GENERATING THE MAPPING CLASS GROUP (AN ALGEBRAIC APPROACH)

James McCool*

Abstract

We give an algebraic proof of the fact that a generating set of the mapping class group $M_{g, 1}(g \geq 3)$ may be obtained by replicating a generating set of $M_{2,1}$.

1. Introduction. We denote by $F(S)$ the free group generated by the subset S of the set of symbols $X=a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, and put $F_{k}=$ $F\left(X_{k}\right)$, where X_{k} consists of the first k elements of X (all groups $F(S)$ are considered as subgroups of $F(X)$). $L(X)$, the set of letters, is defined to be $X \cup X^{-1}$, i.e. the set $a_{1}, \bar{a}_{1}, b_{1}, \bar{b}_{1}, \ldots$, where \bar{a}_{1} denotes a_{1}^{-1}, etc.; for $S \subset X$, the set of letters $L(S)$ of $F(S)$ is $F(S) \cap L(X)$. For $w \in F(X)$, $L(W)$ is the set of letters occurring in the reduced form of w.

We put $\mathcal{A}(S)=$ Aut $F(S)$, with \mathcal{A}_{k} for $\mathcal{A}\left(X_{k}\right)$, and denote by Π_{g} the element of $F_{2 g}$ given by $\Pi_{g}=\prod_{i=1}^{g}\left[a_{i}, b_{i}\right]$, where $\left[a_{i}, b_{i}\right]=a_{i} b_{i} \bar{a}_{i} \bar{b}_{i}$. The group $M\left(\Pi_{g}\right)$ is defined by

$$
M\left(\Pi_{g}\right)=\left\{\theta \in \mathcal{A}_{2 g} ; \Pi_{g} \theta=\Pi_{g}\right\} .
$$

Let ρ_{g} denote conjugation in $F_{2 g}$ by the element Π_{g}. The subgroup N_{g} of $M\left(\Pi_{g}\right)$ generated by ρ_{g} is central, and the quotient $M_{g, 1}=M\left(\Pi_{g}\right) / N_{g}$ may be described as an (orientation preserving) (algebraic) mapping class group. It was shown in [9] that $M_{g, 1}$ is finitely presented, though computation of an explicit presentation valid for all g was beyond the scope of the results of [9]. Such a presentation of the geometric mapping class group was found by Wajnryb [11]. Since the geometric and algebraic mapping class groups are known to coincide (see, e.g., the remarks and

[^0]references in [3]), this provides a presentation for our $M_{g, 1}$. Wajnryb's work is geometrically based, as is earlier work on generating sets by Dehn [2], Lickorish [6] and Humphries [5].
The present paper has the modest object of providing a purely algebraic method for obtaining a generating set of $M\left(\Pi_{g}\right)$, and hence of $M_{g, 1}$. Thus we define the groups $M(r, g)$, for $1 \leq r \leq g-1$, by
\[

$$
\begin{aligned}
M(r, g)=\left\{\theta \in \mathcal{A}\left\{a_{r}, b_{r}, a_{r+1}, b_{r+1}\right\} ;\left[a_{r}, b_{r}\right][\right. & \left.a_{r+1}, b_{r+1}\right] \theta \\
& \left.=\left[a_{r}, b_{r}\right]\left[a_{r+1}, b_{r+1}\right]\right\}
\end{aligned}
$$
\]

Clearly each $M(r, g)$ is an isomorphic copy of $M\left(\Pi_{2}\right)$, and each $M(r, g)$ is naturally embedded in $M\left(\Pi_{g}\right)$, as is each $M\left(\Pi_{r}\right)$, for $r<g$. We will show

Theorem. Let G_{r} be a generating set of $M(r, g), 1 \leq r \leq g-1$. Then $\bigcup_{r=1}^{g-1} G_{r}$ is a generating set of $M\left(\Pi_{g}\right)$.

It only remains, in order to fulfil our objective, to find a generating set G_{2} of $M\left(\Pi_{2}\right)$. We discuss this after the proof of the theorem.

We assume below that the reader is familiar with the notation and results of $[\mathbf{8}]$ and $[\mathbf{9}]$ (see also $[\mathbf{7}]$). In addition, we will need the following definition.

Let $S \subset L\left(X_{g}\right)$, and $\theta \in \mathcal{A}_{g}$. We say that θ involves only the letters of S if, writing S_{1} for $S^{ \pm 1} \cap X_{g}$, there exists $\varphi \in \mathcal{A}\left(S_{1}\right)$ such that θ and φ agree on S_{1} and θ is the identity on $X_{g}-S_{1}$.
2. Preliminary results. The following result was proved by Shenitzer in [10].

Lemma 1. Let W be a minimal element of F_{k} with $|W|>1$. Let $(A ; a)$ be a T_{2} in \mathcal{A}_{k}, with a, \bar{a} not in $L(W)$ and with $A \cap L(W)$ not the empty set. Then $|W(A ; a)| \geq|W|+2$.

As a consequence of this we have
Corollary 2. (1) A product $W_{1} W_{2} \cdots W_{r}$ of disjoint minimal elements of F_{k} is minimal if, and only if, $\left|W_{i}\right| \geq 2,1 \leq i \leq r$.
(2) Two equivalent minimal words involve the same number of generators.
(3) If W is minimal, $|W|>1$ and $(A ; a)=\left(x_{1}, \ldots, x_{j}, a ; a\right)$ is a T_{2} such that $A \cap L(W)$ is non-empty and $|W(A ; a)| \leq|W|$, then W must contain a subword $x_{i} \bar{a}$ or $a \bar{x}_{i}$ for some $i, 1 \leq i \leq j$.

