ON FINITE ABELIAN GROUPS REALIZABLE AS MISLIN GENERA

Peter Hilton and Dirk Scevenels

Abstract

We study the realizability of finite abelian groups as Mislin genera of finitely generated nilpotent groups with finite commutator subgroup. In particular, we give criteria to decide whether a finite abelian group is realizable as the Mislin genus of a direct product of nilpotent groups of a certain specified type. In the case of a positive answer, we also give an effective way of realizing that abelian group as a genus. Further, we obtain some non-realizability results.

1. Introduction

The (Mislin) genus ([5]) of a finitely generated nilpotent group N, denoted $\mathcal{G}(N)$, is the set of isomorphism classes of finitely generated nilpotent groups M having, at each prime p, a localization isomorphic with that of N, i.e. $M_{p} \cong N_{p}$ for all p. It was shown in [2], [5] that $\mathcal{G}(N)$ may be given the structure of a finite abelian group, with the isomorphism class of N as identity element, if the commutator subgroup $[N, N]$ is finite. Thus we are led to study the class \mathcal{N}_{0} of finitely generated nilpotent groups with finite commutator subgroup.

No general method has yet been discovered for calculating $\mathcal{G}(N)$ when $N \in \mathcal{N}_{0}$. However, in [1], a general method was given if $N \in \mathcal{N}_{1}$, where \mathcal{N}_{1} is the following subclass of \mathcal{N}_{0}. Here we describe \mathcal{N}_{1} by introducing the short exact sequence

$$
T N \hookrightarrow N \rightarrow F N
$$

associated with the nilpotent group N, where $T N$ is the torsion subgroup of N and $F N$ is the torsion-free quotient. Plainly the class \mathcal{N}_{0} is given by the conditions that $T N$ be finite and $F N$ free abelian of finite rank.

Then the class $\mathcal{N}_{1} \subseteq \mathcal{N}_{0}$ is given by the supplementary conditions
(1) $T N$ is abelian;
(2) $T N \hookrightarrow N \rightarrow F N$ splits on the right, so that N is the semidirect product for an action $\omega: F N \rightarrow$ Aut $T N$;
(3) $\omega(F N)$ lies in the centre of Aut $T N$.

Moreover, in the presence of (1), condition (3) is equivalent to
(3') given $\xi \in F N$, there exists a positive integer u such that the action of ξ on $T N$ is given by $\xi \cdot a=u a$ for all $a \in T N$ (here, $T N$ is written additively).

Let t be the height of $\operatorname{ker} \omega$ in $F N$, that is,

$$
t=\max \{h \in \mathbb{N} \mid \operatorname{ker} \omega \subseteq h F N\}
$$

(here, $F N$ is written additively). Then it is shown in $[\mathbf{1}]$ that

$$
\begin{equation*}
\mathcal{G}(N) \cong(\mathbb{Z} / t)^{*} /\{ \pm 1\} \tag{1.1}
\end{equation*}
$$

where $(\mathbb{Z} / t)^{*}$ is the multiplicative group of units of \mathbb{Z} / t. It was further shown how to associate with every unit m of \mathbb{Z} / t a group N_{m} in the genus of N such that

$$
N_{m} \leftrightarrow[m]
$$

provides an isomorphism (1.1). Moreover, an algorithm was given for calculating t, knowing the exponent of $T N$ and the positive integers u referred to in (3').

Unfortunately, the class \mathcal{N}_{1} is very restricted; indeed, it was shown in [4] that, if a group N in \mathcal{N}_{1} has non-trivial genus, then $F N$ is cyclic. However, in [3], the systematic calculation of $\mathcal{G}(N)$ was extended from \mathcal{N}_{1} to the class \mathcal{N}_{2} consisting of direct products of groups in \mathcal{N}_{1}. It is plain that conditions (1) and (2) for membership of \mathcal{N}_{1} are inherited by direct products, but, in general, condition (3) is not. Thus the class \mathcal{N}_{2} is substantially larger than \mathcal{N}_{1}. Of course, membership of \mathcal{N}_{0} is inherited by direct products.

