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SOME REMARKS ABOUT METRIC SPACES,
SPHERICAL MAPPINGS,

FUNCTIONS AND THEIR DERIVATIVES

Stephen Semmes

Abstract
If p ∈ Rn, then we have the radial projection map from Rn\{p}
onto a sphere. Sometimes one can construct similar mappings on
metric spaces even when the space is nontrivially different from
Euclidean space, so that the existence of such a mapping becomes
a sign of approximately Euclidean geometry. The existence of such
spherical mappings can be used to derive estimates for the values
of a function in terms of its gradient, which can then be used to
derive Sobolev inequalities, etc. In this paper we shall discuss
these topics mostly in the context of metric doubling measures,
which provides a nontrivial setting in which these mappings exist
and can be used. This provides an alternative approach (or un-
derstanding) of the results in [DS], and a variation on the themes
of [Se4].

1. Introduction.
Consider Euclidean space Rn for a moment, and let p be any point in

Rn. Define a mapping πp : Rn\{p} → Sn−1 by

(1.1) πp(x) =
x− p

|x− p| .

Now suppose that (M,d(x, y)) is a metric space. Assume that M is
homeomorphic to Rn, but we want to permit it to have very different
geometry. Given a point p ∈ M , let us ask ourselves whether we can find
a mapping θp : M\{p} → Sn−1 such that θp satisfies the “Lipschitz”
condition

(1.2) |θp(x) − θp(y)| ≤ C
d(x, y)

min(d(x, p), d(y, p))
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for some constant C and all x, y ∈ M\{p}, and such that θp is topolog-
ically nondegenerate in the sense of having nonzero degree, or degree 1,
or being homotopic to πp. (To talk about the degree in this case we use
the fact that M\{p} has the same homotopy type as Sn−1.)

The Lipschitz condition in (1.2) is the natural one in this context, it
amounts to saying that θp is locally Lipschitz with norm bounded by a
constant divided by the distance to the singularity p. Note that πp has
this property (with respect to the Euclidean metric).

The existence of such a mapping θp indicates approximate Euclidean
behavior of the geometry of M near p. For Euclidean space itself we can
simply take θp = πp, and if M is bilipschitz equivalent to a Euclidean
space then we also get mappings like θp. We shall see that this is also
true if M is quasisymmetrically equivalent to Euclidean space, although
this case is a bit trickier.

Note however that there are plenty of examples of metric spaces whose
geometry is very much like Euclidean geometry in some ways but which
are still very different from Euclidean spaces. Different in the absence
of a bilipschitz or quasisymmetric parameterization, for instance. See
[Se2], [Se3]. The existence of a mapping θp can capture some geometric
structure that one might want even when there is not a good parame-
terization.

The existence of mappings like θp enjoy a naive geometric appeal, but
they also have a concrete usefulness. Under suitable conditions they can
permit us to control the value of a function at the point p in terms of
the gradient of the function on the whole space, in a manner analogous
to classical formulas on Euclidean space. Once one has such estimates
one can then try to derive Sobolev inequalities, etc.

As a practical matter we shall focus here on the metric spaces which
arise from metric doubling measures. This concept will be recalled in
the next section. In [DS] it was proved that one has for metric doubling
measures practically the same Sobolev and Poincaré inequalities as for
Euclidean spaces. The observations of this paper provide a different
approach to this result, or rather a better understanding of the approach
in [DS], with clearer general principles.

This paper is also a variation on the theme of [Se4]. In [Se4] too
we were constructing special mappings on metric spaces and then using
these mappings to derive Sobolev inequalities. The present paper and
[Se4] share common underlying principles, but the special mappings in
[Se4] were slightly less beautiful than the ones given here, while the con-
structions in [Se4] were more flexible if more complicated and less sharp.
The present paper will also be a kind of complement to [Se4], in that
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[Se4] was long and pretty thorough about technicalities and generality,
whereas here we shall try to present the main points clearly and concisely
in a special case while skipping technical but fairly straightforward dis-
cussions of the various consequences of the method.

We review metric doubling measures in the next section, and then
discuss special mappings into spheres in Section 3 for non-Euclidean
metrics. This construction is applied in Section 5 to control the value of
a function in terms of an integral of its gradient, with bounds that are
appropriate for the geometry of a metric doubling measure. Section 4
before that addresses a technical point about smoothing the maps ob-
tained in Section 3. In Section 6 we explain the principles of this method
more succinctly in terms of differential forms, and we describe some other
ways to use these principles.

Some readers might find it pleasant to skip to Section 6 first.
I would like to thank Juha Heinonen and the referee for their comments

and suggestions.

2. Metric doubling measures.
Definition 2.1. A doubling measure on Rn is a positive Borel measure

µ which is finite on compact sets, not identically zero, and which satisfies

(2.2) µ(2B) ≤ C µ(B)

for some constant C > 0 and all (Euclidean) balls B in Rn. Here 2B
denotes the ball with the same center as B but twice the radius.