Proof: Parts (1) and (2) were proved by Shenitzer in [10]. An immediate consequence of these is the fact that for any $S \subset X$ and $W \in F(S)$, W is minimal in $F(S)$ if, and only if, W is minimal in $F(X)$.
Now suppose $W,(A ; a)$ satisfy the conditions of (3), and no subword of the desired form exists. Let W^{\prime} be the unreduced word obtained from W by replacing each letter b in W by $b(A ; a)$. It is known [4] that $w(A ; a)$ is obtained from W^{\prime} by deleting all subwords of W^{\prime} of the form $a \bar{a}$. Since W contains no subword of the form $x_{i} \bar{a}$ or $a \bar{x}_{i}$, the a and \bar{a} symbols in any subword $a \bar{a}$ of W^{\prime} must both be 'new'. Now let W_{1} be obtained from W by replacing each a, \bar{a} by x, \bar{x} respectively, where x is a letter not in $L(W) \cup A \cup A^{-1}$. From the above remark, it is clear that $\left|W_{1}(A ; a)\right|=|W(A ; a)| \leq|W|$. However, this contradicts Lemma 1, and so proves (3).
It follows from (1) that Π_{g} is minimal, since $\left[a_{i}, b_{i}\right]$ is clearly minimal. We denote by $m\left(\Pi_{g}\right)$ the set of minimal equivalents of Π_{g} in $F_{2 g}$. If $V \in m\left(\Pi_{g}\right)$ then we observe that V must contain exactly one occurrence of each letter in $L\left(X_{2 g}\right)$. Now if $V \in m\left(\Pi_{g}\right)$ has a subword $x \bar{y}$, where $x, y \in L\left(X_{2 g}\right)$, then it is clear, since V contains one occurrence of each of x, \bar{x}, that $V(x, y ; y)$ belongs to $m\left(\Pi_{g}\right)$ (as does $\left.V(y, x ; x)\right)$. Combining this observation with (3) of Corollary 2, we obtain

Corollary 3. Let $V \in m\left(\Pi_{g}\right)$ and let $(A ; a)=\left(y_{1}, \ldots, y_{r}, a ; a\right) \in \mathcal{A}_{2 g}$ be such that $V(A ; a) \in m\left(\Pi_{g}\right)$. Then there is a permutation $\sigma \in S_{r}$ such that

$$
V\left(y_{\sigma(1)}, a ; a\right) \cdots\left(y_{\sigma(i)}, a ; a\right) \in m\left(\Pi_{g}\right)
$$

for $1 \leq i \leq r$.
We next prove
Lemma 4. Let r, k be positive integers with $r<k$ and let $Y=X_{k}-$ X_{r}. Let U, V, W be such that $U, W \in F_{r}, L(V) \cup L\left(V^{-1}\right)=Y \cup Y^{-1}$ and V is minimal. If $\beta \in \mathcal{A}_{k}$ is such that $x_{i} \beta=x_{i}, 1 \leq i \leq r$, where $X_{r}=\left\{x_{1}, \ldots, x_{r}\right\}$, and $(W V) \beta=U V$, then $U=W$ and β involves only the letters of Y.

Proof: Let $W_{1}=U^{-1} W$, so that $\left(W_{1} V\right) \beta=V$. We put

$$
Z=\left\{x_{1}, \ldots, x_{r}, \ldots, x_{1}, \ldots, x_{r}, W_{1} V\right\}
$$

where Z contains N occurrences of the r-tuple $Z_{1}=\left(x_{1}, \ldots, x_{r}\right)$, and N is chosen so $N>\left|W_{1} V\right|$. Then Z is mapped by β to $Z_{2}=\left\{Z_{1}, \ldots, Z_{1}, V\right\}$.

Since $|Z| \geq\left|Z_{2}\right|$, there exists (see $[\mathbf{8}],[\mathbf{9}]$) a factorisation $\beta=P_{1}^{\prime} \cdots P_{s}^{\prime}$, where $P_{1}^{\prime}, \ldots, P_{s}^{\prime} \in \mathcal{W}$, and an integer $t, 1 \leq t \leq s$, such that

$$
\begin{equation*}
\left|Z P_{1}^{\prime} \cdots P_{i}^{\prime}\right|<\left|Z P_{1}^{\prime} \cdots P_{i-1}^{\prime}\right|, \quad i \leq t \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|Z P_{1}^{\prime} \cdots P_{i}^{\prime}\right|=\left|Z_{2}\right|, \quad i \geq t \tag{2}
\end{equation*}
$$

Each P_{i}^{\prime} with $i \leq t$ must be a T_{2}. Now for any tuple Z_{3}, type one T and type two P, if $\left|Z_{3}\right|=\left|Z_{3}(T P)\right|$, then

$$
\left|Z_{3}\right|=\left|Z_{3}\left(T P T^{-1}\right)\right|=\left|Z_{3}\left(T P T^{-1}\right) T\right|,
$$

and $T P T^{-1} \in T_{2}$. Using this observation, we can modify the original factorisation of β to obtain $\beta=P_{1} \cdots P_{l} T$ where P_{1}, \ldots, P_{l} are T_{2} 's, T is a T_{1} (possibly the identity) and (1), (2) hold with P_{1}, \ldots, P_{l} in place of $P_{1}^{\prime}, \ldots, P_{s}^{\prime}$. From the choice of Z it is easy to see that no P_{i} can increase the length of any one of x_{1}, \ldots, x_{r}, and hence each P_{i} and T must fix all of x_{1}, \ldots, x_{r}.

If P_{1} has multiplier from $L(Y)$, then

$$
\left|\left(W_{1} V\right) P_{1}\right|=\left|W_{1}\left(V P_{1}\right)\right| \geq\left|W_{1} V\right|
$$

since V is minimal and no cancellation occurs between W_{1} and $V P_{1}$. In view of (1) it follows that $W_{1}=1$ in this case.
If P_{1} has multiplier from $L\left(X_{r}\right)$, then by Lemma $1\left|V P_{1}\right| \geq|V|+2$; moreover, in $\left(W_{1} V\right) P_{1}=W_{1}\left(V P_{1}\right)$, at most one cancellation can occur between W_{1} and $V P_{1}$, so that $\left|\left(W_{1} V\right) P_{1}\right| \geq\left|W_{1} V\right|$ and again we must have $W_{1}=1$.

Hence we have shown that $W_{1}=1$. It now follows from Lemma 1, as above, that P_{1} cannot have multiplier from $L\left(X_{r}\right)$, and the same argument shows, inductively, that no P_{i} can have multiplier from $L\left(X_{r}\right)$. Since each P_{i} fixes X_{r} pointwise, so must T. This proves the lemma.

