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COMPOSITION OF MAXIMAL OPERATORS

Menita Carozza and Antonia Passarelli di Napoli

Abstract
Consider the Hardy-Littlewood maximal operator

Mf(x) = sup
Q�x

1

|Q|

∫
Q

|f(y)| dy.

It is known that M applied to f twice is pointwise comparable to
the maximal operator ML log Lf , defined by replacing the mean
value of |f | over the cube Q by the L log L-mean, namely

ML log Lf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)| log
(

e +
|f |
|f |Q

)
(y) dy,

where |f |Q = 1
|Q|

∫
Q
|f | (see [L], [LN], [P]).

In this paper we prove that, more generally, if Φ(t) and Ψ(t)
are two Young functions, there exists a third function Θ(t), whose
explicit form is given as a function of Φ(t) and Ψ(t), such that the
composition MΨ ◦ MΦ is pointwise comparable to MΘ. Through
the paper, given an Orlicz function A(t), by MAf we mean

MAf(x) = sup
Q�x

||f ||A,Q

where ||f ||A,Q = inf

{
λ > 0 : 1

|Q|
∫

Q
A

( |f |
λ

)
(x) dx ≤ 1

}
.

1. Introduction.
Let f ∈ L1

loc(R
n), the Hardy-Littlewood maximal operator Mf of f is

defined by

Mf(x) = sup
Q�x

1
|Q|

∫
Q

|f(y)| dy.
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A well-known result of Coifman and Rochberg, (see [CR], [T]), states
that if Mf < ∞ a.e. and if δ ∈ (0, 1), then (Mf)δ ∈ A1, where A1 is the
Muckenhoupt class of the non negative weights w such that

A1(w) = sup
Q

∫
Q

w

ess infQ w
< ∞,

where
∫

Q
w stands for the average of w over Q and the supremum being

taken over all cubes Q of R
n.

Setting

Mrf = sup
Q�x

(∫
Q

|f |r
) 1

r

r > 1,

from the mentioned result, with δ = 1
r , it follows that M ◦Mr ∼ Mr.

This means that there exists a constant c, such that

Mrf(x) ≤ M(Mrf(x)) ≤ cMrf(x) a.e. in R
n.

For r = 1 the situation is different, namely we have that M ◦M ∼
ML log L, i.e.

c1ML log Lf(x) ≤ M(Mf(x)) ≤ c2ML log Lf(x) a.e. in R
n

(see [L], [LN], [P]), and this corresponds to Stein’s result, i.e. for f
supported in a cube Q

f ∈ L logL(Q) ⇐⇒ Mf ∈ L1(Q)

(see [S]). The maximal operator ML log Lf is defined by replacing the
mean value of |f | over the cube Q by the L logL-mean, namely

(1.1) ML log Lf(x) = sup
x∈Q

1
|Q|

∫
Q

|f(y)| log
(
e+

|f |
|f |Q

)
(y) dy,

where |f |Q = 1
|Q|

∫
Q
|f |.

The previous results justify the introduction of a maximal operator in
an Orlicz space such as L logL.

More precisely, let Ω be a cube of R
n. A continuosly increasing func-

tion on [0,∞], say Ψ : [0,∞] → [0,∞] such that Ψ(0) = 0, Ψ(1) = 1 and
Ψ(∞) = ∞, will be referred to as an Orlicz function.
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The generalized Orlicz space denoted by LΨ(Ω) consists of all functions
g : Ω ⊆ R

n → R such that∫
Ω

Ψ
( |g|
λ

)
(x) dx < ∞

for some λ > 0.
Let us define the Ψ-average of g over a cube Q contained in Ω by

(1.2) ||g||Ψ,Q = inf
{
λ > 0 :

∫
Q

Ψ
( |g|
λ

)
(x) dx ≤ 1

}
.

When Ψ(t) is a Young function, i.e. a convex Orlicz function, the
quantity

||g||Ψ = inf
{
λ > 0 :

∫
Ω

Ψ
( |g|
λ

)
(x) dx ≤ 1

}

is the well known Luxemburg norm in the space LΨ(Ω) (see [KR], [RR]).
If f ∈ LΨ(Rn), the maximal function of f with respect to Ψ is defined

by setting

(1.3) MΨf(x) = sup
x∈Q

||f ||Ψ,Q

where the supremum is taken over all cubes Q of R
n containing x with

sides parallel to the coordinate axes.
Let us remark that if we choose Ψ(t) = t log(e + t), the maximal

operator MΨf defined by (1.3) is equivalent to the ML log L operator
defined by (1.1) (see [IS]).

