GENERATING THE MAPPING CLASS GROUP (AN ALGEBRAIC APPROACH)

JAMES MCCOOL*

Abstract _

We give an algebraic proof of the fact that a generating set of the mapping class group $M_{g,1}$ $(g \ge 3)$ may be obtained by replicating a generating set of $M_{2,1}$.

1. Introduction. We denote by F(S) the free group generated by the subset S of the set of symbols $X = a_1, b_1, a_2, b_2, \ldots$, and put $F_k = F(X_k)$, where X_k consists of the first k elements of X (all groups F(S)are considered as subgroups of F(X)). L(X), the set of letters, is defined to be $X \cup X^{-1}$, i.e. the set $a_1, \overline{a_1}, b_1, \overline{b_1}, \ldots$, where $\overline{a_1}$ denotes a_1^{-1} , etc.; for $S \subset X$, the set of letters L(S) of F(S) is $F(S) \cap L(X)$. For $w \in F(X)$, L(W) is the set of letters occurring in the reduced form of w.

We put $\mathcal{A}(S) = \operatorname{Aut} F(S)$, with \mathcal{A}_k for $\mathcal{A}(X_k)$, and denote by Π_g the element of F_{2g} given by $\Pi_g = \prod_{i=1}^g [a_i, b_i]$, where $[a_i, b_i] = a_i b_i \overline{a}_i \overline{b}_i$. The group $M(\Pi_g)$ is defined by

$$M(\Pi_g) = \{ \theta \in \mathcal{A}_{2g}; \, \Pi_g \theta = \Pi_g \}.$$

Let ρ_g denote conjugation in F_{2g} by the element Π_g . The subgroup N_g of $M(\Pi_g)$ generated by ρ_g is central, and the quotient $M_{g,1} = M(\Pi_g)/N_g$ may be described as an (orientation preserving) (algebraic) mapping class group. It was shown in [9] that $M_{g,1}$ is finitely presented, though computation of an explicit presentation valid for all g was beyond the scope of the results of [9]. Such a presentation of the geometric mapping class group was found by Wajnryb [11]. Since the geometric and algebraic mapping class groups are known to coincide (see, e.g., the remarks and

^{*}Research supported by a grant from the Natural Sciences and Engineering Research Council of Canada

references in [3]), this provides a presentation for our $M_{g,1}$. Wajnryb's work is geometrically based, as is earlier work on generating sets by Dehn [2], Lickorish [6] and Humphries [5].

The present paper has the modest object of providing a purely algebraic method for obtaining a generating set of $M(\Pi_g)$, and hence of $M_{g,1}$. Thus we define the groups M(r,g), for $1 \le r \le g-1$, by

$$M(r,g) = \{ \theta \in \mathcal{A}\{a_r, b_r, a_{r+1}, b_{r+1}\}; [a_r, b_r][a_{r+1}, b_{r+1}]\theta \\ = [a_r, b_r][a_{r+1}, b_{r+1}] \}.$$

Clearly each M(r,g) is an isomorphic copy of $M(\Pi_2)$, and each M(r,g) is naturally embedded in $M(\Pi_g)$, as is each $M(\Pi_r)$, for r < g. We will show

Theorem. Let G_r be a generating set of M(r,g), $1 \le r \le g-1$. Then $\bigcup_{r=1}^{g-1} G_r$ is a generating set of $M(\Pi_g)$.

It only remains, in order to fulfil our objective, to find a generating set G_2 of $M(\Pi_2)$. We discuss this after the proof of the theorem.

We assume below that the reader is familiar with the notation and results of [8] and [9] (see also [7]). In addition, we will need the following definition.

Let $S \subset L(X_g)$, and $\theta \in \mathcal{A}_g$. We say that θ involves only the letters of S if, writing S_1 for $S^{\pm 1} \cap X_g$, there exists $\varphi \in \mathcal{A}(S_1)$ such that θ and φ agree on S_1 and θ is the identity on $X_g - S_1$.

2. Preliminary results. The following result was proved by Shenitzer in [10].

Lemma 1. Let W be a minimal element of F_k with |W| > 1. Let (A; a) be a T_2 in \mathcal{A}_k , with a, \overline{a} not in L(W) and with $A \cap L(W)$ not the empty set. Then $|W(A; a)| \ge |W| + 2$.

As a consequence of this we have

Corollary 2. (1) A product $W_1W_2 \cdots W_r$ of disjoint minimal elements of F_k is minimal if, and only if, $|W_i| \ge 2, 1 \le i \le r$.

- (2) Two equivalent minimal words involve the same number of generators.
- (3) If W is minimal, |W| > 1 and $(A; a) = (x_1, \ldots, x_j, a; a)$ is a T_2 such that $A \cap L(W)$ is non-empty and $|W(A; a)| \leq |W|$, then W must contain a subword $x_i\overline{a}$ or $a\overline{x}_i$ for some $i, 1 \leq i \leq j$.

458

Proof: Parts (1) and (2) were proved by Shenitzer in [10]. An immediate consequence of these is the fact that for any $S \subset X$ and $W \in F(S)$, W is minimal in F(S) if, and only if, W is minimal in F(X).