Definition. Let $V \in m\left(\Pi_{g}\right), A \subset L\left(X_{2 g}\right), A \cap A^{-1}=\varnothing,|A|=2 r$ for some integer $r \geq 1$. We say that A is interlocked in V if the "quotient word" $V(A)$ obtained by deleting all letters in $L\left(X_{2 g}\right)-\left(A+A^{-1}\right)$ from V is a minimal equivalent of Π_{r}.

Let $V \in m\left(\Pi_{g}\right)$ have reduced form $V=Q x R \bar{x} S$, for some letter x. Then there is $y \in R$ (i.e. letter y which is a subword of R) such that $\bar{y} \notin R$, for otherwise conjugation of the generators occurring in R by x would reduce the length of V. Hence for each $x \in V$ there is a $y \in V$ such that x, y are interlocked in V.

We now observe

Lemma 5. Let A be interlocked in V and let $\theta \in \mathcal{A}_{2 g}$ be such that $V \theta \in m\left(\Pi_{g}\right)$ and $G \theta=G$, where G is the normal closure in $F_{2 g}$ of $L\left(X_{2 g}\right)-\left(A+A^{-1}\right)$. Then A is interlocked in $V \theta$.

Proof: For ease of notation we suppose that $A=X_{2 r}$. Let p be the projection $p: F_{2 g} \rightarrow F_{2 g} / G=F_{2 r}$. Since $G \theta=G, \theta$ induces an automorphism θ_{1} of $F_{2 r}$ and $p \theta_{1}=\theta p$, so that

$$
V p \theta_{1}=V(A) \theta_{1}=V \theta p=(V \theta)(A)
$$

Now $V(A) \in m\left(\Pi_{r}\right)$ since A is interlocked in V. Thus $(V \theta)(A)$ is an automorphic image of Π_{r} and so belongs to $m\left(\Pi_{r}\right)$, since it has length $4 r$. Hence A is interlocked in $V \theta$.
3. The complex K_{g}. Let K_{g} be the complex for Π_{g} constructed in [9]; i.e. $K_{g}^{0}=m\left(\Pi_{g}\right), K_{g}^{1}$ is K_{g}^{0} with a directed edge labelled $\left(V_{1}, V_{2} ; P\right)$ joining vertex V_{1} to V_{2} whenever $P \in \mathcal{W}$ is such that $V_{1} P=V_{2}$, and K_{g} is K_{g}^{1} with a finite set of 2-cells attached. It was shown in [9] that there is an isomorphism $\kappa: \pi_{1}\left(K_{g}, \Pi_{g}\right) \rightarrow M\left(\Pi_{g}\right)$, and that the isomorphism is the natural one, i.e. is induced by the homomorphism κ from the groupoid of paths in K_{g} to $\mathcal{A}_{2 g}$ whose effect on a path p in K_{g},

$$
p=\left(V_{1}, V_{2} ; P_{1}\right),\left(V_{2}, V_{3} ; P_{2}\right), \ldots,\left(V_{s-1}, V_{s} ; P_{s-1}\right)
$$

is given by $p \kappa=P_{1} P_{2} \cdots P_{s-1}$.
Let $V \in m\left(\Pi_{g}\right)$ be such that x, y are interlocked in V. Then there is a (unique) $T \in T_{1}$ with T involving only x and y such that $V T=V_{1}=$ $A x B y C \bar{x} D \bar{y} E$ (where the expression given for V_{1} is reduced). Now let E have reduced form $x_{1} x_{2} \cdots x_{t}$. Then

$$
V\left(\bar{y}, \bar{x}_{1} ; \bar{x}_{1}\right)\left(\bar{y}, \bar{x}_{2} ; \bar{x}_{2}\right) \cdots\left(\bar{y}, \bar{x}_{i} ; \bar{x}_{i}\right) \in m\left(\Pi_{g}\right), \quad 0 \leq i \leq t .
$$

The product $\mu_{1}=\left(\bar{y}, \bar{x}_{1} ; \bar{x}_{1}\right) \cdots\left(\bar{y}, \bar{x}_{t} ; \bar{x}_{t}\right)$ maps V_{1} to $V_{2}=A x B E y C \bar{x} D \bar{y}$, and may be denoted by $\mu_{1}: y \rightarrow E y$, since μ_{1} fixes each letter other than y, \bar{y}. The factorisation given for μ_{1} yields a path p_{1} in K_{g} of length r from V_{1} to V_{2}, with $p_{1} \kappa=\mu_{1}$. Now define μ_{2}, μ_{3} and μ_{4} by $\mu_{2}: x \rightarrow x \overline{B E}$, $\mu_{3}: y \rightarrow y \overline{C B E}, \mu_{4}: x \rightarrow D C B E x$. Then $V_{2} \mu_{2}=V_{3}=A x y C B E \bar{x} D \bar{y}$, $V_{3} \mu_{3}=V_{4}=A x y \bar{x} D C B E \bar{y}, V_{4} \mu_{4}=V_{5}=A D C B E x y \bar{x} \bar{y}$. Each μ_{i} has a factorisation similar to that given for μ_{1}, and a corresponding path p_{i} in K_{g} with $p_{i} \kappa=\mu_{i}$. We put $\mu=T \mu_{1} \mu_{2} \mu_{3} \mu_{4}$ and let p be the path $\left(V_{1}, V_{2} ; T\right), p_{1}, p_{2}, p_{3}, p_{4}$, so that $p \kappa=\mu$. The μ_{i} are instances of the familiar 'cut and paste' operations, and we shall refer to both p and μ as the $C P$ operation on x, y taking V to $A D C B E x y \bar{x} \bar{y}$. We note that μ
moves only x and y. Now $A D C B E$ is minimal, involves exactly $2 g-2$ elements of X, and each of these occur once with exponent one and once with exponent minus one. It follows easily from this that there is a sequence of $C P$ operations which involve only the generators occurring in $A D C B E$ and which map $A D C B E$ to $\Pi_{g-1} J$, where $J \in T_{1}$.

We now observe
Lemma 6. Let a, b be interlocked in $V \in m\left(\Pi_{g}\right), g \geq 2$. Let $x \in$ $L\left(X_{2 g}\right)$ be such that $x \notin\{a, \bar{a}, b, \bar{b}\}$. Then there is $y \in V$ such that $\{a, b, x, y\}$ is interlocked in V.