The calculation of $\mathcal{G}(N)$, for N in \mathcal{N}_{2}, is somewhat technical, but, from our point of view in this paper, the salient facts are the following. First if $N=N_{1} \times \cdots \times N_{k}\left(\right.$ all $\left.N_{i} \in \mathcal{N}_{1}\right)$ and if $F N_{i}$ is not cyclic for some i, then $\mathcal{G}(N)$ is trivial; indeed, we will generalize this result below (see Corollary 2.2). Now assume that $F N_{i}$ is cyclic for all $i(1 \leq i \leq k)$, and, in accordance with (1.1), suppose

$$
\mathcal{G}\left(N_{i}\right) \cong\left(\mathbb{Z} / t_{i}\right)^{*} /\{ \pm 1\} .
$$

Let $t=\operatorname{gcd}\left(t_{1}, \ldots, t_{k}\right)$ and let $T_{t}=\left\{p_{1}, \ldots, p_{\lambda}\right\}$, where

$$
\begin{equation*}
t=p_{1}^{\ell_{1}} \ldots p_{\lambda}^{\ell_{\lambda}}, \quad \ell_{j} \geq 1 \tag{1.2}
\end{equation*}
$$

is the prime power factorization of t. Then we determine from the 'fine structure' of the groups N_{1}, \ldots, N_{k} a subset P of T_{t}-any subset of T_{t} may arise - so that $\mathcal{G}(N)$ is determined as follows:

Theorem 1.1. The genus $\mathcal{G}(N)$ is obtained from $(\mathbb{Z} / t)^{*}$ by factoring out -1 and those residues $m \bmod t$ such that (see (1.2))

$$
m \equiv \begin{cases} \pm 1 \bmod p_{j}^{\ell_{j}} & \text { if } p_{j} \in P \\ 1 \bmod p_{j}^{\ell_{j}} & \text { if } p_{j} \notin P\end{cases}
$$

Notice that $\mathcal{G}(N)$ is entirely determined by the two invariants (t, P). It is not difficult to show that, given (t, P) with $P \subseteq T_{t}$, there is always a group N in \mathcal{N}_{2} yielding the invariants (t, P)-see Section 4 . We remark that if $k=1$, so that $N \in \mathcal{N}_{1}$, then P is empty. For full details see [3, Theorem 1.6].

Our principal aim in this paper is to describe those finite abelian groups which arise as described in Theorem 1.1 and which can therefore be realized as a (Mislin) genus group $\mathcal{G}(N)$, for some nilpotent group N in \mathcal{N}_{2}. We will thereby also obtain some non-realizability results.

In Section 2 we obtain some preliminary results which are of independent interest. We adopt the convention that \mathbb{Z} / n is written C_{n} when thought of as a multiplicative group.

2. Preliminary results

As in Section 1, let $N=N_{1} \times N_{2} \times \cdots \times N_{k}$, where each $N_{i} \in \mathcal{N}_{1}$. There is then a function $\Psi_{i}: \mathcal{G}\left(N_{i}\right) \longrightarrow \mathcal{G}(N)$, given by

$$
\begin{equation*}
\Psi_{i}\left(M_{i}\right)=N_{1} \times \cdots \times N_{i-1} \times M_{i} \times N_{i+1} \times \cdots \times N_{k} . \tag{2.1}
\end{equation*}
$$

Proposition 2.1. The function Ψ_{i} of (2.1) is a surjective homomorphism.

Proof: In accordance with (1.1) we have the short exact sequence

$$
\{ \pm 1\} \mapsto\left(\mathbb{Z} / t_{i}\right)^{*} \rightarrow \mathcal{G}\left(N_{i}\right)
$$

that can be embedded in the commutative diagram

$$
\begin{array}{ccccc}
\{ \pm 1\} & \rightarrow & \left(\mathbb{Z} / t_{i}\right)^{*} & \rightarrow & \mathcal{G}\left(N_{i}\right) \tag{2.2}\\
\downarrow & & \alpha \downarrow & & \\
H & & \mapsto & (\mathbb{Z} / t)^{*} & \rightarrow \\
\mathcal{G}(N)
\end{array}
$$

where H is the subgroup factored out of $(\mathbb{Z} / t)^{*}$ to yield $\mathcal{G}(N)$ and $\alpha(m)=m \bmod t$. Then (2.2) may be completed by a homomorphism $\Psi_{i}: \mathcal{G}\left(N_{i}\right) \longrightarrow \mathcal{G}(N)$ which will be surjective since α is surjective. It remains to show that Ψ_{i} is given by (2.1). Of course, we may assume that $F N_{i}$ is cyclic, say, $F N_{i}=\left\langle\xi_{i}\right\rangle$. Then (see [1]) we have a commutative diagram