Given a doubling measure µ on Rn we can associate a quasimetric
δ(x, y) = δµ(x, y) on Rn by

(2.3) δ(x, y) = µ(Bx,y)
1
n ,

where Bx,y is the smallest (closed) ball which contains x and y. To say
that δ(x, y) is a quasimetric means that it is nonnegative and symmetric,
that it vanishes exactly on the diagonal, and that it satisfies

(2.4) δ(x, z) ≤ K (δ(x, y) + δ(y, z))

for some constant K and all x, y, z ∈ Rn. It is not hard to check (2.4)
using the doubling condition on µ, and also that this quasimetric defines
the standard topology on Rn.

Definition 2.5. A doubling measure µ on Rn is said to be a metric
doubling measure if there is a metric δ′(x, y) on Rn and a constant C > 0
so that

(2.6) C−1 δ(x, y) ≤ δ′(x, y) ≤ C δ(x, y)
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for all x, y ∈ Rn.

For the record, a metric is a symmetric nonnegative function which
vanishes exactly on the diagonal and which satisfies the triangle inequal-
ity. It is the latter which really matters here, i.e., replacing K with 1
in (2.4). As a practical matter the triangle inequality is very useful be-
cause it permits one to construct plenty of Lipschitz functions. On a
quasimetric space there may be no nonconstant Lipschitz functions, e.g.,
(Rn, |x− y|2).

When n = 1, δ(x, y) itself satisfies the triangle inequality, but this
can fail in a strong way in higher dimensions. For instance, the measure
µ(x) = |x1| dx on R2 is a doubling measure but not a metric doubling
measure. The failure of the metric doubling measure condition stems
from the fact that the density |x1| vanishes on the x1-axis, which would
force all points on the x1-axis to have δ(·, ·) distance zero from each
other if δ(·, ·) were equivalent in size to a true metric. More generally if
µ is a metric doubling measure of the form µ = ω(x) dx, where ω(x) is,
say, continuous, then ω cannot be identically zero on a rectifiable curve.
On the other hand, metric doubling measures can have a density ω that
vanishes to large order, even on a large set. The zero set of ω has to be
highly disconnected or crinkled.

The notion of a metric doubling measure was introduced in [DS], in a
slightly different but equivalent form and with a different name (“strong
A∞ weights”). See also [Se1], [Se2], for more examples especially.

Note that if d(x, y) is any quasimetric on a set M , then there exists a
metric ρ(x, y) on M and constants C > 0 and s ≥ 1 so that

(2.7) C−1 ρ(x, y)s ≤ d(x, y) ≤ C ρ(x, y)s

for all x, y ∈ M . This is essentially the content of the proof of Theorem 2
in [MS]. Thus the quasimetric associated to a metric doubling measure
always has a metric around, the issue is whether we can take s = 1 in
(2.7).

The following is a basic and gorgeous fact about metric doubling mea-
sures.

Theorem 2.8. If n > 1 and µ is a metric doubling measure on Rn,
then µ and Lebesgue measure are mutually absolutely continuous.

Thus every metric doubling measure is of the form µ = ω(x) dx for a
locally integrable function ω(x). The weights ω(x) that arise this way are
called strong A∞ weights. It turns out that they are always A∞ weights
in the sense of harmonic analysis (see [Ga], [J] for the definition).
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Note that doubling measures can be singular with respect to Lebesgue
measure. It is quite amusing that the geometric property of being a
metric doubling measure is sufficient to ensure absolute continuity.

Theorem 2.8 was observed in [DS], which is to say that it was observed
in [DS] that Theorem 2.8 follows from an argument of Gehring [Ge]. See
also Proposition 3.4 in [Se1].

If µ is a metric doubling measure on Rn, then we get a metric space
(Rn, δ′(x, y)) determined by µ. (Actually the metric δ′(·, ·) is not de-
termined uniquely, but it is determined up to size, meaning that any
other such metric must be bounded above and below by constant multi-
ples of δ′(·, ·), and that is sufficient for our purposes.) What can we say
about the geometry of this metric space? We can view Theorem 2.8 as a
rectifiability result for this metric space, because it implies that this met-
ric space is asymptotically Euclidean at almost all points (the Lebesgue
points of ω(x)). The A∞ condition that ω satisfies actually implies a kind
of uniform rectifiability property of this metric space. The main result
in [DS] said that one has the same kind of Sobolev-Poincaré inequalities
for this space as if it were bilipschitz equivalent to Rn equipped with
the standard Euclidean metric. One of the main points of [DS] was to
shed some light on the question of whether these metric spaces always
are bilipschitz equivalent to standard Euclidean spaces. This is trivially
true in dimension 1, but it turns out to be false in dimensions greater
than or equal to 3. Dimension 2 is unknown. See [Se2].

