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GENERATING THE MAPPING CLASS GROUP
(AN ALGEBRAIC APPROACH)

JAMES McCooL*

Abstract

We give an algebraic proof of the fact that a generating set of the
mapping class group My 1 (g > 3) may be obtained by replicating
a generating set of Ms 1.

1. Introduction. We denote by F(S) the free group generated by
the subset S of the set of symbols X = ay,b1,a9,bs,..., and put Fj, =
F(X}), where X}, consists of the first k elements of X (all groups F(.S)
are considered as subgroups of F(X)). L(X), the set of letters, is defined
to be X UX ! ie. the set ai, @y, b1,b1, ..., where @; denotes al_l7 etc.;
for S C X, the set of letters L(S) of F'(S) is F'(S)NL(X). Forw € F(X),
L(W) is the set of letters occurring in the reduced form of w.

We put A(S) = Aut F(S), with Ay, for A(Xy), and denote by II, the
g

element of Fy, given by II, = H[ai,bi], where [a;,b;] = a;b;a@;b;. The
i=1

group M (Il,) is defined by
M(I1,) = {60 € Agy; 1,0 =11},

Let py denote conjugation in Fy, by the element II,. The subgroup N,
of M (I1,) generated by pg is central, and the quotient My, = M (I1;) /N,
may be described as an (orientation preserving) (algebraic) mapping class
group. It was shown in [9] that My, is finitely presented, though com-
putation of an explicit presentation valid for all g was beyond the scope
of the results of [9]. Such a presentation of the geometric mapping class
group was found by Wajnryb [11]. Since the geometric and algebraic
mapping class groups are known to coincide (see, e.g., the remarks and
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references in [3]), this provides a presentation for our M, ;. Wajnryb’s
work is geometrically based, as is earlier work on generating sets by Dehn
[2], Lickorish [6] and Humphries [5].

The present paper has the modest object of providing a purely al-
gebraic method for obtaining a generating set of M (Il,), and hence of
M, 1. Thus we define the groups M (r,g), for 1 <r < g—1, by

M(T7 g) = {9 € A{ara br7 Qr41, br+1}§ [ara br][ar+17 br+1]9
= [ar, br][ar+1, brya]}

Clearly each M(r, g) is an isomorphic copy of M (Ily), and each M (r,g)
is naturally embedded in M(Il,), as is each M(II,), for r < g. We will
show

Theorem. Let G, be a generating set of M(r,g), 1 <r < g—1. Then
g—1
U G, 1is a generating set of M(Il,).

r=1

It only remains, in order to fulfil our objective, to find a generating
set Go of M(Ily). We discuss this after the proof of the theorem.

We assume below that the reader is familiar with the notation and
results of [8] and [9] (see also [7]). In addition, we will need the following
definition.

Let S C L(X,), and § € A,;. We say that 6 involves only the letters
of S if, writing Sy for S*1 N X, there exists ¢ € A(S;) such that 6 and
¢ agree on S1 and 6 is the identity on X, — S1.

2. Preliminary results. The following result was proved by Shen-
itzer in [10].

Lemma 1. Let W be a minimal element of Fy, with |W| > 1. Let
(A;a) be a Ty in Ay, with a,@ not in L(W) and with AN L(W) not the
empty set. Then |W(A;a)| > |W|+ 2.

As a consequence of this we have

Corollary 2. (1) A product WiWs--- W, of disjoint minimal ele-
ments of Fy, is minimal if, and only if, |[W;| > 2, 1 <i <.
(2) Two equivalent minimal words involve the same number of gener-
ators.
(3) If W is minimal, |W| > 1 and (A;a) = (z1,...,25,a;a) is a Ts
such that AN L(W) is non-empty and |W(A;a)| < |W/|, then W

must contain a subword x;a or ax; for some i, 1 < < j.



GENERATING THE MAPPING CLASS GROUP 459

Proof: Parts (1) and (2) were proved by Shenitzer in [10]. An imme-
diate consequence of these is the fact that for any S C X and W € F(S5),
W is minimal in F'(S) if, and only if, W is minimal in F(X).