Proof: Let μ be the $C P$'s on a, b taking V to $V_{1}=U[a, b]$. Then $x \in U$ and there is $y \in U$ such that x, y are interlocked in U. Clearly $\{a, b, x, y\}$ is interlocked in V_{1}, and so by Lemma 5 , is interlocked in V.

We now specify for each $V \in m\left(\Pi_{g}\right)$ a path τ_{V} from V to Π_{g}. For $g=1$ and $V \in m\left(\Pi_{1}\right)$, there exists a unique type one $T_{V} \in \mathcal{A}_{2}$ such that $V T_{V}=\Pi_{1}$; we define τ_{V} to be $\left(V_{1}, \Pi_{1}, T_{V}\right)$. Now suppose that $g>1$ and that τ_{V} has been defined for all $V \in m\left(\Pi_{r}\right), 1 \leq r<g$. Let $V \in m\left(\Pi_{g}\right)$ and write $V=A^{\prime} x B^{\prime} y C^{\prime} \bar{x} D^{\prime} \bar{y}$, where x is the first letter to the left of y in V such that x and y are interlocked in V. Let $\theta_{V}=\theta_{1} \theta_{2}$, where θ_{1} is the type one interchanging b_{g} and y, and θ_{2} is the type one interchanging $x \theta_{1}$ and a_{g}. Then $V \theta_{V}=A a_{g} B b_{g} C \bar{a}_{g} D \bar{b}_{g}$. We call θ_{V} the correcting permutation on V. Now let μ_{V} be the $C P$'s on a_{g}, b_{g} taking $V \theta_{V}$ to $A D C B a_{g} b_{g} \bar{a}_{g} \bar{b}_{g}$. From above, we know that $A D C B \in m\left(\Pi_{g-1}\right)$ and so a path, call it γ_{V}, has already been defined from $A D C B$ to Π_{g-1} in K_{g-1}. Taking the obvious interpretation of γ_{V} as a path in K_{g}, we define τ_{V} to be the path $\left(V, V \theta_{V} ; \theta_{V}\right), \mu_{V}, \gamma_{V}$. We shall denote the images of the paths $\tau_{V}, \mu_{V}, \gamma_{V}$ under κ by the same symbols in what follows.
Now it is clear that $\pi_{1}\left(K_{g}, \Pi_{g}\right)$ is generated by the classes of the set of paths $\tau_{V}^{-1}, e, \tau_{V_{1}}$, where V ranges over the points of K_{g} and $e=\left(V, V_{1} ; P\right)$ ranges over the edges beginning at V. Moreover, it follows easily from Corollary 3 that we can restrict e to range over the edges $\left(V, V_{1} ; P\right)$ where P is a Nielsen automorphism, in fact either $P \in T_{1}$ or P is of the form $(a, b ; b)$, where $a \bar{b}$ or $b \bar{a}$ is a subword of V.
It follows that $M\left(\Pi_{g}\right)$ is generated by all $\tau_{V}^{-1} P \tau_{V_{1}}$, i.e. by all $\gamma_{V}^{-1} \mu_{V}^{-1} \theta_{V}^{-1} P \theta_{V_{1}} \mu_{V_{1}} \gamma_{V_{1}}$, where here V ranges over $m\left(\Pi_{g}\right), P$ ranges over the Nielsen automorphisms described above, $V_{1}=V P$ and $\gamma_{V}, \gamma_{V_{1}}, \mu_{V}, \mu_{V_{1}}$, $\theta_{V}, \theta_{V_{1}}$ are as defined above.

We observe that if $P \in T_{1}$ then $\theta_{V} P \theta_{V_{1}} \in T_{1}$ and does not involve a_{g} or b_{g}. Also, if $P=(a, b ; b)$, then

$$
\theta_{V}^{-1} P \theta_{V_{1}}=\left(a \theta_{V}, b \theta_{V} ; b \theta_{V}\right) \theta_{V}^{-1} \theta_{V_{1}}=P_{1} \theta_{V_{2}} \theta
$$

where $P_{1}=\left(a \theta_{V}, b \theta_{V} ; b \theta_{V}\right), V_{2}=V \theta_{V} P_{1}$ and $\theta=\theta_{V_{2}}^{-1} \theta_{V}^{-1} \theta_{V_{1}}$. The portion of K_{g} relating to this will look like

where $V_{0}=V \theta_{V}, V_{3}=V_{2} \theta_{V_{2}}, V_{4}=V_{1} \theta_{V_{1}}$. We see that

$$
\begin{aligned}
\tau_{V}^{-1} P \tau_{V_{1}} & =\tau_{V}^{-1} \mu_{V}^{-1} \theta_{V}^{-1} P \theta_{V_{1}} \mu_{V_{1}} \gamma_{V_{1}} \\
& =\left(\gamma_{V}^{-1} \mu_{V}^{-1} P_{1} \theta_{V_{2}} \mu_{V_{2}} \gamma_{V_{2}}\right)\left(\gamma_{V_{2}}^{-1} \mu_{V_{2}}^{-1} \theta \mu_{V_{1}} \gamma_{V_{1}}\right) \\
& =\left(\tau_{V_{0}}^{-1} P_{1} \tau_{V_{2}}\right)\left(\tau_{V_{3}}^{-1} \theta \tau_{V_{4}}\right)
\end{aligned}
$$

We note that $\theta \in T_{1}$ and does not involve a_{g} or b_{g}.
From the above observations we see that $M\left(\Pi_{g}\right)$ is generated by the set of all $k(V, N)=\gamma_{V}^{-1} \mu_{V}^{-1} N \mu_{V_{1}} \gamma_{V_{1}}$, where V ranges over the elements of $m\left(\Pi_{g}\right)$ with $\theta_{V}=1, N$ is either a type one not involving a_{g} or b_{g} (in which case $\theta_{V N}=1$) or $N=P \theta_{V P}$ where P is a type two Nielsen automorphism, and $V N=V_{1}$.