Note that (Rn, δ′(x, y)) is bilipschitz equivalent to (Rn, |x− y|) if and
only if there is a quasiconformal mapping f : Rn → Rn whose Jacobian
is bounded above and below by constant multiples of ω. This is well
known and not difficult to verify using the definitions.

3. Constructing special mappings.
Let d(x, y) be a metric on Rn. In this section we shall assume that

the identity is a quasisymmetric mapping from (Rn, d(x, y)) onto Rn

equipped with the Euclidean metric. This means that there is a homeo-
morphism η : [0,∞) → [0,∞) such that

(3.1) d(x, y) ≤ t d(x, z) implies |x− y| ≤ η(t) |x− z|
for all x, y, z ∈ Rn and t > 0. This implies in particular that d(x, y)
determines the same topology as the Euclidean metric (and indeed it
implies a similar condition with the roles of d(x, y) and the Euclidean
metric reversed).

Examples 3.2. (a) If d(x, y) = |x − y|s for some 0 < s ≤ 1, then
d(x, y) satisfies (3.1). (It also satisfies (3.1) when s > 1, but it is not a
metric then.)
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(b) If µ is a doubling measure on Rn, then the associated quasidistance
δ(x, y) satisfies the quasisymmetry property (3.1). This is well known
and not hard to derive from the definitions. It will not be a metric in
general, though, but in the case of a metric doubling measure it will be
equivalent in size to a metric.

As indicated in the introduction, we would like to build mappings
which approximate πp as defined in (1.1) but which respect the
d(x, y)-geometry as in (1.2).

Theorem 3.3. Suppose that d(x, y) is a metric on Rn which satisfies
the quasisymmetry condition (3.1). Then for each p ∈ Rn and ε > 0 we
can find a mapping θ : Rn\{p} → Sn−1 which satisfies∣∣∣∣θ(x) − x− p

|x− p|

∣∣∣∣ ≤ ε and(3.4)

|θ(x) − θ(y)| ≤ C(ε)
d(x, y)

min(d(x, p), d(y, p))
(3.5)

for all x, y ∈ Rn\{p}. Here C(ε) depends also on the function η(t) in
(3.1) and the dimension n but nothing else.

It is important here that d(x, y) be a metric and not a quasimetric, we
need to have the triangle inequality in order to have an adequate supply
of Lipschitz functions with respect to d(x, y).

Note that (3.4) (for a reasonable choice of ε) implies that θ is homo-
topic to πp through continuous mappings from Rn\{p} into Sn−1.

To prove Theorem 3.3 we use the techniques of the Whitney Extension
Theorem ([St]), namely Whitney decompositions and partitions of unity.

All constants in the argument that follows are permitted to depend on
the function η(t) from (3.1).

Let p ∈ Rn and ε > 0 be given, with ε < .01, say. We may as well
assume that ε is as small as we want, the conclusion gets stronger as ε
gets smaller.

Let {Qi} be a listing of the maximal dyadic cubes in Rn\{p} such
that

(3.6) diamQi ≤ εdist(Qi, p),

where “dist” is the distance in the Euclidean metric. The maximality of
these cubes ensures that

(3.7) 3 diamQi > εdist(Qi, p).
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By standard reasoning the cubes have disjoint interiors and their union
is all of Rn\{p}. (Note that we interpret “cube” to mean closed cube.)
Let qi denote the center of Qi.

We want to have a partition of unity associated to {Qi}, but we want
this partition of unity to be well-behaved with respect to the geometry
of d(x, y) rather than Euclidean geometry. We want the functions in the
partition of unity to be Lipschitz with respect to d(x, y), for instance.
We start by constructing auxiliary functions ψi : Rn → R with the
properties that 0 ≤ ψi ≤ C on Rn, ψi ≥ 1 on Qi, ψi ≡ 0 on Rn\2Qi,
and the Lipschitz condition

(3.8) |ψi(x) − ψi(y)| ≤ C
d(x, y)

min(d(x, p), d(y, p))
.

This constant C is permitted to depend on ε as well as η(t). The de-
nominator on the right side may look a bit odd, but it is convenient for
deriving (3.5). We define ψi(x) in terms of the metric d(·, ·) as follows.
Given x ∈ Rn we start by taking its distance to Rn\2Qi with respect
to d(·, ·). This gives a function αi(x) which is Lipschitz with respect to
d(·, ·) with norm ≤ 1 and which vanishes on Rn\2Qi but which has the
wrong size. We then divide αi(x) by the distance Di with respect to
d(·, ·) between Qi and Rn\2Qi and set ψi(x) = αi(x)/Di. This function
is at least 1 on Qi. It is not hard to see that ψi(x) is also bounded,
using the quasisymmetry hypothesis. It remains to check the Lipschitz
condition (3.8). If x and y both lie outside 2Qi, then the left side of (3.8)
vanishes, and there is nothing to check. If exactly one of x and y lies
in 2Qi and the other lies outside 3Qi —say x ∈ 2Qi and y ∈ Rn\3Qi—
then |x − y| ≥ C−1 ε |x − p| and the right side of (3.8) is bounded from
below, because of the quasisymmetry condition. In this case (3.8) is au-
tomatic since ψi is bounded. Finally, if both x and y lie in 3Qi, then
|x− p| and |y− p| are both comparable in size to the Euclidean distance
between Qi and Rn\2Qi (by (3.6), (3.7), and the requirement that ε
be small), and so d(x, p) and d(y, p) are both comparable in size to the
distance Di with respect to d(·, ·) between Qi and Rn\2Qi, because of
the quasisymmetry property. (Note that the constants here depend on
ε, but we do not mind.) From here the Lipschitz condition (3.8) follows
from ψi = αi/Di and the fact that αi is Lipschitz with norm ≤ 1 with
respect to d(·, ·).