Now suppose W, (A;a) satisfy the conditions of (3), and no subword
of the desired form exists. Let W’ be the unreduced word obtained
from W by replacing each letter b in W by b(A;a). It is known [4] that
w(A;a) is obtained from W' by deleting all subwords of W’ of the form
aa. Since W contains no subword of the form z;a or aZ;, the a and @
symbols in any subword aa of W’ must both be ‘new’. Now let W7 be
obtained from W by replacing each a,a by «x, T respectively, where z is
a letter not in L(W)U AU A~L. From the above remark, it is clear that
[W1(A;a)| = |W(A4;a)| < |W|. However, this contradicts Lemma 1, and
so proves (3). B

It follows from (1) that II, is minimal, since [a;, b;] is clearly minimal.
We denote by m(Il,) the set of minimal equivalents of II, in Fy,. If
V € m(I1,) then we observe that V must contain exactly one occurrence
of each letter in L(Xa,). Now if V' € m(Il,) has a subword 27, where
z,y € L(Xag), then it is clear, since V' contains one occurrence of each
of z,Z, that V(z,y;y) belongs to m(Il,) (as does V(y,z;x)). Combining
this observation with (3) of Corollary 2, we obtain

Corollary 3. Let V € m(Il,) and let (A;a) = (y1,... ,Yr,a;0) € Agg
be such that V(A;a) € m(Il,). Then there is a permutation o € S, such
that

V(Yo(1), @;a) - (Yo(), a; a) € m(Tly)

for1<i<r.

We next prove

Lemma 4. Let r, k be positive integers with r < k and let Y = Xy, —
X,. Let U,V,W be such that UW € F,, LIV)UL(V™!) =Y uUY!
and V' is minimal. If B € Ay is such that ;0 = x;, 1 < i < r, where
X, ={z1,... 2.}, and (WV)B =UV, then U =W and (3 involves only
the letters of Y.

Proof: Let Wy = U~'W, so that (W1V)3 = V. We put

Z=A{x1,... yTpy.eoo , T1yene T, W1V},

where Z contains N occurrences of the r-tuple Z; = (z1,... ,2,), and N
is chosen so N > |W1V|. Then Z is mapped by 8 to Zo={Z1,... ,Z1,V}.



460 J. McCooL

Since |Z| > |Z2|, there exists (see [8], [9]) a factorisation 5 = Pj --- P!,

where Pj,... , P, € W, and an integer ¢, 1 <t < s, such that
(1) |ZP[ - P]| <|ZP[---P[_4], i<t

and

(2) [ZPy-- Pl =12, i>t.

Each P/ with ¢ <t must be a T». Now for any tuple Z3, type one T and
type two P, if |Z3| = | Z3(TP)|, then

|Z3| = | Zs(TPT")| = | Zs(TPT~ )T,

and TPT~! € T,. Using this observation, we can modify the original
factorisation of § to obtain 8 = P; - -- P,/T where P, ..., P, are Ty’s, T is
a Ty (possibly the identity) and (1), (2) hold with Py,... , P, in place of

P{,...,P.. From the choice of Z it is easy to see that no P; can increase
the length of any one of x1,... ,x,, and hence each P; and T must fix
all of z1,...,x,.

If P, has multiplier from L(Y), then
|(WAV)Py| = [Wh(VP)| = WAV,

since V is minimal and no cancellation occurs between W7 and V P;. In
view of (1) it follows that W7 =1 in this case.

If P, has multiplier from L(X,), then by Lemma 1 |V P;| > |V|+ 2;
moreover, in (W1V)P; = W1 (V Py), at most one cancellation can occur
between Wy and V Py, so that |(W1V)Py| > |W,V| and again we must
have W7 = 1.

Hence we have shown that W; = 1. It now follows from Lemma 1,
as above, that P; cannot have multiplier from L(X,), and the same
argument shows, inductively, that no P; can have multiplier from L(X,).
Since each P; fixes X, pointwise, so must 7. This proves the lemma. W

Definition. Let V € m(Il,), A C L(X2,), ANA™! =2, |A| = 2r for
some integer r > 1. We say that A is interlocked in V if the “quotient
word” V(A) obtained by deleting all letters in L(X2,) — (A+ A™!) from
V' is a minimal equivalent of IT,..

Let V € m(Il;) have reduced form V = QzRzTS, for some letter .
Then there is y € R (i.e. letter y which is a subword of R) such that
7y ¢ R, for otherwise conjugation of the generators occurring in R by x
would reduce the length of V. Hence for each z € V thereisay € V
such that x,y are interlocked in V.

We now observe
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Lemma 5. Let A be interlocked in V' and let 0 € Ayy be such that
Vo € m(Ily) and GO = G, where G is the normal closure in Fsy of
L(X24) — (A+ A7Y). Then A is interlocked in V.