Now suppose W, (A; a) satisfy the conditions of (3), and no subword of the desired form exists. Let W' be the unreduced word obtained from W by replacing each letter b in W by b(A; a). It is known [4] that w(A; a) is obtained from W' by deleting all subwords of W' of the form $a\overline{a}$. Since W contains no subword of the form $x_i\overline{a}$ or $a\overline{x}_i$, the a and \overline{a} symbols in any subword $a\overline{a}$ of W' must both be 'new'. Now let W_1 be obtained from W by replacing each a, \overline{a} by x, \overline{x} respectively, where x is a letter not in $L(W) \cup A \cup A^{-1}$. From the above remark, it is clear that $|W_1(A; a)| = |W(A; a)| \leq |W|$. However, this contradicts Lemma 1, and so proves (3).

It follows from (1) that Π_g is minimal, since $[a_i, b_i]$ is clearly minimal. We denote by $m(\Pi_g)$ the set of minimal equivalents of Π_g in F_{2g} . If $V \in m(\Pi_g)$ then we observe that V must contain exactly one occurrence of each letter in $L(X_{2g})$. Now if $V \in m(\Pi_g)$ has a subword $x\overline{y}$, where $x, y \in L(X_{2g})$, then it is clear, since V contains one occurrence of each of x, \overline{x} , that V(x, y; y) belongs to $m(\Pi_g)$ (as does V(y, x; x)). Combining this observation with (3) of Corollary 2, we obtain

Corollary 3. Let $V \in m(\Pi_g)$ and let $(A; a) = (y_1, \ldots, y_r, a; a) \in \mathcal{A}_{2g}$ be such that $V(A; a) \in m(\Pi_g)$. Then there is a permutation $\sigma \in S_r$ such that

$$V(y_{\sigma(1)}, a; a) \cdots (y_{\sigma(i)}, a; a) \in m(\Pi_g)$$

for $1 \leq i \leq r$.

We next prove

Lemma 4. Let r, k be positive integers with r < k and let $Y = X_k - X_r$. Let U, V, W be such that $U, W \in F_r$, $L(V) \cup L(V^{-1}) = Y \cup Y^{-1}$ and V is minimal. If $\beta \in A_k$ is such that $x_i\beta = x_i$, $1 \le i \le r$, where $X_r = \{x_1, \ldots, x_r\}$, and $(WV)\beta = UV$, then U = W and β involves only the letters of Y.

Proof: Let $W_1 = U^{-1}W$, so that $(W_1V)\beta = V$. We put

 $Z = \{x_1, \ldots, x_r, \ldots, x_1, \ldots, x_r, W_1V\},\$

where Z contains N occurrences of the r-tuple $Z_1 = (x_1, \ldots, x_r)$, and N is chosen so $N > |W_1V|$. Then Z is mapped by β to $Z_2 = \{Z_1, \ldots, Z_1, V\}$.

Since $|Z| \ge |Z_2|$, there exists (see [8], [9]) a factorisation $\beta = P'_1 \cdots P'_s$, where $P'_1, \ldots, P'_s \in \mathcal{W}$, and an integer $t, 1 \le t \le s$, such that

(1)
$$|ZP'_1 \cdots P'_i| < |ZP'_1 \cdots P'_{i-1}|, \quad i \le t,$$

and

(2)
$$|ZP'_1 \cdots P'_i| = |Z_2|, \quad i \ge t.$$

Each P'_i with $i \leq t$ must be a T_2 . Now for any tuple Z_3 , type one T and type two P, if $|Z_3| = |Z_3(TP)|$, then

$$|Z_3| = |Z_3(TPT^{-1})| = |Z_3(TPT^{-1})T|,$$

and $TPT^{-1} \in T_2$. Using this observation, we can modify the original factorisation of β to obtain $\beta = P_1 \cdots P_l T$ where P_1, \ldots, P_l are T_2 's, T is a T_1 (possibly the identity) and (1), (2) hold with P_1, \ldots, P_l in place of P'_1, \ldots, P'_s . From the choice of Z it is easy to see that no P_i can increase the length of any one of x_1, \ldots, x_r , and hence each P_i and T must fix all of x_1, \ldots, x_r .

If P_1 has multiplier from L(Y), then

$$|(W_1V)P_1| = |W_1(VP_1)| \ge |W_1V|,$$

since V is minimal and no cancellation occurs between W_1 and VP_1 . In view of (1) it follows that $W_1 = 1$ in this case.

If P_1 has multiplier from $L(X_r)$, then by Lemma 1 $|VP_1| \ge |V| + 2$; moreover, in $(W_1V)P_1 = W_1(VP_1)$, at most one cancellation can occur between W_1 and VP_1 , so that $|(W_1V)P_1| \ge |W_1V|$ and again we must have $W_1 = 1$.

Hence we have shown that $W_1 = 1$. It now follows from Lemma 1, as above, that P_1 cannot have multiplier from $L(X_r)$, and the same argument shows, inductively, that no P_i can have multiplier from $L(X_r)$. Since each P_i fixes X_r pointwise, so must T. This proves the lemma.