Thus we get our functions ψi. For the partition of unity we take

(3.9) φi =
ψi∑
j ψj

.

More precisely, although the denominator on the right hand side vanishes
at p, we interpret φi to also vanish at p. Thus 0 ≤ φi ≤ ψi ≤ C, since
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∑
j ψj ≥ 1 on Rn\{p}. Notice that ψj(x) = 0 for only finitely many j

for any given x, that φi ≡ 0 on Rn\2Qi, and that

(3.10)
∑

i

φi ≡ 1 on Rn\{p}.

Let us check that φi enjoys the Lipschitz condition

(3.11) |φi(x) − φi(y)| ≤ C
d(x, y)

min(d(x, p), d(y, p))
.

We want to use (3.8). To do this we need to check that for each fixed
point z the number of j’s for which ψj(z) = 0 is uniformly bounded.
If ψj(z) = 0, then z ∈ 2Qj , and (3.6), (3.7) imply that diamQj is
comparable in size to |z − p|. Thus all the Qj ’s with z ∈ 2Qj have
approximately the same diameter, and there can only be boundedly many
of them because they have disjoint interiors. Thus ψj(z) = 0 for only
a bounded number of j’s for any given z, and then (3.11) follows from
(3.8) and the definition (3.9) of φi by a simple computation.

Let us now define a mapping h : Rn\{p} → Rn by

(3.12) h(x) =
∑

i

qi − p

|qi − p| φi(x).

The idea is that this is a good approximation to x−p
|x−p| . Specifically, we

have that

(3.13)
∣∣∣∣h(x) − x− p

|x− p|

∣∣∣∣ ≤ 20 ε

for all x ∈ Rn\{p}. To see this we write

(3.14)
∣∣∣∣h(x) − x− p

|x− p|

∣∣∣∣ ≤ ∑
i

∣∣∣∣ qi − p

|qi − p| −
x− p

|x− p|

∣∣∣∣ φi(x).

If φi(x) = 0, then x ∈ 2Qi, whence |x−qi| ≤ 2 diamQi ≤ 2 εdist(Qi, p) ≤
2 ε |qi − p|, by (3.6). Since ε is small we conclude that

(3.15)
∣∣∣∣ qi − p

|qi − p| −
x− p

|x− p|

∣∣∣∣ ≤ 20 ε.

(There is nothing special about 20 here, but there is no point in worrying
about the right constant.) This implies (3.13), because of (3.10).
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Define θ : Rn\{p} → Sn−1 by θ(x) = h(x)
|h(x)| . This is well defined,

because (3.13) ensures that |h(x)| is close to 1. From (3.13) we also get
(3.4), but with an extra constant factor on the right hand side of (3.4)
that does not bother us. It remains to verify the Lipschitz condition
(3.5). It is enough to show that the analogous estimate holds for h
instead of θ. For h we have that

(3.16) |h(x) − h(y)| ≤
∑

i

|φi(x) − φi(y)|.

If φi(x) = 0, then x ∈ 2Qi, and for each x this can hold only for a
bounded number of i’s. Thus there are only boundedly many nonzero
terms in (3.16). We can use (3.11) for each of them, and in the end we
obtain the analogue of (3.5) for h.

This completes the proof of Theorem 3.3.

4. Metric doubling measures, special mappings, and smooth
approximations.

Let µ = ω(x) dx be a metric doubling measure on Rn, n > 1. (Re-
member Theorem 2.8. We restrict ourselves to n > 1 here not because
the n = 1 case does not work, but because it works in a degenerate man-
ner that is not very interesting.) From µ we get a quasimetric δ(x, y) on
Rn as in (2.3), and the assumption that µ is a metric doubling measure
implies that δ(x, y) is comparable in size to a true metric, as in (2.6).
This metric satisfies the quasisymmetry condition (3.1), because δ(x, y)
does, and so we may apply Theorem 3.3 to it. We conclude that for each
p ∈ Rn we can find a mapping θ as in Theorem 3.3, but with d(x, y)
replaced with δ(x, y).