where $\psi_{i}\left(\xi_{i}\right)=m \xi_{i}, m$ being given by $M_{i} \leftrightarrow[m]$ under the isomorphism (1.1) between $\mathcal{G}\left(N_{i}\right)$ and $\left(\mathbb{Z} / t_{i}\right)^{*} /\{ \pm 1\}$. We may, and shall, choose m from its residue class $\bmod t_{i}$ to be prime to the order of $T N$. Let T be the set of primes p such that $T N$ has p-torsion. Set $M=N_{1} \times \cdots \times N_{i-1} \times M_{i} \times N_{i+1} \times \cdots \times N_{k}$. The homomorphisms ϕ_{i}, ψ_{i} determine, in an obvious way, homomorphisms

$$
\phi: M \longrightarrow N, \quad \psi: F N \longrightarrow F N
$$

yielding a commutative diagram

and ψ is a T-automorphism with $\operatorname{det} \psi=m$. Thus, in the bottom row of $(2.2),[m] \in(\mathbb{Z} / t)^{*}$ goes to M in $\mathcal{G}(N)$, completing the proof.

Corollary 2.2. Let $N_{1}, \ldots, N_{k} \in \mathcal{N}_{1}$ and $\operatorname{set} N=N_{1} \times \cdots \times N_{k}$. Then $\mathcal{G}(N)=0$ if $\mathcal{G}\left(N_{i}\right)=0$ for any i.

From the explicit description in $[\mathbf{3}]$ of the set of primes P which appears in our statement of Theorem 1.1 the following conclusions are plain.

Proposition 2.3. Any finite abelian group realizable as $\mathcal{G}(N)$ with $N \in \mathcal{N}_{2}$, is realizable as $\mathcal{G}\left(N_{1} \times N_{2}\right)$, where $N_{1}, N_{2} \in \mathcal{N}_{1}$.

This will simplify our choice of examples in Section 3.
Proposition 2.4. Let $N_{1}, \ldots, N_{k} \in \mathcal{N}_{1}$ and set $N=N_{1} \times \cdots \times N_{k}$. Then $\mathcal{G}\left(N \times N_{j}\right)$ for $1 \leq j \leq k$ is obtained from Theorem 1.1 (applied to $\mathcal{G}(N))$ by taking P to be T_{t} itself. In particular, $\mathcal{G}\left(N \times N_{j}\right)$ is independent of j.

3. Realizing an abelian group as a Mislin genus

We first enunciate two relevant lemmas on finite abelian groups. For these lemmas we will adopt additive notation; and p will always denote a prime.

Lemma 3.1. Let $G=\bigoplus_{i=1}^{\lambda} \mathbb{Z} / m_{i}$, where $m_{i}=p^{r_{i}+1} n_{i}, r_{i} \geq 0$, $p \nmid n_{i}$, and let $r_{1}=\min _{i} r_{i}$. Let a_{i} be a generator of \mathbb{Z} / m_{i}. If \bar{G} is obtained from G by adding the relation $\sum_{i=1}^{\lambda} p^{r_{i}} n_{i} a_{i}=0$, then

$$
\bar{G} \cong \bigoplus_{i=1}^{\lambda} \mathbb{Z} / \bar{m}_{i}=\left\langle\bar{a}_{1}, a_{2}, \ldots, a_{\lambda}\right\rangle
$$

where

$$
\bar{m}_{i}= \begin{cases}p^{r_{1}} n_{1}, & i=1 \\ m_{i}, & i \geq 2\end{cases}
$$

Proof: We have $\mathbb{Z} / m_{1}=\mathbb{Z} / p^{r_{1}+1} \oplus \mathbb{Z} / n_{1}=\left\langle b_{1}, c_{1}\right\rangle$, where $b_{1}=n_{1} a_{1}$, $c_{1}=p^{r_{1}+1} a_{1}$. Then $p^{r_{1}} n_{1} a_{1}=p^{r_{1}} b_{1}$, so the new relation is given by $p^{r_{1}} b_{1}+\sum_{i=2}^{\lambda} p^{r_{i}} n_{i} a_{i}=0$, or

$$
p^{r_{1}}\left(b_{1}+\sum_{i=2}^{\lambda} p^{r_{i}-r_{1}} n_{i} a_{i}\right)=0
$$

