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AFFINE INVARIANT CONDITIONS
FOR THE TOPOLOGICAL DISTINCTION

OF QUADRATIC SYSTEMS
WITH A CRITICAL POINT

OF THE 4TH MULTIPLICITY

Mark Voldman, Iu. T. Calin and N. I. Vulpe

Abstract
The affine invariant partition of the set of quadratic systems with
one finite singular point of the 4th multiplicity with respect to
different topological classes is accomplished. The conditions cor-
responding to this partition are semi-algebraic, i.e. they are ex-
pressed as equalities or inequalities between polynomials.

Let us consider the system of differential equations

(1)
dxj

dt
= aj + aj

αx
α + aj

αβx
αxβ , (j, α, β = 1, 2)

where aj
α and aj

αβ (j, α, β = 1, 2) are real numbers (the tensor aj
αβ is

symmetric in the lower indices, with respect to which the complete con-
traction was made).

The topological classification of the quadratic system (1) in the case
when it has a unique real critical point on its phase plane is done in
[4] and [6]. The conditions for the classification into topological classes
described in these papers are expressed using the parameters of the cor-
responding canonical forms. The topological classification of system (1)
with a unique real simple critical point is done in [7].

In [9] the conditions for the topological classification of quadratic sys-
tems with a unique finite critical point of multiplicity 4 were gived. How-
ever, the critical point was situated at the origin of the coordinates of
system (1) and the obtained conditions are center affine invariant. Thus
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the conditions given in [9] are not valid for the full system (1) in the case
when such a point does not coincide with the origin.

Using the results of article [9] we shall find the corresponding affine
invariant partition of coefficient space E12 of system (1). The affine
invariant conditions corresponding to this partition are semi-algebraic,
i.e. they are expressed as equalities or inequalities between polynomials.

Preliminaires

Let a ∈ E12 be an element of the space of the coefficients of system (1)
and let us consider the group Q of nondegenerate real linear transforma-
tions of the phase plane. We denote by rq the linear presentation of any
element q ∈ Q into the coefficient space E12 of system (1).

Definition 1 [8]. A polynomial K(a, x) of the coefficients of sys-
tem (1) and the unknown variables x1 and x2 is called a comitant of
system (1) in the group Q, if there exists a function λ(q) such that

K(rq · a, q · x) ≡ λ(q)K(a, x)

for every q ∈ Q, a ∈ E12 and x = (x1, x2).

The function λ(q) is called a multiplicator. If λ(q) ≡ 1, then the
comitant K(a, x) is called absolute; otherwise it is called relative. It is
known (see [8]), that λ(q) = ∆−x

q , where ∆q �= 0 is the determinant of
the linear transformation matrix and the integer κ is called the weight
of the comitant. A comitant K of system (1) in the group Q = GL(2, R)
of linear homogeneous transformations of the phase plane of system (1)
(which is also called a group of center-affine transformations) is called
center affine. A comitant K of system (1) in the group Q = Aff(2, R)
of affine (linear non-homogenous) transformations is called affine. If the
comitant K does not depend explicitly on the variables x1 and x2 then
it is called an invariant (center affine or affine, respectively).

Remark 1. We say that the comitant of system (1) equals zero when
all its coefficients vanish. The signs of the comitants which take part in
some sequences of conditions should be calculated at one and the same
point, where they do not vanish.

We denote by T (2, R) the group of shift transformations and by rt the
linear presentation of any element t ∈ T into the coefficient space R12 of
system (1).
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Definition 2 [3]. A center affine comitant K(a, x) of system (1) is
called a T -comitant if the relation

K(rt · a, x) ≡ K(a, x)

is valid for every t ∈ T and a ∈ E12.

We shall say that comitant K is of the type (ρ,κ, d) if it is a homoge-
neous polynomial of degrees ρ and d in the coordinates of vector x and
in the coefficients of system (1), respectively, and if its weight is equal
to κ.

Definition 3 [5]. The polynomial

(f, ϕ)(k) =
(r − k)!(ρ− k)!

r!ρ!

k∑

h=0

(−1)hCh
k

∂kf

∂(x1)k−h∂(x2)h

∂kϕ

∂(x1)k∂(x2)k−h

is called a transvectant of index k of two forms f and ϕ. The degree of
these forms in the coordinates of vector x = (x1, x2) are equal to r and
ρ, respectively and k ≤ min(r, ρ).

Proposition 1 [3]. The transvectant (f, ϕ)(k) of two T -comitants f
and ϕ of the types (r,κ1, d1) and (ρ,κ2, d2) respectively will be also a
T -comitant of the type (r + ρ− 2k,κ1 + κ2 + k, d1 + d2).