Fix p ∈ Rn and ε > 0, and let θ be as in Theorem 3.3. In practical
computation we would be much happier if θ were C1, so that we would
not have to think about applying standard rules of calculus, but of course
we cannot take θ to be C1 in general. We can approximate θ by smooth
functions in the usual way, and this provides enough control for many
applications. We shall deal with this technical point in this section.

Fix a nonnegative smooth function φ(x) on Rn with support contained
in the unit ball and

∫
Rn φ(x) dx = 1. Define φt(x) for t > 0 by φt(x) =

t−nφ(x/t). Set θt = φt∗θ, where ∗ denotes convolution. This is a smooth
function, but it is only a good approximation to θ away from the point p.
That is, we are interested in topological properties of θ, its topological
nontriviality as a mapping into the sphere in particular, and so we really
want an approximation to θ which takes values in Rn\{0}. Precisely
because of this topological nontriviality we cannot do this across p, make
a smooth approximation across p with values in Rn\{0}, and so this
approximation should be taken seriously away from p only.
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Lemma 4.1. If L > 1 and |x− p| ≥ 10L t, then

(4.2)
∣∣∣∣θt(x) − x− p

|x− p|

∣∣∣∣ ≤ ε + L−1.

This is easy to check using (3.4) and the properties of φ. It implies
that

(4.3)
1
2
≤

∣∣θt(x)
∣∣ ≤ 2

when ε ≤ 1/10 (say) and |x− p| is large enough compared to t.

Lemma 4.4. θt → θ as t → 0 uniformly on compact subsets of
Rn\{p}.

This is easy to check, using the uniform continuity of θ on such com-
pact sets.

Next let us bound the derivative of θt. Define ωt by
ωt(x) = t−n

∫
B(x,t)

ω(y) dy.

Lemma 4.5. If |x− p| > 10t then

(4.6) |∇θt(x)| ≤ C
ωt(x)

1
n

δ(x, p)
,

where C depends on µ = ω(x) dx, n, and ε, but not on p, x, or t.

By standard arguments (including the observation that ∇φ has inte-
gral zero) we have that

(4.7)

|∇θt(x)| =
∣∣∣∣
∫
Rn

(∇φt)(x− y) θ(y) dy
∣∣∣∣

=
∣∣∣∣
∫
Rn

(∇φt)(x− y) (θ(y) − θ(x)) dy
∣∣∣∣

≤ C t−n−1

∫
B(x,t)

|θ(y) − θ(x)| dy.

We can bound the right hand side using (3.5) (in which we may replace
d(x, y) with δ(x, y)). In this case δ(x, p) and δ(y, p) are comparable
in size, since |x − y| < |x − p|/10 (and the doubling/quasisymmetry
condition), and so we may as well replace the denominator in (3.5) with
δ(x, p). On the other hand t−1 δ(x, y) ≤ C ωt(x)

1
n for all y ∈ B(x, t), by
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the definition (2.3) of δ(x, y) and the doubling condition for µ. Plugging
these bounds into (4.7) we get that

(4.8) |∇θt(x)| ≤ C t−n

∫
B(x,t)

ωt(x)
1
n δ(x, p)−1 dy.

Now there is no y in the integrand, and the right side collapses to the
right side of (4.6). This proves Lemma 4.5.

Now set ht(x) = θt(x)
|θt(x)| . This is well defined as soon as ε ≤ 1/10 (say)

and |x − p| is large enough compared to t. Again we have that ht → θ
as t → 0 uniformly on compact subsets of Rn\{p}. We also have that
ht(x) is smooth and that

(4.9) |∇ht(x)| ≤ C
ωt(x)

1
n

δ(x, p)

as soon as ε ≤ 1/10 and |x− p| is large enough compared to t. There is
also a version of (4.2) for ht.

In conclusion we have mappings ht taking values in Sn−1 which are
much like our original mapping θ, except that they are smooth, and
that they have some minor defects, such as being defined only on the
complement of a neighborhood of p, and the inequality (3.5) has to be
replaced by (4.9). This is not a real problem, it is just not quite as nicely
geometric.

5. Metric doubling measures and estimates for functions in
terms of their gradient.

Given a smooth function with compact support on Rn, one can control
the values of the function in terms of integrals of the gradient against
suitable potentials. This is well known and easy. (See (18) on p. 125 of
[St], for instance.) In this section we derive a similar estimate for metric
doubling measures. We restrict ourselves to n > 1 again, not because the
n = 1 doesn’t work, but because it works in an uninteresting manner.

Let µ = ω(x) dx be a metric doubling measure on Rn, and let δ(x, y)
be the quasimetric associated to µ as in (2.3).

Theorem 5.1. Let f be a C1 function on Rn with compact support,
and fix p ∈ Rn. Then

(5.2) |f(p)| ≤ C

∫
Rn

1
δ(x, p)n−1

ω(x)−
1
n |∇f(x)|ω(x) dx.
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Here C depends on µ and n but not on f or p.