Proof: For ease of notation we suppose that A = Xs,.. Let p be the
projection p : Foy — Fby/G = Fy,. Since GO = G, 0 induces an auto-
morphism 60y of Fy,. and pf; = Op, so that

Vphy = V(A)0, = Vop = (VO)(A).

Now V(A) € m(Il,) since A is interlocked in V. Thus (V6)(A) is an
automorphic image of II,. and so belongs to m(Il,.), since it has length
4r. Hence A is interlocked in V6. m

3. The complex K,. Let K, be the complex for I, constructed in
9]; i.e. K =m(Ily), K} is K, with a directed edge labelled (Vi, Va; P)
joining vertex Vi to Va whenever P € W is such that V1 P = V5, and K|,
is K with a finite set of 2-cells attached. It was shown in [9] that there
is an isomorphism « : m (K, II;) — M(I,), and that the isomorphism
is the natural one, i.e. is induced by the homomorphism x from the
groupoid of paths in K, to A, whose effect on a path p in K,

p=(V1,Va; P1), (Va, V3; Pa), ..., (Vs—1, Vi Ps—1),

is given by px = Py Py -+ Ps_.

Let V € m(Il;) be such that z,y are interlocked in V. Then there is
a (unique) T € Ty with T involving only = and y such that VT =V; =
AxByCZDyE (where the expression given for V; is reduced). Now let
FE have reduced form x1xs---x;. Then

V(Y 71;70) (U, T2 T2) - (U, T Ti) € m(Ily), 0 <i<t.

The product p1 =(g, T1;Z1) - - - (G, Ty; T) maps Vi to Vo= Az BEyCZT DY,
and may be denoted by p1 : y — Ey, since p; fixes each letter other than
¥, Y. The factorisation given for 11, yields a path p; in K, of length r from
Vi to Vi, with p1k = 1. Now define pig, 3 and jug by po : @ — xBE,
us:y = yCBE, py: © — DCBEx. Then Vous = V3 = AzyCBET DY,
Vapus = Vy = AeyzDCBEY, Vyuy = Vs = ADCBEzyzy. FEach u; has
a factorisation similar to that given for u;, and a corresponding path p;
in K4 with p;x = p;. We put p = Tuypopsps and let p be the path
(V1,Va;T), p1,p2,P3, P4, 80 that px = p. The p; are instances of the
familiar ‘cut and paste’ operations, and we shall refer to both p and u
as the C'P operation on z,y taking V to ADCBFExyT7y. We note that u
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moves only z and y. Now ADCBE is minimal, involves exactly 2g — 2
elements of X, and each of these occur once with exponent one and
once with exponent minus one. It follows easily from this that there is a
sequence of C'P operations which involve only the generators occurring
in ADCBE and which map ADCBE to Il,_,J, where J € T}.

We now observe

Lemma 6. Let a,b be interlocked in V- € m(Il,), g > 2. Let x €
L(Xa4) be such that © ¢ {a,a,b,b}. Then there is y € V such that
{a,b,z,y} is interlocked in V.

Proof: Let p be the CP’s on a, b taking V to Vi = Ula,b]. Then z € U
and there is y € U such that z,y are interlocked in U. Clearly {a,b, x, y}
is interlocked in V7, and so by Lemma 5, is interlocked in V. &

We now specify for each V' € m(Il;) a path 7y, from V to II;. For
g =1and V € m(Il;), there exists a unique type one Ty € As such that
VTy =I1,; we define 7, to be (V4,1I1, Ty). Now suppose that g > 1 and
that 7y, has been defined for all V'€ m(Il,), 1 <r < g. Let V € m(Il,)
and write V = A’ B’'yC'TD’'y, where z is the first letter to the left of y
in V such that x and y are interlocked in V. Let 6, = 616>, where 6; is
the type one interchanging b, and y, and 6 is the type one interchanging
26y and ay. Then VO, = Aay,Bb,Ca,Db,. We call 6, the correcting
permutation on V. Now let p;, be the CP’s on ag4,b, taking V6, to
ADCBagbgagb,. From above, we know that ADCB € m(Il,_;) and
so a path, call it 7, has already been defined from ADCB to II,_; in
K,_1. Taking the obvious interpretation of vy, as a path in K, we define
Ty, to be the path (V,V6,,;0,,), 1ty,,7,,. We shall denote the images of
the paths 7, 1y, 7y, under x by the same symbols in what follows.