Let us write system (1) as

dx1

dt
= P0 + P1 + P2,

dx2

dt
= Q0 +Q1 +Q2,

where Pi (i = 0, 1, 2) are homogeneous polynomials of degree i, and
consider the following center affine invariants and comitants, which are
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constructed directly through the right-side parts of the given system:

(2)

J1 =
∣∣∣∣
∂P1/∂x

1 ∂P1/∂x
2

∂Q1/∂x
1 ∂Q1/∂x

2

∣∣∣∣ = aα
pa

β
q εαβε

pq,

C1 =
∣∣∣∣
∂P1/∂x

1 ∂P2/∂x
2

∂Q1/∂x
1 ∂Q2/∂x

2

∣∣∣∣ −
∣∣∣∣
∂P1/∂x

2 ∂P2/∂x
1

∂Q1/∂x
2 ∂Q2/∂x

1

∣∣∣∣

= xαaβ
q a

γ
pαεβγε

pq,

C2 =
∣∣∣∣
P0 P1

Q0 Q1

∣∣∣∣ = xαaβaγ
αεβγ ,

C3 =
1
4

∣∣∣∣
∂P2/∂x

1 ∂P2/∂x
2

∂Q2/∂x
1 ∂Q2/∂x

2

∣∣∣∣ =
1
2
xαxβaγ

pαa
δ
qβεγδε

pq,

C4 =
∣∣∣∣
P0 P2

Q0 Q2

∣∣∣∣ = xαxβaγaδ
αβεγδ,

C5 =
∣∣∣∣
P1 P2

Q1 Q2

∣∣∣∣ = xαxβxγaδ
αa

µ
βγεδµ,

C6 = x2P2 − x1Q2 = xαxβxγaδ
αβεδγ ,

(where ε11 = ε22 = ε11 = ε22 = 0, ε12 = ε12 = −ε21 = −ε21 = 1).

We also introduce the following T -comitants:

C7 = xqxsxv[2apar
αγ − ap

αa
r
γ ]au

βκ
εpqεrsεuvε

αβεγκ,

C8 = xαxβ [am
s a

n
βa

k
pr−2ak

ra
n
βa

m
ps+ak

pa
m
r a

n
sβ−4amak

pra
n
sβ ]al

qαεklεmnε
pqεrs,

and transvectants:

µ1 = (C3, C3)(2), H1 = (C3, C1)(1),

G1 = (C1, C5)(1), G2 = (C5, C5)(2), G3 = (C3, C4)(1),

η1 = (((C6, C6)(2), C6)(1), C6)(3), M1 = (C6, C6)(2),

D1 = (((C6, C7)(2), C6)(1), C6)(3), D2 = ((C3, C7)(1), C6)(3),

D3 = (C3, C8)(2), D4 = (((C7, C7)(2), C7)(1), C7)(3),

which by Proposition 1 are also T -comitants.
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We introduce the following notation

(3)

µ = −2µ1, H = 2H1, 2G = 4G1 − 3G2 + 8G3,

F = J1C5 + 2C1C4 + 4C2C3, V = C2
4 − C2C5,

2η = 27η1, 2M = 9M1, L = C6, D = −D4,

D1 = D1−2D2, D2 = 4D2+D3, D3 = D1(21D1−26D2 + 4D3).

As it was shown in [2] the comitants µ, H, G, F and V are responsible
for the number and multiplicities of the finite singular points of quadratic
system (1).

Definition 4. We shall say that the real finite singular point M0 of
quadratic system a ∈ E12 has multiplicity k (or, in other words, from
the singular point M0 bifurcate k singular points, as the coefficients of
system a ∈ E12 are varied), if the following conditions are satisfied:

(i) there exist a positive ε0 > 0 and δ0 > 0 such that in the neigh-
bourhood U(a, δ0) of the point a, there are no points, which cor-
respond to a system (1) having more than k singular points in the
neighbourhood U(M0, ε0) of the singular point M0;

(ii) for every positive δ < δ0 and ε < ε0, there is a point b ∈
U(a, δ) which corresponds to a system (1) with k singular points
in U(M0, ε).

According to [2] we shall construct the following T -comitants:

(4)
P = G2 − 6FH + 12µV, R = 4(3H2 − 2µG),

T = 2µ[2G3 + 9µ(3F 2 − 8GV ) − 18FGH + 108H2V ] − PR.