Note that this is standard when ω ≡ 1 (so that δ(x, y) = c |x− y|), as
in (18) on p. 125 of [St]. For metric doubling measures this was derived
in [DS], through a construction which is basically equivalent to the one
below, but using slightly different principles.

The integrand in (5.2) may seem to be written in a slightly ridiculous
manner, with the double appearance of ω, but this is done to make
the “Riemannian” nature of the expression more apparent. That is,
we are really working with a non-smooth conformal deformation of the
Euclidean metric, for which ω(x) dx is the natural volume, and for which
ω(x)−

1
n |∇f(x)| is the correct norm for ∇f(x). One can show that δ(x, y)

is equivalent in size to its associated geodesic distance (see [DS], [Se1]).
Notice how (5.2) becomes uninteresting when n = 1.
We are assuming here that f is C1 and has compact support really for

convenience. These assumptions could be weakened in standard ways,
but this is a technical matter and not the central point.

Let us now prove Theorem 5.1. Let f and p be given. Assume first
that f is constant on a neighborhood of p, on B(p, r), say.

We want to compute using Stokes’ theorem. It will be convenient to
use the language of differential forms. Let λ denote the standard volume
form on Sn−1, normalized to have total volume 1. Set ε = 1/10, say, let
θ be as in Theorem 3.3, and let ht be as in Section 4. We would like
to do calculus with θ, using it to pull back λ to get a differential form
on Rn\{p} etc., but to avoid technical nuisances it is more pleasant to
work with the ht’s. Let ηt = h∗

t (λ) be the pull-back of λ by ht, a smooth
differential form of degree n− 1 that is defined on Rn\B(p, r/2) when t
is small enough. Using (4.9) and the definition of the pull-back we get
that

(5.3) |ηt(x)| ≤ C

(
ωt(x)

1
n

δ(x, p)

)n−1

for x in the domain of ht, where C does not depend on p, x, or t, and
where ωt is as in Section 4 (defined just before Lemma 4.5).

From Stokes’ theorem we have that

(5.4)
∫

∂B(p,r)

f ηt =
∫
Rn\B(p,r)

df ∧ ηt,

except perhaps for a sign error. This uses the fact that d ηt = 0 on
the domain of ht, since d commutes with the operation of pulling back,
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and since λ is automatically closed (because it has top degree on Sn−1).
Since f is constant on B(p, r) we have that

(5.5)
∫

∂B(p,r)

f ηt = f(p)
∫

∂B(p,r)

ηt.

Let us check that

(5.6)
∫

∂B(p,r)

ηt = 1

when t is sufficiently small (except perhaps for a sign error that comes
from being sloppy about orientations). When t is sufficiently small we
have that

(5.7)
∣∣∣∣ht(y) −

y − p

|y − p|

∣∣∣∣ ≤ 2
10

,

because of (3.4) and the fact that ht converges uniformly to θ on compact
sets that do not contain p. Thus ht defines a smooth mapping from
∂B(p, r) into Sn−1 which is a small (≤ .2) perturbation of the obvious
radial projection. This implies that the restriction of ht to ∂B(p, r) is
homotopic to the obvious radial projection through smooth mappings of
∂B(p, r) into Sn−1. It is well-known that the integral in (5.6) remains
constant under such homotopies (see [N]), and so (5.6) follows from its
counterpart with ht replaced by the obvious radial projection, in which
case it is just a consequence of the usual change of variables formula.

Combining (5.6), (5.5), and (5.4) we get that

(5.8) f(p) =
∫
Rn\B(p,r)

df ∧ ηt.

Applying (5.3) now we get that

(5.9) |f(p)| ≤ C

∫
Rn\B(p,r)

|∇f(x)|
(
ωt(x)

1
n

δ(x, p)

)n−1

dx.

Sending t → 0 we get (5.2) in this case. (There is no problem with
the convergence, because of the definition of ωt, the fact that the other
quantities are bounded on the range of integration, and the compactness
of the support of f .)

Let us now prove (5.2) in the general case, assuming that it holds
when f is constant on a neighborhood of p. Given r > 0 let χr(x) be
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a smooth function on Rn which vanishes off of B(p, r), takes only the
value 1 on B(p, r/2), and satisfies |∇χr(x)| ≤ C r−1 for some C and all
x and r. Set fr(x) = f(x) (1 − χr(x)) + f(p)χr(x), so that each fr is a
C1 function which is constant on B(p, r/2). From (5.2) we have that

(5.10) |f(p)| = |fr(p)|

≤ C

∫
Rn\B(p,r/2)

1
δ(x, p)n−1

ω(x)−
1
n |∇fr(x)|ω(x) dx.

This implies that

(5.11) |f(p)| ≤ C

∫
Rn

1
δ(x, p)n−1

ω(x)−
1
n |∇f(x)|ω(x) dx

+ C

∫
Rn\B(p,r/2)

1
δ(x, p)n−1

ω(x)−
1
n |∇(f − fr)(x)|ω(x) dx.