We say that a $k(V, N)$ is nice if there is a set $S=\left\{a_{g}, b_{g}, x, y\right\}$ of letters such that S is interlocked in V and N involves only the elements of S. We note that if $k(V, N)$ is nice then, by Lemma 5 , the corresponding set S is interlocked in $V N$.
The following is the key result in proving the theorem.
Lemma 7. Let $k(V, N)$ be nice. Then $k(V, N)=k_{1} h k_{2}$, where $h \in$ $M(g-1, g)$ and $k_{1}, k_{2} \in M\left(\Pi_{g-1}\right)$.

Proof: We may assume that $g \geq 3$. Let S be a set such that $S=$ $\left\{a_{g}, b_{g}, x, y\right\}$ and S is interlocked in V. Let $V=A a_{g} B b_{g} C \bar{a}_{g} C \bar{b}_{g}, V_{1}=$ $A_{1} a_{g} B_{1} b_{g} C_{1} \bar{a}_{g} D_{1} \bar{b}_{g}$. Then, by Lemma 5, x, y are interlocked in both $A D C B$ and $A_{1} D_{1} C_{1} B_{1}$. Let η be the $C P$'s on x, y taking $A D C B$ to (say)
$U_{0}^{\prime}[x, y]$, and η_{1} the $C P$'s on x, y taking $A_{1} D_{1} C_{1} B_{1}$ to (say) $U_{1}^{\prime}[x, y]$. Then $h^{\prime}=\eta^{-1} \mu_{V}^{-1} N \mu_{V_{1}} \eta_{1}$ maps $U_{0}^{\prime}[x, y]\left[a_{g}, b_{g}\right]$ to $U_{1}^{\prime}[x, y]\left[a_{g}, b_{g}\right]$, and fixes each element of $L\left(X_{2 g}\right)-S$. Hence, by Lemma 4, h^{\prime} involves only x, y, a_{g} and b_{g}, and $U_{0}^{\prime}=U_{1}^{\prime}$. Let τ be a type one not involving a_{g} or b_{g}, such that $a_{g-1} \tau=x$ and $b_{g-1} \tau=y$. Let $U_{0}^{\prime} \tau^{-1}=U_{0}$, so that $\left\{U_{0}^{\prime}[x, y]\right\} \tau^{-1}=U_{0}\left[a_{g-1}, b_{g-1}\right]$. Clearly $U_{0} \in M\left(\Pi_{g-2}\right)$. Choose $\lambda \in$ $\mathcal{A}_{2 g-4}$ such that $U_{0} \lambda^{-1}=\Pi_{g-2}$.

Now

$$
\begin{aligned}
k(V, N) & =\gamma_{V}^{-1} \mu_{V}^{-1} N \mu_{V_{1}} \gamma_{V_{1}} \\
& =\left(\gamma_{V}^{-1} \eta \tau^{-1} \lambda^{-1}\right)\left(\lambda \tau h^{\prime} \tau^{-1} \lambda^{-1}\right)\left(\lambda \tau \eta_{1}^{-1} \gamma_{V_{1}}\right) \\
& =k_{1} h k_{2}
\end{aligned}
$$

say. From their definition, it is clear that $k_{1}, k_{2} \in M\left(\Pi_{g-1}\right)$. Since h^{\prime} involves only x, y, a_{g}, b_{g}, it follows that $\tau h^{\prime} \tau^{-1}$ involves only a_{g-1}, b_{g-1}, a_{g} and b_{g}, and so commutes with λ. Hence $h=\tau h^{\prime} \tau^{-1} \in M(g-1, g)$.
4. Proof of the Theorem. The theorem follows immediately from

Lemma 8. For each $k(V, N)$ there exist $k_{1}, k_{2} \in M\left(\Pi_{g-1}\right)$ and $h \in$ $M(g-1, g)$ such that $k(V, N)=k_{1} h k_{2}$.

Proof: Let $V=A a_{g} B b_{g} C \bar{a}_{g} D \bar{b}_{g}$ and $V_{1}=A_{1} a_{g} B_{1} b_{g} C_{1} \bar{a}_{g} D_{1} \bar{b}_{g}$.
(1) Suppose that N does not involve a_{g} or b_{g}. Then

$$
k(V, N)=\gamma_{V}^{-1} \mu_{V}^{-1} N \mu_{V_{1}} \gamma_{V_{1}}=\gamma_{V}^{-1}\left(\mu_{V}^{-1} N \mu_{V_{1}} N^{-1}\right) N \gamma_{V_{1}}
$$

Now $\mu_{V}^{-1} N \mu_{V_{1}} N^{-1}$ maps $A D C B\left[a_{g}, b_{g}\right]$ to $\left\{\left(A_{1} D_{1} C_{1} B_{1}\right) N^{-1}\right\}\left[a_{g}, b_{g}\right]$ and fixes each element of X_{g-1}, so that, by Lemma 4, it must involve only a_{g} and b_{g}. However, $\mu_{V}^{-1} N \mu_{V_{1}} N^{-1}$ fixes a_{g} and b_{g} modulo the normal closure of $X_{2 g-2}$ in $F_{2 g}$, and so must be the identity. Hence $k(V, N)=\gamma_{V}^{-1} N \gamma_{V_{1}} \in M\left(\Pi_{g-1}\right)$.

This disposes, in particular, of the case $N \in T_{1}$.
(2) We may now assume that $N=(a, b ; b) \theta_{V P}=P \theta_{V P}$. If N involves at most one other letter besides a_{g} and b_{g}, then using Lemmas 5 and 6 it follows easily that $k(V, N)$ is nice, and so the result holds by Lemma 7. We now consider a number of cases separately.