Now it is clear that 7 (K, II,) is generated by the classes of the set of
paths T‘;l, e, Ty, , where V ranges over the points of K, and e = (V, Vi; P)
ranges over the edges beginning at V. Moreover, it follows easily from
Corollary 3 that we can restrict e to range over the edges (V, Vq; P) where
P is a Nielsen automorphism, in fact either P € T} or P is of the form
(a,b; b), where ab or ba is a subword of V.

It follows that M(II,) is generated by all 7, 1P7'V1, ie. by all
it u;10;1P9V1 [y, Vv, » Where here V' ranges over m(1l,), P ranges over
the Nielsen automorphisms described above, Vi =V P and v, yv,, pv, vy,
Oy, by, are as defined above.

We observe that if P € T3 then HVP9V1 € T and does not involve a,
or by. Also, if P = (a,b;b), then

0y, POy, = (aby,,boy,;b0,,)0;, 0y, = P16y, 0,
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where Py = (afy,,b0,;b0y), Vo = VO, Py and § = 6;,'6,,'60,,. The
portion of K, relating to this will look like

v P oy

Vi
Oy
Vo
Hvy
Hvy = UV

where Vo =V, V3 = V20V2, Vi = V1t9v1. We see that

T\jlpTVl = T‘;lﬂ\;la\;lngluVl’yVl
—-1 -1 -1 -1
= (7V Ky Plevgﬂv27v2)(7v2 Ky, HMVI'YVI)

= (T‘;()lplTVz)(T‘;slgTV4).

We note that 6 € T7 and does not involve a4 or by.

From the above observations we see that M (II,) is generated by the
set of all k(V,N) = 'y;lu(/lNuVl Yy, » Where V ranges over the elements
of m(Il,;) with 6, = 1, N is either a type one not involving ag or b,
(in which case 6,y = 1) or N = P6,,p where P is a type two Nielsen
automorphism, and VN = V.

We say that a k(V, N) is nice if there is a set S = {ag, by, x,y} of letters
such that S is interlocked in V' and IV involves only the elements of S.
We note that if £(V, N) is nice then, by Lemma 5, the corresponding set
S is interlocked in VN. B

The following is the key result in proving the theorem.

Lemma 7. Let k(V,N) be nice. Then k(V,N) = kihky, where h €
M(g—1,9) and k1, ke € M(II;_1).

Proof: We may assume that g > 3. Let S be a set such that S =
{ag,bg,z,y} and S is interlocked in V. Let V = Aa,Bb,Ca,Chy, Vi =

AvaygB1byCiagD1by. Then, by Lemma 5, x,y are interlocked in both
ADCB and A1 D,C1B;. Let n be the CP’s on x, y taking ADCB to (say)
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Ul[z,y], and 7 the CP’s on z,y taking A;D,C1B; to (say) Uiz, yl.
Then b/ = 7771N\_/1N,uv1771 maps Uglz,ylag, be] to Uiz, yllag, by, and
fixes each element of L(X54) — S. Hence, by Lemma 4, A’ involves only
z,y,aq and by, and U) = U{. Let 7 be a type one not involving a,
or by, such that ag_17 = x and by_17 = y. Let U(I)T_l = Uy, so that
{U§z,y]}7=! = Uplag—1,by—1]. Clearly Uy € M(II;_5). Choose X €
Asg—4 such that UpA™! = TI,_.
Now

k(V,N) =" 1y Ny, v,
= (W' IATHOTR I ()
= k1hks

say. From their definition, it is clear that kq, ko € M (II;_1). Since A’ in-
volves only ,y, ag, by, it follows that 7h/T~! involves only a,_1,b,—1,a,
and by, and so commutes with A. Hence h = 7h/t=1 € M(g—1,9). m

4. Proof of the Theorem. The theorem follows immediately from

Lemma 8. For each k(V,N) there exist ki,ko € M(Il;_1) and h €
M(g —1,g) such that k(V,N) = kyhks.

Proof: Let V = AayBbyCayDb, and Vi = AjayB1byCiayD1b,.
(1) Suppose that N does not involve ag4 or by. Then
F(V,N) =9 iy Ny, v, = 0 (g N, N7H N

Now py' Ny, N=' maps ADCBlag,bg] to {(A1D1C1B1)N "} ag, b,]
and fixes each element of X, _;, so that, by Lemma 4, it must involve
only a, and b,. However, u;lN,uVlN’l fixes a4 and b; modulo the
normal closure of Xy,_5 in Fhy, and so must be the identity. Hence
K(V,N) =75 Ny, € M(ILg-).