We want to check that the last term goes to 0 as r → 0. We have that
f − fr = (f − f(p))χr, and this is a function which vanishes outside
B(p, r) and whose gradient is uniformly bounded, independently of r
(since f is C1). Thus our error term is bounded by

(5.12) C

∫
B(p,r)\B(p,r/2)

1
δ(x, p)n−1

ω(x)−
1
n ω(x) dx.

For x ∈ B(p, r)\B(p, r/2) we have that δ(x, p) is comparable to
(
∫

B(p,r)
ω(y) dy)

1
n, because of the doubling condition for µ. From Hölder’s

inequality we have that

(5.13)

∫
B(p,r)

ω(x)
n−1

n dx ≤ C

(∫
B(p,r)

ω(x) dx

)n−1
n

(∫
B(p,r)

dx

) 1
n

≤ C r

(∫
B(p,r)

ω(x) dx

)n−1
n

.

Thus we conclude that (5.12) is O(r), and so the same is true of the last
term in (5.11). Therefore this error term goes to 0 in the limit as r → 0,
and (5.2) follows from (5.11).

This completes the proof of Theorem 5.1.
Once one has (5.2) one can derive Sobolev inequalities with respect to

ω in practically the same manner as for Euclidean spaces. See [DS] for
more information.



Metric spaces and derivatives 425

Incidentally, although we have chosen to obtain information from the
special mappings in Section 3 through “calculus” in this section, there
is a more geometric alternative. One can use the mappings to produce
a nice family of curves from the given point p and extending to infinity,
roughly like the sphere of rays from p in the Euclidean case. These curves
can be found in the sets θ−1(σ), σ ∈ Sn−1, with estimates coming from
the coarea theorem. See [DS] and [Se4] for more information about this
approach.

6. Variations on the theme.
Let us rephrase the story of this paper more conceptually in terms of

currents, which are essentially differential forms with distributional co-
efficients. This will make it easier to describe afterwards some variations
of the methods and results.

Let πp : Rn\{p} → Sn−1 be as in (1.1), and let λ be the standard
volume form on Sn−1, normalized to have total volume = 1. Let α be
the smooth (n − 1)-form on Rn\{p} which is the pull back of λ under
πp. This pull-back has a singularity at p, and satisfies

(6.1) |α(x)| ≤ C |x− p|−n+1

on Rn\{p}. Since α is the pull-back of a closed form (any (n − 1)-
form on Sn−1 is closed), α is also closed on Rn\{p}, i.e., dα = 0 there.
However, (6.1) says that the coefficients of α are locally integrable across
the singularity, and so we can extend α across the singularity as a current.
When we do this we cannot say immediately that this extension is closed
even across the singularity, and indeed we have

(6.2) dα = [p],

where [p] denotes the current of integration over the zero-dimensional
manifold {p}. This equation means that

(6.3)
∫
Rn

df ∧ α = f(p)

for any smooth function f on Rn with compact support. The reader
should not worry too much about whether the signs are correct in (6.2)
and (6.3), for the author is concerned not at all.

These facts are not hard to check. Indeed one can even write down
an explicit formula for α and compute everything directly. One can also
verify these assertions more abstractly, using general properties of the
construction instead of explicit formulae. This is in effect what we did in
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the previous section. There we were working with the mapping θ instead
of πp, and although θ is not given so explicitly as πp, it does enjoy many
of the same properties. For θ we have the minor inconvenience of its
lack of smoothness, but this can be managed with little difficulty, by
smoothing it for instance, as we did before.

We never quite said before that what we were doing was deriving
versions of (6.2) and (6.3) for θ instead of πp, but that is really what was
happening.

For conceptual purposes this language is clearer, although in practical
use it is sometimes simpler to work a little differently, as in Section 5.

Let us remain in this language for the moment and consider some
variations on the theme.

Instead of looking for a formula for f(p) in terms of the gradient
of f we can take two points p and q and look for a formula for
f(p) − f(q). Of course one can simply take the difference of two for-
mulas like (6.3), but it is nicer to have a formula that does not require
f to have compact support, indeed a formula which is local and works
for any smooth function defined on a ball that contains p and q.

How can we get such a formula, along the lines of the construction just
described? Instead of building a mapping πp as above we should look for
a mapping from Rn\{p, q} into Sn−1 which is constant outside of a ball
that contains p and q, which behaves like πp near p, and which behaves
in a manner like that of πq near q, but with an extra reflection included
in order to reverse the local degree at q. It is not difficult to construct
such mappings, although they are not so easily written as πp.