Set $b^{\prime}=b_{1}+\sum_{i=2}^{\lambda} p^{r_{i}-r_{1}} n_{i} a_{i}$. Then

$$
G=\left\langle b^{\prime}, c_{1}, a_{2}, \ldots, a_{\lambda}\right\rangle=\mathbb{Z} / p^{r_{1}+1} \oplus \mathbb{Z} / n_{1} \oplus \mathbb{Z} / m_{2} \oplus \cdots \oplus \mathbb{Z} / m_{\lambda},
$$

and the new relation is $p^{r_{1}} b^{\prime}=0$. Thus

$$
\bar{G}=\left\langle\overline{b^{\prime}}, c_{1}, a_{2}, \ldots, a_{\lambda}\right\rangle=\mathbb{Z} / p^{r_{1}} \oplus \mathbb{Z} / n_{1} \oplus \mathbb{Z} / m_{2} \oplus \cdots \oplus \mathbb{Z} / m_{\lambda}
$$

and we set $\bar{a}_{1}=\overline{b^{\prime}}+c_{1}$.
Our second lemma is very elementary; the proof will be omitted.

Lemma 3.2. Let $G=\mathbb{Z} / p \oplus B$, where the first summand is generated by a, and let $b \in B$ with $p b=0$. If we obtain \bar{G} from G by adding the relation $a+b=0$, then $\bar{G} \cong B$.

Both these lemmas will be applied with $p=2$. We now apply Theorem 1.1 to prove our main theorem. We denote the Euler totient function by Φ.

Theorem 3.3. The finite abelian groups which are realizable as the genus of a group in \mathcal{N}_{2} are precisely the groups of the form

$$
C_{2^{\ell}} \times \prod_{p_{i} \in P} C_{\frac{1}{2} \Phi\left(p_{i}^{\ell_{i}}\right)} \times \prod_{p_{j} \in Q} C_{\Phi\left(p_{j}^{\ell_{j}}\right)}
$$

where $\ell \geq 0, \ell_{i} \geq 1, \ell_{j} \geq 1$ and P, Q are disjoint (finite) sets of odd primes.

Proof: We will prove that the finite abelian groups which are realizable as the genus of a group in \mathcal{N}_{2} are precisely those groups which, in multiplicative notation, are obtained through the following process:

Step 1: Take $\prod_{i=1}^{\lambda} C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$, where the p_{i} are distinct odd primes and $\ell_{i} \geq 1$.
Step 2: Reduce the order of μ of the factors $C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$ to $\frac{1}{2} \Phi\left(p_{i}^{\ell_{i}}\right)$, $0 \leq \mu \leq \lambda$.
Step 3: Take the direct product of the result of Step 2 with $C_{2^{\ell}}$, $\ell \geq 0$.

We recall from Theorem 1.1 that $N=N_{1} \times \cdots \times N_{k}$ determines a certain natural number t and that $\mathcal{G}(N)$ is obtained from $(\mathbb{Z} / t)^{*}$ by factoring out the residue class -1 and residue classes m such that $m \equiv \pm 1 \bmod p_{i}^{\ell_{i}}$ for $p_{i} \in P$, where P is a certain subset (perhaps empty) of T_{t}, the set of prime divisors of $t=\prod_{i=1}^{\lambda} p_{i}^{\ell_{i}}$, and $m \equiv 1 \bmod p_{i}^{\ell_{i}}$ for $p_{i} \in T_{t}-P$. Obviously, this is equivalent to factoring out -1 and the residue classes m_{i}, where $p_{i} \in P$ and

$$
m_{i} \equiv\left\{\begin{array}{l}
-1 \bmod p_{i}^{\ell_{i}} \tag{3.1}\\
1 \bmod p_{j}^{\ell_{j}}, \quad j \neq i
\end{array}\right.
$$

Assume first that t is odd, so that each p_{i} is odd. Then $(\mathbb{Z} / t)^{*}$ is given by Step 1. Factoring out m_{i} simply reduces $C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$ to $C_{\frac{1}{2} \Phi\left(p_{i}{ }_{i}\right)}$; it follows from Lemma 3.1 that factoring out -1 reduces $C_{\Phi\left(p_{j}^{\ell_{j}}\right)}$ to $C_{\frac{1}{2} \Phi\left(p_{j}^{\ell_{j}}\right)}$, where
p_{j} is chosen among the primes in $T_{t}-P$ to be such that the 2 -valuation of $p_{j}-1$ is minimal. If $P=T_{t}$, then this last part of Step 2 is void (because then $-1=\prod_{p_{i} \in T_{t}} m_{i}$). Step 3 is also void if t is odd, that is, we take $\ell=0$.