Case 2.1. P does not involve a_{g} or b_{g}. If $\theta_{V P}=1$, then this case is covered by (1) above. Otherwise, $\theta_{V P}$ must be $a_{g} \leftrightarrow c$ for some letter
$c \notin\left\{a_{g}, b_{g}, \bar{a}_{g}, \bar{b}_{g}\right\}$. Noting that a_{g}, b_{g} are interlocked in $V P$, we write $V P=A^{\prime} a_{g} B^{\prime} b_{g} C^{\prime} \bar{a}_{g} D^{\prime} \bar{b}_{g}$. Let μ be the $C P$'s on a_{g}, b_{g} taking $V P$ to $A^{\prime} B^{\prime} C^{\prime} B^{\prime}\left[a_{g}, b_{g}\right]$, and let $\gamma \in \mathcal{A}_{2 g-2}$ be such that $\left(A^{\prime} D^{\prime} C^{\prime} B^{\prime}\right) \gamma=\Pi_{g-1}$. Then

$$
k(V, N)=\gamma_{V}^{-1} \mu_{V}^{-1} P \theta_{V P} \mu_{V_{1}} \gamma_{V_{1}}=\left(\gamma_{V}^{-1} \mu_{V}^{-1} P \mu \gamma\right)\left(\gamma^{-1} \mu^{-1} \theta_{V P} \mu_{V_{1}} \gamma_{V_{1}}\right)
$$

Repeating the argument given in (1), we see that $\gamma_{V}^{-1} \mu_{V}^{-1} P \mu \gamma \in M\left(\Pi_{g-1}\right)$. Also, $\theta_{V P}$ involves only c besides a_{g}, so that, by (2), $\gamma^{-1} \mu^{-1} \theta_{V P} \mu_{V_{1}} \gamma_{V_{1}}$ has a factorisation of the desired form. Hence, the result holds in this case.
We may now assume that P involves exactly one of a_{g}, b_{g}. We note, by Corollary 2 , that V must contain a subword $a \bar{b}$ or $b \bar{a}$.

Case 2.2. P fixes each element of X_{g-1}. Then P must be one of $\left(a_{g}, b ; b\right),\left(\bar{a}_{g}, b ; b\right),\left(b_{g}, b ; b\right)$ or $\left(\bar{b}_{g}, b ; b\right)$, and so a_{g}, b_{g} are interlocked in $V P$.

Suppose that one of the first three possibilities holds. The correcting permutation $\theta_{V P}$ in each of these cases is either trivial, or is $a_{g} \leftrightarrow b^{\varepsilon}$, ($\varepsilon= \pm 1$) (for example, if $P=\left(\bar{a}_{g}, b ; b\right)$ and $b a_{g}$ is a subword of V, then $V=A^{\prime} b a_{g} B b_{g} C \bar{a}_{g} D \bar{b}_{g}$, where $A=A^{\prime} b$, and $V P=A^{\prime} a_{g} B b_{g} C \bar{a}_{g} b D \bar{b}_{g}$, so that $\theta_{V P}$ is $a_{g} \leftrightarrow \bar{b}$ if $\bar{b} \in B$, and is the identity otherwise). Since only b and a_{g} are involved in N, the result holds.

Suppose now that $P=\left(\bar{b}_{g}, b ; b\right)$. Then we have $V=A a_{g} B_{1} b b_{g} C \bar{a}_{g} D \bar{b}_{g}$ and $V P=A a_{g} B_{1} b_{g} C \bar{a}_{g} D \bar{b}_{g} b$. Since $\theta_{V}=1$ we must have $\bar{b} \in A$, so that $V=A_{1} \bar{b} A_{2} a_{g} B_{1} b b_{g} C \bar{a}_{g} D \bar{b}_{g}$ say, and then $V P=A_{1} \bar{b} A_{2} a_{g} B_{1} b_{g} C \bar{a}_{g} D \bar{b}_{g} b$. In order to describe $\theta_{V P}$, we must choose the first letter c to the left of \bar{b} in $V P$ so that c, b are interlocked in $V P$. Thus \bar{c} is in one of A_{2}, B_{1}, C or D. The quotient words $V\left(a_{g}, b_{g}, c, b\right)$ corresponding to these possibilities are $c \bar{b} \bar{c} a_{g} b b_{g} \bar{a}_{g} \bar{b}_{g}, c \bar{b} a_{g} \bar{c} b b_{g} \bar{a}_{g} \bar{b}_{g}, c \bar{b} a_{g} b b_{g} \bar{c} \bar{a}_{g} \bar{b}_{g}$ and $c \bar{b} a_{g} b b_{g} \bar{a}_{g} \bar{c} \bar{b}_{g}$ respectively. Each of these is equivalent to Π_{2}, so that $\left\{a_{g}, b_{g}, c, b\right\}$ is interlocked in V. Thus $k(V, N)$ is nice, and so the required result holds. This disposes of Case 2.2.
The only remaining possibilities are that $b \in\left\{a_{g}, b_{g}, \bar{a}_{g}, \bar{b}_{g}\right\}$, and $a \in$ $L\left(X_{2 g-2}\right)$.

Case 2.3. $b=a_{g}$ or $b=\bar{a}_{g}$. Here we note that the effect of P on V is to shift the a_{g} or \bar{a}_{g} in V, so that $\theta_{V P}$ must be the identity, or of the form $a_{g} \leftrightarrow c$, for some letter $c \notin\left\{b_{g}, \bar{b}_{g}\right\}$. If $\theta_{V P}=1$, or if $c=a^{ \pm 1}$, then the result holds, since only a_{g} and a are involved in N. Otherwise, $\theta_{V P}$ is $a_{g} \leftrightarrow c$ and $c \neq a^{ \pm 1}$. Then, for $\varepsilon= \pm 1$.

$$
\begin{aligned}
P \theta_{V P}=\left(a, a_{g}^{\varepsilon} ; a_{g}^{\varepsilon}\right) \theta_{V P} & =\theta_{V P}\left\{\theta_{V P}^{-1}\left(a, a_{g}^{\varepsilon} ; a_{g}^{\varepsilon}\right) \theta_{V P}\right\} \\
& =\theta_{V P}\left(a, c^{\varepsilon} ; c^{\varepsilon}\right) .
\end{aligned}
$$

Now $k(V, N)^{-1}=k\left(V_{1}, N^{-1}\right)$, and $N^{-1}=\left(a, \bar{c}^{\varepsilon} ; \bar{c}^{\varepsilon}\right) \theta_{V P}^{-1}$. Since $\left(a, \bar{c}^{\varepsilon} ; \bar{c}^{\varepsilon}\right)$ does not involve a_{g} or b_{g}, the result follows from Case 2.1.