Definition. Let $V \in m(\Pi_g)$, $A \subset L(X_{2g})$, $A \cap A^{-1} = \emptyset$, |A| = 2r for some integer $r \ge 1$. We say that A is *interlocked* in V if the "quotient word" V(A) obtained by deleting all letters in $L(X_{2g}) - (A + A^{-1})$ from V is a minimal equivalent of Π_r .

Let $V \in m(\Pi_g)$ have reduced form $V = QxR\overline{x}S$, for some letter x. Then there is $y \in R$ (i.e. letter y which is a subword of R) such that $\overline{y} \notin R$, for otherwise conjugation of the generators occurring in R by x would reduce the length of V. Hence for each $x \in V$ there is a $y \in V$ such that x, y are interlocked in V.

We now observe

Lemma 5. Let A be interlocked in V and let $\theta \in A_{2g}$ be such that $V\theta \in m(\Pi_g)$ and $G\theta = G$, where G is the normal closure in F_{2g} of $L(X_{2g}) - (A + A^{-1})$. Then A is interlocked in V θ .

Proof: For ease of notation we suppose that $A = X_{2r}$. Let p be the projection $p: F_{2g} \to F_{2g}/G = F_{2r}$. Since $G\theta = G$, θ induces an automorphism θ_1 of F_{2r} and $p\theta_1 = \theta p$, so that

$$Vp\theta_1 = V(A)\theta_1 = V\theta p = (V\theta)(A).$$

Now $V(A) \in m(\Pi_r)$ since A is interlocked in V. Thus $(V\theta)(A)$ is an automorphic image of Π_r and so belongs to $m(\Pi_r)$, since it has length 4r. Hence A is interlocked in $V\theta$.

3. The complex K_g . Let K_g be the complex for Π_g constructed in [**9**]; i.e. $K_g^0 = m(\Pi_g)$, K_g^1 is K_g^0 with a directed edge labelled $(V_1, V_2; P)$ joining vertex V_1 to V_2 whenever $P \in W$ is such that $V_1P = V_2$, and K_g is K_g^1 with a finite set of 2-cells attached. It was shown in [**9**] that there is an isomorphism $\kappa : \pi_1(K_g, \Pi_g) \to M(\Pi_g)$, and that the isomorphism is the natural one, i.e. is induced by the homomorphism κ from the groupoid of paths in K_g to \mathcal{A}_{2g} whose effect on a path p in K_g ,

$$p = (V_1, V_2; P_1), (V_2, V_3; P_2), \dots, (V_{s-1}, V_s; P_{s-1}),$$

is given by $p\kappa = P_1P_2\cdots P_{s-1}$.

Let $V \in m(\Pi_g)$ be such that x, y are interlocked in V. Then there is a (unique) $T \in T_1$ with T involving only x and y such that $VT = V_1 = AxByC\overline{x}D\overline{y}E$ (where the expression given for V_1 is reduced). Now let E have reduced form $x_1x_2\cdots x_t$. Then

$$V(\overline{y}, \overline{x}_1; \overline{x}_1)(\overline{y}, \overline{x}_2; \overline{x}_2) \cdots (\overline{y}, \overline{x}_i; \overline{x}_i) \in m(\Pi_q), \quad 0 \le i \le t.$$

The product $\mu_1 = (\overline{y}, \overline{x}_1; \overline{x}_1) \cdots (\overline{y}, \overline{x}_t; \overline{x}_t)$ maps V_1 to $V_2 = AxBEyC\overline{x}D\overline{y}$, and may be denoted by $\mu_1 : y \to Ey$, since μ_1 fixes each letter other than y, \overline{y} . The factorisation given for μ_1 yields a path p_1 in K_g of length r from V_1 to V_2 , with $p_1\kappa = \mu_1$. Now define μ_2, μ_3 and μ_4 by $\mu_2 : x \to x\overline{BE}$, $\mu_3 : y \to \overline{yCBE}, \ \mu_4 : x \to DCBEx$. Then $V_2\mu_2 = V_3 = AxyCBE\overline{x}D\overline{y},$ $V_3\mu_3 = V_4 = Axy\overline{x}DCBE\overline{y}, V_4\mu_4 = V_5 = ADCBExy\overline{x}\overline{y}$. Each μ_i has a factorisation similar to that given for μ_1 , and a corresponding path p_i in K_g with $p_i\kappa = \mu_i$. We put $\mu = T\mu_1\mu_2\mu_3\mu_4$ and let p be the path $(V_1, V_2; T), \ p_1, p_2, p_3, p_4$, so that $p\kappa = \mu$. The μ_i are instances of the familiar 'cut and paste' operations, and we shall refer to both p and μ as the CP operation on x, y taking V to $ADCBExy\overline{x}\overline{y}$. We note that μ moves only x and y. Now ADCBE is minimal, involves exactly 2g - 2 elements of X, and each of these occur once with exponent one and once with exponent minus one. It follows easily from this that there is a sequence of CP operations which involve only the generators occurring in ADCBE and which map ADCBE to $\Pi_{g-1}J$, where $J \in T_1$.

We now observe

Lemma 6. Let a, b be interlocked in $V \in m(\Pi_g)$, $g \ge 2$. Let $x \in L(X_{2g})$ be such that $x \notin \{a, \overline{a}, b, \overline{b}\}$. Then there is $y \in V$ such that $\{a, b, x, y\}$ is interlocked in V.