Assume now that t is even. Notice that if $t=2 t^{\prime}$, with t^{\prime} odd, then $(\mathbb{Z} / t)^{*} \cong\left(\mathbb{Z} / t^{\prime}\right)^{*}$ and the process proceeds just as above with $\left(\mathbb{Z} / t^{\prime}\right)^{*}$, using the same subset P and ignoring the prime 2 . Thus we may assume that $4 \mid t$; and we change notation to write

$$
t=2^{\ell+2} \prod_{i=1}^{\lambda} p_{i}^{\ell_{i}}, \quad \ell \geq 0
$$

Then

$$
\begin{equation*}
(\mathbb{Z} / t)^{*} \cong C_{2} \times C_{2^{e}} \times \prod_{i=1}^{\lambda} C_{\Phi\left(p_{i}^{e_{i}}\right)} \tag{3.2}
\end{equation*}
$$

To pass to $\mathcal{G}(N)$, we first factor out the m_{i} defined as in (3.1) with $p_{i} \in P$. This is achieved by a partial Step 2 of the process, applied to $\prod_{i=1}^{\lambda} C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$. If $2 \in P$, we erase C_{2} on the right of (3.2) and then factor out -1 (if $P \neq T_{t}$) just as in the case of t odd, by reducing the order of a suitable $C_{\Phi\left(p_{j}^{\ell_{j}}\right)}$ with $p_{j} \in T_{t}-P$. If $2 \notin P$, then we apply Lemma 3.2 , factoring out -1 by effectively erasing C_{2}. We are thus left with the direct product of $C_{2^{\ell}}, \ell \geq 0$, and the result of Step 2 applied to $\prod_{i=1}^{\lambda} C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$.

We see, conversely, that every group achieved by executing the three steps is realizable as $\mathcal{G}(N)$ with $N \in \mathcal{N}_{2}$ —but certainly not uniquely. There is not even always a unique pair (t, P) giving rise to a given finite abelian group. However, if the group we want to realize is

$$
A=C_{2^{\ell}} \times \prod_{p_{i} \in P} C_{\frac{1}{2} \Phi\left(p_{i}^{\ell_{i}}\right)} \times \prod_{p_{j} \in Q} C_{\Phi\left(p_{j}^{\ell_{j}}\right)},
$$

where P, Q are disjoint finite sets of odd primes, then we realize A by the pair (t, P), where

$$
t=2^{\ell+2} \prod_{p_{i} \in P} p_{i}^{\ell_{i}} \prod_{p_{j} \in Q} p_{j}^{\ell_{j}},
$$

and $2 \notin P$ (of course, P or Q may be empty). This completes the proof.

We close this section with two observations supplementary to Theorem 3.3. First we characterize those finite abelian groups which can be realized as $\mathcal{G}(N)$ for N in \mathcal{N}_{1}. We recall that this is equivalent to characterizing the finite abelian groups which can be realized as $\mathcal{G}(N)$ for $N \in \mathcal{N}_{2}$ with P empty. This provides the proof of the following.

Proposition 3.4. The finite abelian groups which are realizable as the genus of a group in \mathcal{N}_{1} are precisely those groups which, in multiplicative notation, are obtained through the following process:

Step 1: Take a group $\prod_{i=1}^{\lambda} C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$, where the p_{i} are distinct odd primes and $\ell_{i} \geq 1$.
Step 2: Either (i) reduce the order of some $C_{\Phi\left(p_{i}^{\ell_{i}}\right)}$ to $\frac{1}{2} \Phi\left(p_{i}^{\ell_{i}}\right)$, where p_{i} is chosen so that the 2-valuation of $p_{i}-1$ is minimal; or (ii) take the direct product with $C_{2^{\ell}}, \ell \geq 0$.

Notice that we may simply stop at Step 1.
Our second observation relates to Step 2 in Theorem 3.3. Obviously Step 2 involves factoring out of the group taken in Step 1 an elementary abelian 2-subgroup. An easy extension of Lemma 3.1 establishes

Theorem 3.5. If H is any elementary abelian 2-subgroup of the group described in Step 1 of Theorem 3.3, then the quotient of this group by H may be achieved by a suitably chosen Step 2.