Finally, we have
Case 2.4. $b=b_{g}$ or $b=\bar{b}_{g}$. We must consider a number of subcases.
2.4.1. $V=A a_{g} B b_{g} C \bar{a}_{g} D^{\prime} a \bar{b}_{g}, P=\left(a, b_{g} ; b_{g}\right)$. Then in V we have $\bar{a} \in A \cup C \cup D^{\prime}$ (i.e. \bar{a} is a subword of one of $\left.A, C, D\right)$ since $\theta_{V}=1$.

Suppose firstly that $\bar{a} \in D^{\prime}$. Then $V=A a_{g} B b_{g} C \bar{a}_{g} D_{2}^{\prime} \bar{a} D_{1}^{\prime} a \bar{b}_{g}$ say, so that $V P=A a_{g} B b_{g} C \bar{a}_{g} D_{1}^{\prime} \bar{b}_{g} \bar{a} D_{2}^{\prime} a$. Now $\theta_{V P}$ is the product of $b_{g} \leftrightarrow \bar{a}$ and $a_{g} \leftrightarrow c$, where c is the first letter to the left of \bar{a} in $V P$ such that $\bar{c} \in D_{2}^{\prime}$. Now in V we must have $c \in A \cup C \cup D_{1}^{\prime}$ since $\theta_{V}=1$. The quotient words $V\left(a_{g}, b_{g}, a, c\right)$ corresponding to these possibilities are $c a_{g} b_{g} \bar{a}_{g} \bar{a} \bar{c} a \bar{b}_{g}, a_{g} b_{g} c \bar{a}_{g} \bar{a} \bar{c} a \bar{b}_{g}$ and $a_{g} b_{g} \bar{a}_{g} c \bar{a} \bar{c} a \bar{b}_{g}$ respectively. Each of these is equivalent to Π_{2}, and so $k(V, N)$ is nice in this case.

Now suppose that $\bar{a} \in C$. Then $V=A a_{g} B b_{g} C_{1}^{\prime} \bar{a} C_{2}^{\prime} \bar{a}_{g} D^{\prime} a \bar{b}_{g}$ say, so that $V P=A a_{g} B b_{g} C_{1}^{\prime} \bar{b}_{g} \bar{a} C_{2}^{\prime} \bar{a}_{g} D^{\prime} a$. Thus $\theta_{V P}$ is either $b_{g} \leftrightarrow \bar{a}$, in which case $k(V, N)$ is nice, or is the product of $b_{g} \leftrightarrow \bar{a}$ and $a_{g} \leftrightarrow c$, where $c \in C_{1}^{\prime}$ and $\bar{c} \in C_{2}^{\prime} \cup D$. The quotient words $V\left(a_{g}, b_{g}, a, c\right)$ corresponding to the latter possibility are $a_{g} b_{g} c \bar{a} \bar{c} \bar{a}_{g} a \bar{b}_{g}$ and $a_{g} b_{g} c \bar{a} \bar{a}_{g} \bar{c} a \bar{b}_{g}$ and it follows that $k(V, N)$ is nice.

Lastly, suppose that $\bar{a} \in A$. Then $V=A_{1}^{\prime} \bar{a} A_{2}^{\prime} a_{g} B b_{g} C \bar{a}_{g} D^{\prime} a \bar{b}_{g}$ say, so that $V P=A_{1}^{\prime} \bar{b}_{g} \bar{a} A_{2}^{\prime} a_{g} B b_{g} C \bar{a}_{g} D^{\prime} a$. Here $\theta_{V P}$ is $\theta_{1} \theta_{2}$, where θ_{1} is $b_{g} \leftrightarrow \bar{a}$ and θ_{2} is $a_{g} \leftrightarrow a$, so that N involves only a_{g}, b_{g} and a. Consequently $k(V, N)$ is nice. This disposes of case 2.4.1.
2.4.2. $V=A a_{g} B b_{g} \bar{a} C^{\prime} \bar{a}_{g} D \bar{b}_{g}$ and $P=\left(a, b_{g} ; b_{g}\right)$. Since $\theta_{V}=1$, we must have $a \in A \cup C^{\prime} \cup D$.
Suppose firstly that $a \in A$. Then $V=A_{1} a A_{2} a_{g} B b_{g} \bar{a} C^{\prime} \bar{a}_{g} D \bar{b}_{g}$, say, so that $V P$ is $A_{1} a b_{g} A_{2} a_{g} B \bar{a} C^{\prime} a_{g} D \bar{b}_{g}$. Then $\theta_{V P}$ is $a \leftrightarrow a_{g}$, and so $k(V, N)$ is nice.

Now suppose that $a \in C^{\prime}$. Then $V=A a_{g} B b_{g} \bar{a} C_{1}^{\prime} a C_{2}^{\prime} \bar{a}_{g} D \bar{b}_{g}$ say, so that $V P$ is $A a_{g} B \bar{a} C_{1}^{\prime} a b_{g} C_{2}^{\prime} \bar{a}_{g} D \bar{b}_{g}$. Then either $\theta_{V P}=1$, in which case $k(V, N)$ is nice, or $\theta_{V P}$ is $a_{g} \leftrightarrow c$, where $c \in C_{1}^{\prime}$ and $\bar{c} \in C_{2}^{\prime} \cup D$. The quotient words corresponding to the latter possibility are $a_{g} b_{g} \bar{a} c a \bar{c} \bar{c}_{g} \bar{b}_{g}$ and $a_{g} b_{g} \bar{a} c a \bar{a}_{g} \bar{c} \bar{b}_{g}$ so that $k(V, N)$ is nice.