Proof: Let μ be the *CP*'s on a, b taking *V* to $V_1 = U[a, b]$. Then $x \in U$ and there is $y \in U$ such that x, y are interlocked in *U*. Clearly $\{a, b, x, y\}$ is interlocked in V_1 , and so by Lemma 5, is interlocked in *V*. ■

We now specify for each $V \in m(\Pi_g)$ a path τ_V from V to Π_g . For g = 1 and $V \in m(\Pi_1)$, there exists a unique type one $T_V \in \mathcal{A}_2$ such that $VT_V = \Pi_1$; we define τ_V to be (V_1, Π_1, T_V) . Now suppose that g > 1 and that τ_V has been defined for all $V \in m(\Pi_r)$, $1 \leq r < g$. Let $V \in m(\Pi_g)$ and write $V = A'xB'yC'\overline{x}D'\overline{y}$, where x is the first letter to the left of y in V such that x and y are interlocked in V. Let $\theta_V = \theta_1\theta_2$, where θ_1 is the type one interchanging b_g and y, and θ_2 is the type one interchanging $v\theta_1$ and a_g . Then $V\theta_V = Aa_gBb_gC\overline{a}_gD\overline{b}_g$. We call θ_V the correcting permutation on V. Now let μ_V be the CP's on a_g, b_g taking $V\theta_V$ to $ADCBa_gb_g\overline{a}_g\overline{b}_g$. From above, we know that $ADCB \in m(\Pi_{g-1})$ and so a path, call it γ_V , has already been defined from ADCB to Π_{g-1} in K_{g-1} . Taking the obvious interpretation of γ_V as a path in K_g , we define τ_V to be the path $(V, V\theta_V; \theta_V), \mu_V, \gamma_V$. We shall denote the images of the paths τ_V, μ_V, γ_V under κ by the same symbols in what follows.

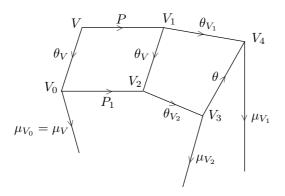
Now it is clear that $\pi_1(K_g, \Pi_g)$ is generated by the classes of the set of paths τ_V^{-1} , e, τ_{V_1} , where V ranges over the points of K_g and $e = (V, V_1; P)$ ranges over the edges beginning at V. Moreover, it follows easily from Corollary 3 that we can restrict e to range over the edges $(V, V_1; P)$ where P is a Nielsen automorphism, in fact either $P \in T_1$ or P is of the form (a, b; b), where $a\overline{b}$ or $b\overline{a}$ is a subword of V.

It follows that $M(\Pi_g)$ is generated by all $\tau_V^{-1}P\tau_{V_1}$, i.e. by all $\gamma_V^{-1}\mu_V^{-1}\theta_V^{-1}P\theta_{V_1}\mu_{V_1}\gamma_{V_1}$, where here V ranges over $m(\Pi_g)$, P ranges over the Nielsen automorphisms described above, $V_1 = VP$ and $\gamma_V, \gamma_{V_1}, \mu_V, \mu_{V_1}, \theta_V, \theta_{V_1}$ are as defined above.

We observe that if $P \in T_1$ then $\theta_V P \theta_{V_1} \in T_1$ and does not involve a_g or b_g . Also, if P = (a, b; b), then

$$\theta_V^{-1} P \theta_{V_1} = (a \theta_V, b \theta_V; b \theta_V) \theta_V^{-1} \theta_{V_1} = P_1 \theta_{V_2} \theta,$$

where $P_1 = (a\theta_V, b\theta_V; b\theta_V)$, $V_2 = V\theta_V P_1$ and $\theta = \theta_{V_2}^{-1}\theta_V^{-1}\theta_{V_1}$. The portion of K_g relating to this will look like



where $V_0 = V\theta_V$, $V_3 = V_2\theta_{V_2}$, $V_4 = V_1\theta_{V_1}$. We see that

$$\begin{aligned} \tau_V^{-1} P \tau_{V_1} &= \tau_V^{-1} \mu_V^{-1} \theta_V^{-1} P \theta_{V_1} \mu_{V_1} \gamma_{V_1} \\ &= (\gamma_V^{-1} \mu_V^{-1} P_1 \theta_{V_2} \mu_{V_2} \gamma_{V_2}) (\gamma_{V_2}^{-1} \mu_{V_2}^{-1} \theta \mu_{V_1} \gamma_{V_1}) \\ &= (\tau_{V_0}^{-1} P_1 \tau_{V_2}) (\tau_{V_3}^{-1} \theta \tau_{V_4}). \end{aligned}$$

We note that $\theta \in T_1$ and does not involve a_q or b_q .

From the above observations we see that $M(\Pi_g)$ is generated by the set of all $k(V, N) = \gamma_V^{-1} \mu_V^{-1} N \mu_{V_1} \gamma_{V_1}$, where V ranges over the elements of $m(\Pi_g)$ with $\theta_V = 1$, N is either a type one not involving a_g or b_g (in which case $\theta_{VN} = 1$) or $N = P \theta_{VP}$ where P is a type two Nielsen automorphism, and $VN = V_1$.