This disposes, in particular, of the case N € Tj.

(2) We may now assume that N = (a, b;b)0yp = POy p. If N involves at
most one other letter besides a4 and by, then using Lemmas 5 and 6 it
follows easily that k(V, N) is nice, and so the result holds by Lemma 7.
We now consider a number of cases separately.

Case 2.1. P does not involve a4 or by. If 8y p = 1, then this case is
covered by (1) above. Otherwise, 6y p must be a, < ¢ for some letter
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c ¢ {ay, by, @y, b,}. Noting that ay, b, are interlocked in VP, we write
VP = A'a,B'b,C'a,D'b,. Let p be the CP’s on a4, b, taking VP to
A'B'C'B'[ag4, bg], and let v € Agy_o be such that (A'D'C'B’)y =1I,_;.
Then

k(V,N) =y 1y POy puvivy, = (v 1wy Pry) (v 1™ 0y phey, o, )-

Repeating the argument given in (1), we see that v;l,u(,lP,uw eMII;_q).
Also, 6, p involves only ¢ besides a4, so that, by (2), 'yfllflﬁvp,uvl T,
has a factorisation of the desired form. Hence, the result holds in this
case.

We may now assume that P involves exactly one of ag4,by. We note,
by Corollary 2, that V must contain a subword ab or ba.

Case 2.2. P fixes each element of X,_;. Then P must be one of
(ag,b;b), (ag,b;b), (by,b;b) or (by,b;b), and so a,,b, are interlocked in
VP.

Suppose that one of the first three possibilities holds. The correcting
permutation 6y, in each of these cases is either trivial, or is ay < b%,
(e = £1) (for example, if P = (@g4, b;b) and ba, is a subword of V, then
V = A'ba,Bb,Ca,Db,, where A = A'b, and VP = A'a,Bb,Ca,bDbg, so
that 0y, is a, < b if b € B, and is the identity otherwise). Since only b
and a4 are involved in NV, the result holds.

Suppose now that P = (b, b;b). Then we have V = Aa,B1bb,Ca, Db,
and VP = AayB1b,Ca,Dbyb. Since 0, = 1 we must have b € A, so that
V= All_)AgagBlbbgCﬁngg say, and then VP = AlgAgagBlbgCﬁgDEgb.
In order to describe 8y p, we must choose the first letter ¢ to the left of b in
V P so that ¢, b are interlocked in V P. Thus € is in one of A, By, C or D.
The quotient words V' (ag, by, ¢, b) corresponding to these possibilities are
cEEagbngng cEagEbbgﬁgl_)g, cEagbngEgl_)g and cl_)agbbgagégg respectively.
Each of these is equivalent to Ily, so that {ag4,by,c,b} is interlocked in
V. Thus k(V, N) is nice, and so the required result holds. This disposes
of Case 2.2.

The only remaining possibilities are that b € {a,,b,,d,,b,}, and a €
L(ng_g).

Case 2.3. b = a4 or b = a,. Here we note that the effect of P on V'
is to shift the a4 or @, in V/, so that 6y, must be the identity, or of the
form a, < c, for some letter ¢ ¢ {b,,b,}. If 0,,p = 1, or if ¢ = a*!, then
the result holds, since only a4 and a are involved in N. Otherwise, 6y, p
is a, <> c and ¢ # a*!. Then, for ¢ = £1.

POy p = (a,ag;a)0y p = QVP{H\;}?(CL?G'_Z; ag)byp}

= by pla, e ).
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Now k(V,N)™* = k(Vy,N~1), and N~ = (a,e; )0, p. Since (a,c;)
does not involve a4 or by, the result follows from Case 2.1.

Finally, we have

Case 2.4. b=1bg or b = Bg. We must consider a number of subcases.

2.4.1. 'V = AayBb,Ca,D'ab,, P = (a,by;b,). Then in V we have
ae AUCUD (ie. @ is a subword of one of A,C, D) since 6, = 1.

Suppose firstly that @ € D’. Then V = Aa,Bb,Ca,DhaD}ab, say, so
that VP = Aa,Bb,Ca,Db;aD4a. Now 0,5 is the product of b, < @
and ay < c, where c is the first letter to the left of @ in VP such
that € € Dj. Now in V' we must have ¢ € AU C U D] since 6y = 1.
The quotient words V(ag,by,a,c) corresponding to these possibilities
are caghyagacaby, agbycagyacaby and aybyagcacab, respectively. Each of
these is equivalent to Ils, and so k(V, N) is nice in this case.