Proposition 2 [2]. Quadratic system (1) has a finite singular point
of multiplicity 4 if, and only if, the following conditions hold:

(5) µ �= 0, D = 0, P = R = T = 0.
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Main result

Theorem. A phase portrait of quadratic system (1) with a finite point
of multiplicity 4 (µ �= 0, D = P = R = T = 0) in the Poincare disk is
up to a homeomorphism given by:

Figure 1 if η > 0, D1 < 0, D2 > 0;
Figure 2 if η > 0, D1 < 0, D2 < 0 or η > 0, D1 ≥ 0;
Figure 3 if η = 0, M �= 0, D1 < 0, D2 > 0, D3 ≥ 0;
Figure 4 if η = 0, M �= 0, D1 < 0, D2 > 0, D3 < 0;
Figure 5 if η = 0, M �= 0, D1 < 0, D2 < 0 or η = 0, M �= 0, D1 ≥ 0;
Figure 6 if η < 0, or η = M = 0, L �= 0.

Figure 1 Figure 2 Figure 3

Figure 4 Figure 5 Figure 6

Proof: Let us assume that conditions (5) are satisfied, i.e. according
to (6) there is a singular point of multiplicity 4 arbitrarily situated on
the phase plane of system (1). By applying a shift transformation we
can move the origin of the coordinates to this point. Thus we obtain the
system

(6)
dxj

dt
= aj

αx
α + aj

αβx
αxβ (j, α, β = 1, 2)

for which, from (2) and (3), we have that V = 0. Therefore, by virtue of
conditions µ �= 0, V = 0 and in accordance with (4) the conditions (5)
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imply the following relations among the comitants µ, H, G and F :

(7) G2 − 6FH = 0, 3H2 − 2µG = 0, 2G3 + 27µF 2 − 18FGH = 0.

We intend to show that for system (6) conditions (7) imply

(8) H = F = G = 0.

Indeed, multiplying the first relation of (7) by −2G and summing it with
the third relation we obtain

(9) F (9µF − 2GH) = 0.

If F = 0, then from (7) it follows that H = G = 0. Otherwise, taking
into account (7) we have

4H(G2−6FH)+9F (3H2−2µG)+2G(2G3+27µF 2−18FGH)=3FH2 =0.

Therefore, we have obtained that H = 0 and from (7) it again follows
that F = 0. Thus, conditions (8) are valid for system (6) if its singular
point (0, 0) is of the fourth multiplicity and vice versa.

Let us denote by λ1 and λ2 the eigenvalues corresponding to the sin-
gular point (0, 0) of system (6).

Case I. λ2
1 + λ2

2 �= 0. According to [1] by applying a linear transfor-
mation and rescaling, system (6) can be written as follows

(10)

dx

dt
= gx2 + 2hxy + ky2,

dy

dt
= y + lx2 + 2mxy + ny2,

for which we have F = 0, G = g(gx2 + 2hxy + ky2). By condition (8)
we receive g = 0 and calculating the values of H and µ we obtain

H = hl(2hx+ ky) = 0, µ = l(4h2m− 4hkn+ k2l) �= 0.

Thus, we have h = 0, kl �= 0 and by scaling of the parameters, sys-
tem (10) can be put in the form

(11)

dx

dt
= y2,

dy

dt
= y + x2 + 2mxy + ny2,

for which the conditions for distinguishing the topological classes through
the parameters m and n are found in [9]. Namely, it occurs in the
following:
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Proposition 3 [9]. A phase portrait of quadratic system (11) in the
Poincare disk is up to a homeomorphism given by:

Figure 1 if η > 0, X < 0, Y > 0;
Figure 2 if η > 0, X < 0, Y ≥ 0 or η > 0, X ≥ 0;
Figure 3 if η = 0, R �= 0, X < 0, Y < 0, Z ≥ 0;
Figure 4 if η = 0, R �= 0, X < 0, Y < 0, Z < 0;
Figure 5 if η = 0, R �= 0, X < 0, Y > 0 or η = 0, R �= 0, X ≥ 0;
Figure 6 if η < 0, or η = R = 0, L �= 0,

where

(12)

η = −4m3 + 4m2n2 − 36mn+ 32n3 − 27,

R = (3m− 4n2)x2 − (2mn+ 9)xy − (m2 + 6n)y2,

L = −x3 + 2nx2y −mxy2 + y3, X = 2n3,

Y = mn, Z = (32n3 + 4m2n2 + 27)n2(m2 + 6n).

It is easy to prove the following assertion:

Proposition 4. The following statements hold.

1) The consequences of conditions

a) n < 0, mn < 0; b) n ≥ 0 or n < 0, mn ≥ 0
are equivalent to the consequences of conditions

a) m > 0, mn < 0; b) mn ≥ 0 or mn < 0, m < 0,
respectively.