We say that a k(V, N) is *nice* if there is a set $S = \{a_g, b_g, x, y\}$ of letters such that S is interlocked in V and N involves only the elements of S. We note that if k(V, N) is nice then, by Lemma 5, the corresponding set S is interlocked in VN.

The following is the key result in proving the theorem.

Lemma 7. Let k(V, N) be nice. Then $k(V, N) = k_1hk_2$, where $h \in M(g-1,g)$ and $k_1, k_2 \in M(\Pi_{g-1})$.

Proof: We may assume that $g \geq 3$. Let S be a set such that $S = \{a_g, b_g, x, y\}$ and S is interlocked in V. Let $V = Aa_gBb_gC\overline{a}_gC\overline{b}_g, V_1 = A_1a_gB_1b_gC_1\overline{a}_gD_1\overline{b}_g$. Then, by Lemma 5, x, y are interlocked in both ADCB and $A_1D_1C_1B_1$. Let η be the CP's on x, y taking ADCB to (say)

J. McCool

 $U'_0[x, y]$, and η_1 the CP's on x, y taking $A_1 D_1 C_1 B_1$ to (say) $U'_1[x, y]$. Then $h' = \eta^{-1} \mu_V^{-1} N \mu_{V_1} \eta_1$ maps $U'_0[x, y][a_g, b_g]$ to $U'_1[x, y][a_g, b_g]$, and fixes each element of $L(X_{2g}) - S$. Hence, by Lemma 4, h' involves only x, y, a_g and b_g , and $U'_0 = U'_1$. Let τ be a type one not involving a_g or b_g , such that $a_{g-1}\tau = x$ and $b_{g-1}\tau = y$. Let $U'_0\tau^{-1} = U_0$, so that $\{U'_0[x, y]\}\tau^{-1} = U_0[a_{g-1}, b_{g-1}]$. Clearly $U_0 \in M(\Pi_{g-2})$. Choose $\lambda \in \mathcal{A}_{2g-4}$ such that $U_0\lambda^{-1} = \Pi_{g-2}$.

Now

$$k(V,N) = \gamma_V^{-1} \mu_V^{-1} N \mu_{V_1} \gamma_{V_1}$$

= $(\gamma_V^{-1} \eta \tau^{-1} \lambda^{-1}) (\lambda \tau h' \tau^{-1} \lambda^{-1}) (\lambda \tau \eta_1^{-1} \gamma_{V_1})$
= $k_1 h k_2$

say. From their definition, it is clear that $k_1, k_2 \in M(\Pi_{g-1})$. Since h' involves only x, y, a_g, b_g , it follows that $\tau h' \tau^{-1}$ involves only a_{g-1}, b_{g-1}, a_g and b_g , and so commutes with λ . Hence $h = \tau h' \tau^{-1} \in M(g-1,g)$.

4. Proof of the Theorem. The theorem follows immediately from

Lemma 8. For each k(V, N) there exist $k_1, k_2 \in M(\Pi_{g-1})$ and $h \in M(g-1,g)$ such that $k(V, N) = k_1hk_2$.

Proof: Let $V = Aa_g Bb_g C \overline{a}_g D \overline{b}_g$ and $V_1 = A_1 a_g B_1 b_g C_1 \overline{a}_g D_1 \overline{b}_g$.

(1) Suppose that N does not involve a_q or b_q . Then

$$k(V,N) = \gamma_V^{-1} \mu_V^{-1} N \mu_{V_1} \gamma_{V_1} = \gamma_V^{-1} (\mu_V^{-1} N \mu_{V_1} N^{-1}) N \gamma_{V_1}.$$

Now $\mu_V^{-1}N\mu_{V_1}N^{-1}$ maps $ADCB[a_g, b_g]$ to $\{(A_1D_1C_1B_1)N^{-1}\}[a_g, b_g]$ and fixes each element of X_{g-1} , so that, by Lemma 4, it must involve only a_g and b_g . However, $\mu_V^{-1}N\mu_{V_1}N^{-1}$ fixes a_g and b_g modulo the normal closure of X_{2g-2} in F_{2g} , and so must be the identity. Hence $k(V, N) = \gamma_V^{-1}N\gamma_{V_1} \in M(\Pi_{g-1}).$

This disposes, in particular, of the case $N \in T_1$.

(2) We may now assume that $N = (a, b; b)\theta_{VP} = P\theta_{VP}$. If N involves at most one other letter besides a_g and b_g , then using Lemmas 5 and 6 it follows easily that k(V, N) is nice, and so the result holds by Lemma 7. We now consider a number of cases separately.