4. Examples and supplementary results

We first give some examples of realizability and non-realizability.
Example 4.1. We may realize the group $G=\mathbb{Z} / 4 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 3$ as $\mathcal{G}(N)$ for $N \in \mathcal{N}_{1}$. For, in multiplicative notation, $G=C_{4} \times C_{\Phi\left(3^{2}\right)}$ so $G \cong(\mathbb{Z} / t)^{*} /\{ \pm 1\}$ for $t=144$. Of course, other values of t will also serve, e.g. $t=104,112$. It is shown in [1] or [4] how any t may be realized by a group N in \mathcal{N}_{1}.

Example 4.2. We cannot realize the group $\mathbb{Z} / 5 \oplus \mathbb{Z} / 9$ as $\mathcal{G}(N)$ for $N \in \mathcal{N}_{1}$. This follows from the fact that 90 is not a value taken by the Euler totient function Φ. For if $\Phi(t)=90$, then we easily eliminate $t=p, p^{2}, p^{3}(p$ odd $)$; but if $t=2^{\ell+2} p^{m}(\ell \geq 0)$ or $t=m p q(q$ odd $)$, then $4 \mid \Phi(t)$.

On the other hand, we can realize $\mathbb{Z} / 5 \oplus \mathbb{Z} / 9$ as $\mathcal{G}(N)$ for $N \in \mathcal{N}_{2}$. For if we start with $C_{\Phi(11)} \times C_{\Phi(19)}=C_{10} \times C_{18}$, we reduce the order of both factors to get $C_{5} \times C_{9}$ and Step 3 is void. This realization amounts to choosing N so that $t=836$ and $P=\{11,19\}$. (We will see later how to realize any (t, P) by a group N in $\left.\mathcal{N}_{2}\right)$.

We next prove a theorem on the realizability of cyclic groups of prime power order.

Theorem 4.3. Let p be a prime number and $m \geq 1$. Then $C_{p^{m}}$ may be realized as $\mathcal{G}(N), N \in \mathcal{N}_{2}$, if and only if $p=2$, $p=3$ or $2 p^{m}+1$ is prime.

Proof: It is plain that if $p=2, p=3$, or $2 p^{m}+1$ is prime, then $C_{p^{m}}$ may even be realized as $\mathcal{G}(N)$ for some N in \mathcal{N}_{1}. To prove the converse, suppose that $C_{p^{m}}$ is obtained from $(\mathbb{Z} / t)^{*}$ by factoring out some elementary abelian 2-subgroup H. We assume henceforth that $p \neq 2$. Let $t=2^{\ell} \prod_{i=1}^{\lambda} p_{i}^{\ell_{i}}$, where each p_{i} is odd and $\ell_{i} \geq 1$. Since $|\mathcal{G}(N)|$ is to be odd, it is clear that $\ell=0,1$ or 2 (the case $\ell=1$ can be ignored in practice) and that all possible reductions of order must take place. Thus

$$
\begin{equation*}
C_{p^{m}} \cong \prod_{i=1}^{\lambda} C_{\frac{1}{2}\left(p_{i}-1\right) p_{i}^{\ell_{i}-1}} . \tag{4.1}
\end{equation*}
$$

If any $\ell_{i} \geq 2$ then (4.1) implies that $p_{i}=p$ and $\frac{1}{2}\left(p_{i}-1\right)=1$, so $p=p_{i}=3$. If each $\ell_{i}=1$, then each group on the right of (4.1) is a p-group, so there can be only one non-trivial factor, say the i th factor, yielding $\frac{1}{2}\left(p_{i}-1\right)=p^{m}$. Thus $2 p^{m}+1=p_{i}$ is prime.

Remarks.

(a) Notice that, in fact, t can only have, at most, two odd prime factors, namely 3 and $2 p^{m}+1$.
(b) We find a source of genera which are cyclic 2 -groups by taking t to be a Fermat prime. Of course, we may take t to be a product of distinct Fermat primes to yield genera which are non-cyclic 2-groups.
(c) Mendelsohn (see [6]) has proved that there exist infinitely many primes p such that $2^{n} p$ is not a value of the Φ-function, for any $n \geq 1$. For such primes p, no group of order $2^{m} p, m>0$, can be realizable.