Now suppose that @ € C. Then V = Aa,Bb,C;aC%a,D’ab, say, so
that VP = Aa,Bb,Cib,aCha,D’a. Thus 0y, p is either by < @, in which
case k(V, N) is nice, or is the product of b, < @ and a4 <> ¢, where c € (]
and ¢ € C5 U D. The quotient words V (ag, by, a, ¢) corresponding to the
latter possibility are agb,cacagaby and agbscaagcab, and it follows that
k(V,N) is nice.

Lastly, suppose that @ € A. Then V = AjaAba,Bb,Ca,D’'ab, say, so
that VP = Ab,aAba,Bb,Ca,D'a. Here 0y, is 6105, where 0; is b, < @
and 60, is ay < a, so that N involves only a4, b, and a. Consequently
kE(V,N) is nice. This disposes of case 2.4.1.

2.4.2. V = Aa,Bb,aC'a,Db, and P = (a,by;b,). Since 0, = 1, we
must have a € AUC" U D.

Suppose firstly that a € A. Then V = AjaAsa,Bb,aC'a,Db,, say, so
that VP is Ajab,Asay BaC'ayzDb,. Then 6, p is a < ag, and so k(V, N)
is nice.

Now suppose that a € C’. Then V = Aa,Bb,aC}aCha,Db, say, so
that VP is Aa,BaCab,C%a,Db,. Then either 6y, p = 1, in which case
k(V,N) is nice, or 0y, p is ag <> ¢, where ¢ € C{ and ¢ € C5 U D. The
quotient words corresponding to the latter possibility are agbgﬁcaéaggg
and agbgacaa,eb, so that k(V, N) is nice.

Lastly, suppose that a € D. Then V = AanggaC'EngaDggg say, so
that VP is AagBEC'angabnggg. Then 0y, p is ay < ¢, where ¢ € Dy
and ¢ € AUC'UD;. The corresponding quotient words are cagb,a Egaél_)g,
agbgacagach, and azbyaagcach,, so that k(V, N) is nice. This disposes
of case 2.4.2.

2.4.8. V. = AayB'aby,Ca,Db, and P = (a,by;b,). Then a € AU B/,
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since 0y, = 1.

Suppose firstly that @ € A. Then V = AlﬁAgagB’abgCangg say, SO
that VP is AlngAgagB’aCEngg. Then 0y, p is ag < ¢, where c € Ay,
¢ € A;UB'UCUD. The corresponding quotient words are c@ cagab,a,b,,
caagcabgagby, caagabyetgb, and caagzabyagchy, so that k(V, N) is nice.

Now suppose that @ € B’. Then V = Aa,BjaByab,Ca,Db, say, so
that VP is AayB1byaBsaCay,Db,. Then either 6y, p = 1, in which case
k(V, N) is nice, or 0y, p is a, <+ ¢, where ¢ € By and ¢ € B,. The quotient
word for the latter possibility is agcﬁéabgaggg, so that k(V, N) is nice.

This concludes the proof of the theorem. W

Let Ly be the complex for the cyclic word II§ (as described in [9]).
Then Ly has 4t vertices, where t = 4!2* is the order of the extended
symmetric group §24. Thus the quotient complex of Ly by the obvi-
ous 24 action has 4 vertices, representatives of which are the follow-
ing four vertices of Lo: alblaflbflagbgaglbgl, alagblaflbflbgaglbgl,
alblagaflbflbgaz_lb;l and alblagbgaflbflaglbgl. Using the quotient
complex, it is straightforward, albeit tedious if done by hand, to com-
pute generators for the stabiliser M (II5) of II§. This was carried out by
the author, and it was verified from this that M (II) has generating set
{71, 72,73, T4, 75}, where the 7; satisfy:

T :ap — albl_l,
T2 : by — biay,
T3 : a1 — albl_lagbga;l,
as — agbglaglblag,
b1 — a2b2_1a2_1b1a2b2a2_1,
T4 : by — baag,

Ts @ Gy — a2b2_1,

and all generators not explicitly mentioned are left fixed. This generating
set was suggested by the corresponding set {7, 72,73, 74,75} which is
described in [1] as a generating set of M, .
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