Case 2.1. P does not involve a_g or b_g . If $\theta_{VP} = 1$, then this case is covered by (1) above. Otherwise, θ_{VP} must be $a_g \leftrightarrow c$ for some letter

464

 $c \notin \{a_g, b_g, \overline{a}_g, \overline{b}_g\}$. Noting that a_g, b_g are interlocked in VP, we write $VP = A'a_gB'b_gC'\overline{a}_gD'\overline{b}_g$. Let μ be the CP's on a_g, b_g taking VP to $A'B'C'B'[a_g, b_g]$, and let $\gamma \in \mathcal{A}_{2g-2}$ be such that $(A'D'C'B')\gamma = \prod_{g-1}$. Then

$$k(V,N) = \gamma_V^{-1} \mu_V^{-1} P \theta_{VP} \mu_{V_1} \gamma_{V_1} = (\gamma_V^{-1} \mu_V^{-1} P \mu \gamma) (\gamma^{-1} \mu^{-1} \theta_{VP} \mu_{V_1} \gamma_{V_1}).$$

Repeating the argument given in (1), we see that $\gamma_V^{-1} \mu_V^{-1} P \mu \gamma \in M(\Pi_{g-1})$. Also, θ_{VP} involves only *c* besides a_g , so that, by (2), $\gamma^{-1} \mu^{-1} \theta_{VP} \mu_{V_1} \gamma_{V_1}$ has a factorisation of the desired form. Hence, the result holds in this case.

We may now assume that P involves exactly one of a_g, b_g . We note, by Corollary 2, that V must contain a subword $a\overline{b}$ or $b\overline{a}$.

Case 2.2. P fixes each element of X_{g-1} . Then P must be one of $(a_g, b; b)$, $(\overline{a}_g, b; b)$, $(b_g, b; b)$ or $(\overline{b}_g, b; b)$, and so a_g, b_g are interlocked in VP.

Suppose that one of the first three possibilities holds. The correcting permutation θ_{VP} in each of these cases is either trivial, or is $a_g \leftrightarrow b^{\varepsilon}$, $(\varepsilon = \pm 1)$ (for example, if $P = (\overline{a}_g, b; b)$ and ba_g is a subword of V, then $V = A'ba_gBb_gC\overline{a}_gD\overline{b}_g$, where A = A'b, and $VP = A'a_gBb_gC\overline{a}_gbD\overline{b}_g$, so that θ_{VP} is $a_g \leftrightarrow \overline{b}$ if $\overline{b} \in B$, and is the identity otherwise). Since only b and a_g are involved in N, the result holds.

Suppose now that $P = (\overline{b}_g, b; b)$. Then we have $V = Aa_g B_1 bb_g C \overline{a}_g D \overline{b}_g$ and $VP = Aa_g B_1 b_g C \overline{a}_g D \overline{b}_g b$. Since $\theta_V = 1$ we must have $\overline{b} \in A$, so that $V = A_1 \overline{b} A_2 a_g B_1 bb_g C \overline{a}_g D \overline{b}_g$ say, and then $VP = A_1 \overline{b} A_2 a_g B_1 b_g C \overline{a}_g D \overline{b}_g b$. In order to describe θ_{VP} , we must choose the first letter c to the left of \overline{b} in VP so that c, b are interlocked in VP. Thus \overline{c} is in one of A_2, B_1, C or D. The quotient words $V(a_g, b_g, c, b)$ corresponding to these possibilities are $c\overline{b}\overline{c}a_g bb_g \overline{a}_g \overline{b}_g, c\overline{b}a_g \overline{c}b_g \overline{a}_g \overline{b}_g, c\overline{b}a_g bb_g \overline{c} \overline{a}_g \overline{b}_g$ and $c\overline{b}a_g bb_g \overline{a}_g \overline{c} \overline{b}_g$ respectively. Each of these is equivalent to Π_2 , so that $\{a_g, b_g, c, b\}$ is interlocked in V. Thus k(V, N) is nice, and so the required result holds. This disposes of Case 2.2.

The only remaining possibilities are that $b \in \{a_g, b_g, \overline{a}_g, \overline{b}_g\}$, and $a \in L(X_{2g-2})$.

Case 2.3. $b = a_g$ or $b = \overline{a}_g$. Here we note that the effect of P on V is to shift the a_g or \overline{a}_g in V, so that θ_{VP} must be the identity, or of the form $a_g \leftrightarrow c$, for some letter $c \notin \{b_g, \overline{b}_g\}$. If $\theta_{VP} = 1$, or if $c = a^{\pm 1}$, then the result holds, since only a_g and a are involved in N. Otherwise, θ_{VP} is $a_g \leftrightarrow c$ and $c \neq a^{\pm 1}$. Then, for $\varepsilon = \pm 1$.

$$\begin{aligned} P\theta_{VP} &= (a, a_g^{\varepsilon}; a_g^{\varepsilon})\theta_{VP} = \theta_{VP} \{ \theta_{VP}^{-1}(a, a_g^{\varepsilon}; a_g^{\varepsilon})\theta_{VP} \} \\ &= \theta_{VP}(a, c^{\varepsilon}; c^{\varepsilon}). \end{aligned}$$

Now $k(V, N)^{-1} = k(V_1, N^{-1})$, and $N^{-1} = (a, \overline{c}^{\varepsilon}; \overline{c}^{\varepsilon})\theta_{VP}^{-1}$. Since $(a, \overline{c}^{\varepsilon}; \overline{c}^{\varepsilon})$ does not involve a_g or b_g , the result follows from Case 2.1.

Finally, we have

Case 2.4. $b = b_g$ or $b = \overline{b}_g$. We must consider a number of subcases. 2.4.1. $V = Aa_gBb_gC\overline{a}_gD'a\overline{b}_g$, $P = (a, b_g; b_g)$. Then in V we have $\overline{a} \in A \cup C \cup D'$ (i.e. \overline{a} is a subword of one of A, C, D) since $\theta_V = 1$.