2) If η = 0 then the consequences of conditions

a) n < 0, mn < 0, (32n3 + 4m2n2 + 27)(m2 + 6n) ≥ 0;

b) n < 0, mn < 0, (32n3 + 4m2n2 + 27)(m2 + 6n) < 0;
are equivalent to the consequences of conditions

a) m > 0, mn < 0, (2m3 + 18mn+ 27)m(m2 + 6n) ≥ 0;

b) m > 0, mn < 0, (2m3 + 18mn+ 27)m(m2 + 6n) < 0,
respectively.

Indeed, the truth of the first statement of Proposition 4 follows di-
rectly from the expressions of the corresponding conditions. To prove
the second one we assume that η = 0. According to (12) we have
−4m3 + 4m2n2 − 36mn + 32n3 − 27 = 0. Therefore, we have that
4m2n2 + 32n3 + 27 = 2(2m3 + 18mn+ 27) which proves Proposition 4.
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For system (11) the following comitants can be calculated:

(13)

η = −4m3 + 4m2n2 − 36mn+ 32n3 − 27,

M = (3m− 4n2)x2 − (2mn+ 9)xy − (m2 + 6n)y2,

L = −x3 + 2nx2y −mxy2 + y3, D1 =
7
3
mn,

D2 =
2
27
m3, D3 =

14
243

(2m3 + 18mn+ 27)m(m2 + 6n).

Taking into account Proposition 4 and relations (12) and (13), we deduce
that the conditions of Theorem for the realization of each of the phase
portraits of system (11) are equivalent to the corresponding conditions
of Proposition 3. Thus, the Theorem is valid for system (1) with one
non-zero eigenvalue of the singular point of multiplicity 4.

Case II. λ1 = λ2 = 0. According to [1] by applying a linear transfor-
mation and rescaling (6) we have

(14)

dx

dt
= y + gx2 + 2hxy + ky2,

dy

dt
= lx2 + 2mxy + ny2,

for which have F = 0, G = l(lx2 + 2mxy+ny2). By virtue of conditions
(8) we have l = 0 and by calculating the values of H and µ we obtain

H = gm(2mx+ ny) = 0, µ = g(gn2 − 4hmn+ 4km2) �= 0.

Thus, we have m = 0, gn �= 0 and by scaling of the parameters,
system (14) becomes

dx

dt
= y + gx2 + 2hxy + ky2,

dy

dt
= y2,

after the following substitution, x = x1 − hy1, y = gy1, t1 = gt we have

(15)

dx1

dt1
= y1 + x2

1 + ky2
1 ,

dy1

dt1
= y2

1 .
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As it was shown in [9] the phase portrait of system (15) corresponds to
Figure 2 if k < 1

4 , to Figure 5 if k = 1
4 and to Figure 6 if k > 1

4 . As for
system (15)

η = 1 − 4k, M = −x2
1 + x1y1 + (3k − 1)y2

1 , D1 = 0,

we conclude that the phase portrait of system (14) corresponds to Fig-
ure 2 if η > 0, to Figure 5 if η = 0 and to Figure 6 if η < 0. Taking into
account the relation D1 = 0 which holds for system (14), we conclude
that the Theorem is valid in this case too. The Theorem is proved.
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atica 1(11) (1993), 39–48.

3. D. Boularas, Iu. Calin, L. Timochouk and N. I. Vulpe,
The polynomial basis of T -comitants for quadratic differential sys-
tem, Conference of Applied and Industrial Mathematics, Roma-
nia-Moldova (1995), p. 28.

4. B. Coll, A. Gasull and J. Llibre, Quadratic systems with a
unique rest point, Publ. Mat. UAB 32 (1988), 199–259.

5. G. Gurevich, “Foundation of the Theory of Algebraic Invariants,”
Noordhoff, Groningen, 1964.

6. P. de Jager, Phase portraits for quadratic systems with a high
order singularity with two zero eigenvalues, J. Differential Equations
87 (1990), 169–204.

7. J. W. Reyn, Phase portraits of quadratic systems with finite mul-
tiplicity one, Nonlinear Anal. (to appear).

8. K. S. Sibirsky, “Introduction to the Algebraic Theory of Invariants
of Differential Equations,” Manchester University Press, Manch-
ester, 1988.



Conditions for topological distinction of QS 441

9. N. I. Vulpe and I. V. Nikolaev, The topological classification
of quadratic systems with a singular point of 4th multiplicity, Dif-
ferential Equations 29(10) (1993), 1669–1674.

Mark Voldman:
Whitehead College
University of Redlands
1200 East Colton ave., Redlands
CA 92373 U.S.A.

Iu. T. Calin:
Institute of Mathematics
Academy of Sciences of Moldova
5 Academiei str., Chişinǎu
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