Once one has such a mapping one can pull back the volume form λ on
Sn−1 to get a smooth (n−1)-form β on Rn\{p, q} which has singularities
at each of p and q like α has at p (6.1). This form β is also closed, and
if we extend it as a current across the singularities we get that

d β = [p] − [q] and(6.4) ∫
Rn

df ∧ β = f(p) − f(q),(6.5)

modulo sign errors. Because our mapping is chosen to be constant out-
side a certain ball, β vanishes off of the same ball, and for (6.5) we do
not need f to be defined on all of Rn, etc.
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Again this construction does not really depend on specific choices or
explicit computations, just some basic properties of the mapping in Sn−1

that we build. Instead of a smooth mapping adapted to Euclidean geom-
etry we can build mappings adapted to the geometry of a metric doubling
measure on Rn. That is, we approximate the mapping for Euclidean ge-
ometry by one which is locally Lipschitz with respect to the new metric,
with suitable estimates near the singularities. We can make this approx-
imation in the same manner as in Section 3, and with the same estimates
at the singularities. This approximation will have the same topological
properties as the one for Euclidean geometry, because we can build it
in such a way as to be a small perturbation of the mapping for Eu-
clidean geometry in the supremum norm, so as to be homotopic to the
Euclidean mapping through mappings into Sn−1. Thus we can maintain
the local degrees near the singularities, and this nondegeneracy gives rise
to formulas like (6.5), estimates like (5.2), etc., in the same manner as
in Section 5.

This story of the two singular points is closer to the development
given in [DS] and [Se4]. For applications to analysis the two-point
formulas are generally more useful than the one-point formulas, and
more flexible. For instance one can derive Poincaré-type inequalities
by averaging the two-point formulas, and the locality of the two-point
formulas is very convenient. The one-point estimates can be derived
from the two-point estimates by sending the other point to infinity, but
the direct constructions are cleaner.

This construction for the two-point formulas gives practically the same
result as the construction in [DS]. The constructions themselves are not
quite the same though, and the approach here isolates better the topolog-
ical properties needed and the principles involved. This makes it easier
to make similar constructions in other contexts. For instance the con-
structions in [Se4] are based on similar principles, but this similarity is
less obvious if one tries to compare [Se4] and [DS] directly. In the set-
ting of [Se4], the geometry was not given so explicitly, it was not such a
simple perturbation of Euclidean geometry, and the mappings could not
be obtained as simple perturbations. It was also better to work there
with one-parameter families of nontrivial mappings to Sn which were
constant off of balls, rather than individual radial projections into Sn−1,
but this is more of a variation on the theme rather than a fundamentally
different principle. (One can also see it in terms of stabilizing the space
by taking the Cartesian product with the line or an interval.)

As another variation on the theme it is nicer to keep track of the
dependence on the point p, in the following sense. Instead of fixing p
and defining the mapping πp : Rn\{p} → Sn−1 as before, let us define a
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mapping π : Rn×Rn\∆ → Sn−1, ∆ = the diagonal = {(x, x) : x ∈ Rn},
by

(6.6) π(x, y) =
x− y

|x− y| .

Again we can pull back the volume form λ to a smooth (n− 1)-form on
Rn×Rn\∆. This form is closed, and it has a singularity at the diagonal
like that of α near p (6.1). We can extend it to a locally integrable
current across the singularity, and when we do that we get a current γ
such that

(6.7) d γ = [∆]

(modulo a possible sign error), where [∆] denotes the current of integra-
tion over the diagonal ∆. Keep in mind that the exterior derivative d
here involves now derivatives in both sets of variables. This current γ
provides the “kernel” for a familiar “homotopy operator” for d; that is
an operator T acting on differential forms which satisfies d T + T d = I.
(I learned this view of homotopy operators from Reese Harvey and John
Polking [HP].) Remember that one cannot solve the equation dφ = ψ
in general, one must require the compatibility condition that dψ = 0,
and homotopy operators provide solutions to the d-equation when the
compatibility condition is fulfilled.

Again this construction does not really depend on the precise formula
for π, only on properties that are more stable than that. Given a metric
on Rn which is quasisymmetrically equivalent to the Euclidean metric we
can build an analogous mapping which approximates π in the supremum
norm, hence is homotopic to π through mappings from Rn ×Rn\∆ into
Sn−1 and so has approximately the same topological properties as π, and
which has approximately the same analytical properties as π with respect
to the new metric. In particular one can do this for metrics associated to
metric doubling measures. One can then build a homotopy operator for
d whose kernel satisfies the right bounds associated to the given metric
doubling measure, analogous to (5.2). Once one has a kernel with the
right bounds, one can get bounds on the corresponding operator.

In summary, in analysis we are often looking for operators which pro-
vide some kind of inverse to a differential operator, like the exterior
derivative d. On Rn we can sometimes see these operators as being
constructed from differential forms which satisfy certain properties, and
these differential forms can sometimes be obtained from special map-
pings. In this way problems of calculus become problems of geometry.
The problems of geometry are frequently stable under perturbations,
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their topological aspects being stable in particular, so that if we change
the geometry we might be able to modify the mapping, in such a way
as to be able to do everything for the new geometry. And in such a way
as to solve problems of calculus for the new geometry which are much
more mysterious when seen in purely analytical terms.
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