Suppose firstly that $\overline{a} \in D'$. Then $V = Aa_g Bb_g C \overline{a}_g D'_2 \overline{a} D'_1 a \overline{b}_g$ say, so that $VP = Aa_g Bb_g C \overline{a}_g D'_1 \overline{b}_g \overline{a} D'_2 a$. Now θ_{VP} is the product of $b_g \leftrightarrow \overline{a}$ and $a_g \leftrightarrow c$, where c is the first letter to the left of \overline{a} in VP such that $\overline{c} \in D'_2$. Now in V we must have $c \in A \cup C \cup D'_1$ since $\theta_V = 1$. The quotient words $V(a_g, b_g, a, c)$ corresponding to these possibilities are $ca_g b_g \overline{a}_g \overline{a} \overline{c} a \overline{b}_g$, $a_g b_g c \overline{a}_g \overline{a} \overline{c} a \overline{b}_g$ and $a_g b_g \overline{a}_g c \overline{a} \overline{c} a \overline{b}_g$ respectively. Each of these is equivalent to Π_2 , and so k(V, N) is nice in this case.

Now suppose that $\overline{a} \in C$. Then $V = Aa_g Bb_g C'_1 \overline{a}C'_2 \overline{a}_g D' a \overline{b}_g$ say, so that $VP = Aa_g Bb_g C'_1 \overline{b}_g \overline{a}C'_2 \overline{a}_g D' a$. Thus θ_{VP} is either $b_g \leftrightarrow \overline{a}$, in which case k(V, N) is nice, or is the product of $b_g \leftrightarrow \overline{a}$ and $a_g \leftrightarrow c$, where $c \in C'_1$ and $\overline{c} \in C'_2 \cup D$. The quotient words $V(a_g, b_g, a, c)$ corresponding to the latter possibility are $a_g b_g c \overline{a} \overline{c} \overline{a}_g a \overline{b}_g$ and $a_g b_g c \overline{a} \overline{a}_g \overline{c} a \overline{b}_g$ and it follows that k(V, N) is nice.

Lastly, suppose that $\overline{a} \in A$. Then $V = A'_1 \overline{a} A'_2 a_g B b_g C \overline{a}_g D' a \overline{b}_g$ say, so that $VP = A'_1 \overline{b}_g \overline{a} A'_2 a_g B b_g C \overline{a}_g D' a$. Here θ_{VP} is $\theta_1 \theta_2$, where θ_1 is $b_g \leftrightarrow \overline{a}$ and θ_2 is $a_g \leftrightarrow a$, so that N involves only a_g, b_g and a. Consequently k(V, N) is nice. This disposes of case 2.4.1.

2.4.2. $V = Aa_g Bb_g \overline{a}C' \overline{a}_g D\overline{b}_g$ and $P = (a, b_g; b_g)$. Since $\theta_V = 1$, we must have $a \in A \cup C' \cup D$.

Suppose firstly that $a \in A$. Then $V = A_1 a A_2 a_g B b_g \overline{a} C' \overline{a}_g D \overline{b}_g$, say, so that VP is $A_1 a b_g A_2 a_g B \overline{a} C' a_g D \overline{b}_g$. Then θ_{VP} is $a \leftrightarrow a_g$, and so k(V, N) is nice.

Now suppose that $a \in C'$. Then $V = Aa_g Bb_g \overline{a}C'_1 aC'_2 \overline{a}_g D\overline{b}_g$ say, so that VP is $Aa_g B\overline{a}C'_1 ab_g C'_2 \overline{a}_g D\overline{b}_g$. Then either $\theta_{VP} = 1$, in which case k(V, N) is nice, or θ_{VP} is $a_g \leftrightarrow c$, where $c \in C'_1$ and $\overline{c} \in C'_2 \cup D$. The quotient words corresponding to the latter possibility are $a_g b_g \overline{a} ca \overline{c} \overline{a}_g \overline{b}_g$ and $a_g b_q \overline{a} ca \overline{a}_q \overline{c} \overline{b}_q$ so that k(V, N) is nice.

Lastly, suppose that $a \in D$. Then $V = Aa_g Bb_g \overline{a}C'\overline{a}_g D_1 a D_2 \overline{b}_g$ say, so that VP is $Aa_g B\overline{a}C'a_g D_1 a b_g D_2 \overline{b}_g$. Then θ_{VP} is $a_g \leftrightarrow c$, where $\overline{c} \in D_2$ and $c \in A \cup C' \cup D_1$. The corresponding quotient words are $ca_g b_g \overline{a} \overline{a}_g a \overline{c} \overline{b}_g$, $a_g b_g \overline{a} \overline{c} \overline{a}_g a \overline{c} \overline{b}_g$ and $a_g b_g \overline{a} \overline{a}_g c a \overline{c} \overline{b}_g$, so that k(V, N) is nice. This disposes of case 2.4.2.