We close by showing how to realize a pair (t, P), where $P \subseteq T_{t}$, by a group N in \mathcal{N}_{2}. We first take $P=\varnothing$ and realize t by a group N in \mathcal{N}_{1}. The procedure given in [1] or [4] is as follows. Let t be odd, say, $t=p_{1}^{\ell_{1}} \ldots p_{\lambda}^{\ell_{\lambda}}$. Set $T N=\mathbb{Z} / n$, where $n=p_{1}^{\ell_{1}+1} \ldots p_{\lambda}^{\ell_{\lambda}+1}$ and let $F N=\langle\xi\rangle$ act on $T N$ by $\xi \cdot a=u a$, where $u=1+p_{1} \ldots p_{\lambda}$. If N is the semidirect product for this action, then N is nilpotent and $\mathcal{G}(N)=(\mathbb{Z} / t)^{*} /\{ \pm 1\}$. Now let t be even, say $t=2^{\ell} p_{1}^{\ell_{1}} \ldots p_{\lambda}^{\ell_{\lambda}}$. Set $T N=\mathbb{Z} / n$, where $n=2^{\ell+2} p_{1}^{\ell_{1}+1} \ldots p_{\lambda}^{\ell_{\lambda}+1}$ and let $F N=\langle\xi\rangle$ act on $T N$
by $\xi \cdot a=u a$, where $u=1+4 p_{1} \ldots p_{\lambda}$. If N is the semidirect product for this action, then N is nilpotent and $\mathcal{G}(N)=(\mathbb{Z} / t)^{*} /\{ \pm 1\}$. Certainly, in both cases, $N \in \mathcal{N}_{1}$.

We now pass to the general case; as indicated earlier, we will be able to realize (t, P) by a group in \mathcal{N}_{2} of the form $N_{1} \times N_{2}$, with N_{1}, N_{2} in \mathcal{N}_{1}. We first realize t just as above by a group N_{1} in \mathcal{N}_{1}. The group N_{2} is constructed just as N_{1} except that, for the order n^{\prime} of $T N_{2}=\mathbb{Z} / n^{\prime}$, we raise the power of those primes outside P (including, perhaps, the prime 2) by 1 . Of course, if $P=T_{t}$, then this recipe yields $N_{2}=N_{1}$.

Example 4.4. Let $t=165, P=\varnothing$. Then we construct N in \mathcal{N}_{1} by taking $T N=\mathbb{Z} / n, n=27225$; and $F N=\langle\xi\rangle$ acts on $T N$ by $\xi \cdot a=166 a$. We may describe N as

$$
N=\left\langle x, y \mid x^{27225}=1, y x y^{-1}=x^{166}\right\rangle
$$

Then $\mathcal{G}(N)=(\mathbb{Z} / 165)^{*} /\{ \pm 1\}=C_{4} \times C_{10}$.
Now take $P=\{5\}$. Then we construct N_{1} as N was constructed above. However, for N_{2}, we replace 27225 by $27225 \cdot 33=898425$. Then

$$
\mathcal{G}\left(N_{1} \times N_{2}\right)=(\mathbb{Z} / 165)^{*} /\langle-1,34\rangle=C_{2} \times C_{10}
$$

References

1. C. Casacuberta and P. Hilton, Calculating the Mislin genus for a certain family of nilpotent groups, Comm. Algebra 19(7) (1991), 2051-2069.
2. P. Hilton and G. Mislin, On the genus of a nilpotent group with finite commutator subgroup, Math. Z. 146 (1976), 201-211.
3. P. Hilton and D. Scevenels, Calculating the genus of a direct product of certain nilpotent groups, Publ. Mat. 39 (1995), 241-261.
4. P. Hilton and C. Schuck, On the structure of nilpotent groups of a certain type, Topol. Methods Nonlinear Anal. 1 (1993), 323-327.
5. G. MisLin, Nilpotent groups with finite commutator subgroups, in "Localization in Group Theory and Homotopy Theory," Lecture Notes in Math. 418, Springer-Verlag, 1974, pp. 103-120.
6. P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996.

Peter Hilton:
Department of Mathematical Sciences
State University of New York
Binghamton, NY 13902-6000 U.S.A.

Dirk Scevenels:
Departement Wiskunde
Katholieke Universiteit Leuven
Celestijnenlaan 200 B
B-3001 Heverlee
BELGIUM

Primera versió rebuda el 20 de Maig de 1996, darrera versió rebuda el 17 d'Abril de 1997