Lastly, suppose that $a \in D$. Then $V=A a_{g} B b_{g} \bar{a} C^{\prime} \bar{a}_{g} D_{1} a D_{2} \bar{b}_{g}$ say, so that $V P$ is $A a_{g} B \bar{a} C^{\prime} a_{g} D_{1} a b_{g} D_{2} \bar{b}_{g}$. Then $\theta_{V P}$ is $a_{g} \leftrightarrow c$, where $\bar{c} \in D_{2}$ and $c \in A \cup C^{\prime} \cup D_{1}$. The corresponding quotient words are $c a_{g} b_{g} \bar{a} \bar{a}_{g} a \bar{c} \bar{b}_{g}$, $a_{g} b_{g} \bar{a} c \bar{a}_{g} a \bar{c} \bar{b}_{g}$ and $a_{g} b_{g} \bar{a} \bar{a}_{g} c a \bar{c} \bar{b}_{g}$, so that $k(V, N)$ is nice. This disposes of case 2.4.2.
2.4.3. $V=A a_{g} B^{\prime} a b_{g} C \bar{a}_{g} D \bar{b}_{g}$ and $P=\left(a, \bar{b}_{g} ; \bar{b}_{g}\right)$. Then $a \in A \cup B^{\prime}$,
since $\theta_{V}=1$.
Suppose firstly that $\bar{a} \in A$. Then $V=A_{1} \bar{a} A_{2} a_{g} B^{\prime} a b_{g} C \bar{a}_{g} D \bar{b}_{g}$ say, so that $V P$ is $A_{1} b_{g} \bar{a} A_{2} a_{g} B^{\prime} a C \bar{a}_{g} D \bar{b}_{g}$. Then $\theta_{V P}$ is $a_{g} \leftrightarrow c$, where $c \in A_{1}$, $\bar{c} \in A_{2} \cup B^{\prime} \cup C \cup D$. The corresponding quotient words are $c \bar{a} \bar{c} a_{g} a b_{g} \bar{a}_{g} \bar{b}_{g}$, $c \bar{a} a_{g} \bar{c} a b_{g} \bar{a}_{g} \bar{b}_{g}, c \bar{a} a_{g} a b_{g} \bar{c} \bar{a}_{g} \bar{b}_{g}$ and $c \bar{a} a_{g} a b_{g} \bar{a}_{g} \bar{c} \bar{b}_{g}$, so that $k(V, N)$ is nice.
Now suppose that $\bar{a} \in B^{\prime}$. Then $V=A a_{g} B_{1} \bar{a} B_{2} a b_{g} C \bar{a}_{g} D \bar{b}_{g}$ say, so that $V P$ is $A a_{g} B_{1} b_{g} \bar{a} B_{2} a C \bar{a}_{g} D \bar{b}_{g}$. Then either $\theta_{V P}=1$, in which case $k(V, N)$ is nice, or $\theta_{V P}$ is $a_{g} \leftrightarrow c$, where $c \in B_{1}$ and $\bar{c} \in B_{2}$. The quotient word for the latter possibility is $a_{g} c \bar{a} \bar{c} a b_{g} \bar{a}_{g} \bar{b}_{g}$, so that $k(V, N)$ is nice.

This concludes the proof of the theorem.
Let L_{g} be the complex for the cyclic word Π_{g}^{c} (as described in [9]). Then L_{2} has $4 t$ vertices, where $t=4!2^{4}$ is the order of the extended symmetric group Ω_{4}. Thus the quotient complex of L_{2} by the obvious Ω_{4} action has 4 vertices, representatives of which are the following four vertices of $L_{2}: a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}, a_{1} a_{2} b_{1} a_{1}^{-1} b_{1}^{-1} b_{2} a_{2}^{-1} b_{2}^{-1}$, $a_{1} b_{1} a_{2} a_{1}^{-1} b_{1}^{-1} b_{2} a_{2}^{-1} b_{2}^{-1}$ and $a_{1} b_{1} a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{2}^{-1} b_{2}^{-1}$. Using the quotient complex, it is straightforward, albeit tedious if done by hand, to compute generators for the stabiliser $M\left(\Pi_{2}^{c}\right)$ of Π_{2}^{c}. This was carried out by the author, and it was verified from this that $M\left(\Pi_{2}\right)$ has generating set $\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right\}$, where the τ_{i} satisfy:

$$
\begin{aligned}
\tau_{1}: a_{1} & \rightarrow a_{1} b_{1}^{-1}, \\
\tau_{2}: b_{1} & \rightarrow b_{1} a_{1}, \\
\tau_{3}: a_{1} & \rightarrow a_{1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1}, \\
a_{2} & \rightarrow a_{2} b_{2}^{-1} a_{2}^{-1} b_{1} a_{2}, \\
b_{1} & \rightarrow a_{2} b_{2}^{-1} a_{2}^{-1} b_{1} a_{2} b_{2} a_{2}^{-1}, \\
\tau_{4}: b_{2} & \rightarrow b_{2} a_{2} \\
\tau_{5}: a_{2} & \rightarrow a_{2} b_{2}^{-1}
\end{aligned}
$$

and all generators not explicitly mentioned are left fixed. This generating set was suggested by the corresponding set $\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right\}$ which is described in [1] as a generating set of $M_{g, 0}$.

Acknowledgement. This work was written before the appearance of $[\mathbf{7}]$. In preparing it for publication, I have not attempted to remove any minor overlaps with $[\mathbf{7}]$.

I would like to thank Warren Dicks for encouraging me to publish this material.

References

1. J. S. Birman, A normal form in the homeotopy group of a suface of genus 2, with applications to 3 -manifolds, Proc. Amer. Math. Soc. 34 (1972), 379-384.
2. M. Dehn, Die Gruppe der Abbildungklassen, Acta Math. (2) 11 (1975), 181-190.
3. W. Dicks and E. Formanek, Automorphism subgroups of finite index in algebraic mapping class groups, preprint (1996).
4. P. J. Higgins and R. C. Lyndon, Equivalence of elements under automorphisms of a free group, J. London Math. Soc. 8 (1974), 254-258.
5. S. Humphries, Generators for the mapping class group, in "Topology of low-dimensional manifolds," Lecture Notes in Mathematics 722, Springer, Berlin, 1979.
6. W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
7. R. C. Lyndon and P. E. Schupp, "Combinatorial Group Theory," Springer, Berlin, 1977.
8. J. McCool, A presentation for the automorphism group of a free group of finite rank, J. London Math. Soc. (2) 8 (1974), 259-266.
9. J. McCool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975), 205-213.
10. A. Shenitzer, Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955), 273-279.
11. B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174; Errata: 88, (1994), 425-427.

[^0]: *Research supported by a grant from the Natural Sciences and Engineering Research Council of Canada