2.4.3. $V = Aa_g B' ab_g C \overline{a}_g D \overline{b}_g$ and $P = (a, \overline{b}_g; \overline{b}_g)$. Then $a \in A \cup B'$,

Suppose firstly that $\overline{a} \in A$. Then $V = A_1 \overline{a} A_2 a_g B' a b_g C \overline{a}_g D \overline{b}_g$ say, so that VP is $A_1 b_g \overline{a} A_2 a_g B' a C \overline{a}_g D \overline{b}_g$. Then θ_{VP} is $a_g \leftrightarrow c$, where $c \in A_1$, $\overline{c} \in A_2 \cup B' \cup C \cup D$. The corresponding quotient words are $c \overline{a} \overline{c} a_g a b_g \overline{a}_g \overline{b}_g$, $c \overline{a} a_g a b_g \overline{c} \overline{a}_g \overline{b}_g$ and $c \overline{a} a_g a b_g \overline{a}_g \overline{c} \overline{b}_g$, so that k(V, N) is nice.

Now suppose that $\overline{a} \in B'$. Then $V = Aa_g B_1 \overline{a} B_2 a b_g C \overline{a}_g D \overline{b}_g$ say, so that VP is $Aa_g B_1 b_g \overline{a} B_2 a C \overline{a}_g D \overline{b}_g$. Then either $\theta_{VP} = 1$, in which case k(V, N) is nice, or θ_{VP} is $a_g \leftrightarrow c$, where $c \in B_1$ and $\overline{c} \in B_2$. The quotient word for the latter possibility is $a_g c \overline{a} \overline{c} a b_g \overline{a}_g \overline{b}_g$, so that k(V, N) is nice.

This concludes the proof of the theorem. \blacksquare

Let L_g be the complex for the cyclic word Π_g^c (as described in [9]). Then L_2 has 4t vertices, where $t = 4!2^4$ is the order of the extended symmetric group Ω_4 . Thus the quotient complex of L_2 by the obvious Ω_4 action has 4 vertices, representatives of which are the following four vertices of L_2 : $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}$, $a_1a_2b_1a_1^{-1}b_1^{-1}b_2a_2^{-1}b_2^{-1}$, $a_1b_1a_2a_1^{-1}b_1^{-1}b_2a_2^{-1}b_2^{-1}$ and $a_1b_1a_2b_2a_1^{-1}b_1^{-1}a_2^{-1}b_2^{-1}$. Using the quotient complex, it is straightforward, albeit tedious if done by hand, to compute generators for the stabiliser $M(\Pi_2^c)$ of Π_2^c . This was carried out by the author, and it was verified from this that $M(\Pi_2)$ has generating set $\{\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\}$, where the τ_i satisfy:

$$\begin{aligned} &\tau_1: a_1 \to a_1 b_1^{-1}, \\ &\tau_2: b_1 \to b_1 a_1, \\ &\tau_3: a_1 \to a_1 b_1^{-1} a_2 b_2 a_2^{-1}, \\ &a_2 \to a_2 b_2^{-1} a_2^{-1} b_1 a_2, \\ &b_1 \to a_2 b_2^{-1} a_2^{-1} b_1 a_2 b_2 a_2^{-1}, \\ &\tau_4: b_2 \to b_2 a_2, \\ &\tau_5: a_2 \to a_2 b_2^{-1}, \end{aligned}$$

and all generators not explicitly mentioned are left fixed. This generating set was suggested by the corresponding set $\{\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\}$ which is described in [1] as a generating set of $M_{g,0}$.

Acknowledgement. This work was written before the appearance of [7]. In preparing it for publication, I have not attempted to remove any minor overlaps with [7].

I would like to thank Warren Dicks for encouraging me to publish this material.

J. McCool

References

- J. S. BIRMAN, A normal form in the homeotopy group of a suface of genus 2, with applications to 3-manifolds, *Proc. Amer. Math. Soc.* 34 (1972), 379–384.
- M. DEHN, Die Gruppe der Abbildungklassen, Acta Math. (2) 11 (1975), 181–190.
- 3. W. DICKS AND E. FORMANEK, Automorphism subgroups of finite index in algebraic mapping class groups, preprint (1996).
- 4. P. J. HIGGINS AND R. C. LYNDON, Equivalence of elements under automorphisms of a free group, *J. London Math. Soc.* 8 (1974), 254–258.
- 5. S. HUMPHRIES, Generators for the mapping class group, in "*Topology of low-dimensional manifolds*," Lecture Notes in Mathematics **722**, Springer, Berlin, 1979.
- W. B. R. LICKORISH, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769–778.
- 7. R. C. LYNDON AND P. E. SCHUPP, "Combinatorial Group Theory," Springer, Berlin, 1977.
- 8. J. MCCOOL, A presentation for the automorphism group of a free group of finite rank, J. London Math. Soc. (2) 8 (1974), 259–266.
- 9. J. MCCOOL, Some finitely presented subgroups of the automorphism group of a free group, *J. Algebra* **35** (1975), 205–213.
- 10. A. SHENITZER, Decomposition of a group with a single defining relation into a free product, *Proc. Amer. Math. Soc.* 6 (1955), 273–279.
- B. WAJNRYB, A simple presentation for the mapping class group of an orientable surface, *Israel J. Math.* 45 (1983), 157–174; Errata: 88, (1994), 425–427.

Department of Mathematics University of Toronto Toronto M5S 1A1 CANADA

Rebut el 22 de Febrer de 1996