_1 as N was constructed above. However, for N_2, we replace 27225 by $27225 \cdot 33 = 898425$. Then

$$G(N_1 \times N_2) = (\mathbb{Z}/165)^*/\{-1, 34\} = C_2 \times C_{10}.$$

References