In this paper we generalize the mentioned results: namely, given two
Young functions Φ(t) and Ψ(t), we get a third Young function Θ(t), such
that the composition, MΨ ◦MΦ, between MΦ and MΨ is equivalent to
the operator MΘ.

As an application, we reobtain, in a simple way, the Herz type in-
equality for the nonincreasing rearrangement of the maximal operator in
L logL (see [B]).

Moreover, we obtain a pointwise estimate for the maximal function of
the jacobian of a function f such that |Df |n belongs to L1.

2. The main result.
Let Ω be a cube of R

n and set

MΦf(x) = sup
x∈Q⊆Ω

||f ||Φ,Q.

First, let us prove a result which will be useful in the following.
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Theorem 1. Let Ψ(t) be an Orlicz function and Φ(t) be a Young one.
For

Θ(t) =
∫ t

0

Ψ′(s)Φ
(
t

s

)
ds,

there exist two positive constants c1, c2 such that

(2.1) c1||MΦf ||Ψ,Ω ≤ ||f ||Θ,Ω ≤ c2||MΦf ||Ψ,Ω

for every f ∈ LΘ(Ω).

Proof: In order to prove that

(2.2) ||MΦf ||Ψ,Ω ≤ c||f ||Θ,Ω,

we use the following equality:∫
Ω

Ψ
(MΦf(x)

λ

)
dx =

∫ ∞

0

Ψ′(t)|{x ∈ Ω : MΦf(x) > tλ}| dt.

Let us set
Etλ = {x ∈ Ω : MΦf(x) > tλ}.

Thanks to Proposition 4.1 in [BP], we can consider a sequence of cubes
{Qk} such that

Etλ = ∪kQk and
∫

Qk

Φ
( |f |
λt

)
(x) dx > |Qk|.

Now, we observe that

|Qk| <
∫

Qk

Φ
( |f |
λt

)
(x) dx

=
∫
{x∈Ω:|f |> λt

2 }∩Qk

Φ
( |f |
λt

)
(x) dx+

∫
{x∈Ω:|f |≤λt

2 }∩Qk

Φ
( |f |
λt

)
(x) dx

≤
∫
{x∈Ω:|f |> λt

2 }∩Qk

Φ
( |f |
λt

)
(x) dx+ Φ

(
1
2

)
|Qk|.

Without loss of generality, we may assume Φ
(

1
2

)
< 1, then we have

|Qk| < c

∫
{x∈Ω:|f |> λt

2 }∩Qk

Φ
( |f |
λt

)
(x) dx

< c

∫
{x∈Ω:|f |> λt

2 }∩Qk

Φ
(

2|f |
λt

)
(x) dx
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by monotonicity of Φ.
We get

|Etλ| ≤ c

∫
{x∈Ω:|f |> λt

2 }∩Etλ

Φ
(

2|f |
λt

)
(x) dx.

After that, we obtain∫
Ω

Ψ
(MΦf(x)

λ

)
dx ≤ c

∫ ∞

0

Ψ′(t)
∫
{x∈Ω:|f |> λt

2 }
Φ

(
2|f |
λt

)
(x) dx dt

= c

∫
Ω

∫ 2|f|
λ

0

Ψ′(t)Φ
(

2|f |
λt

)
(x) dt dx(2.3)

= c

∫
Ω

Θ
(

2|f |
λ

(x)
)
dx.

By estimate above, we have (2.2). Now, we have to prove that

(2.4) ||f ||Θ,Ω ≤ c||MΦf ||Ψ,Ω.

By Calderon-Zygmund lemma, we may cover Etλ = {x ∈ Ω : MΦf(x) >
tλ} by a sequence of nonoverlapping cubes Qk, each having the property

2−n|Qk| ≤ |Qk ∩ Etλ| < |Qk|

and such that

2n|Etλ| ≥
∑

|Qk| ≥
∑ ∫

Qk

Φ
( |f |
λt

)
dx ≥

∫
Etλ

Φ
( |f |
λt

)
dx.

We have that

(2.5)
∫

Ω

Ψ
(MΦf(x)

λ

)
dx ≥ c̃

∫
Ω

Θ
( |f |
λ

(x)
)
dx.

In fact∫
Ω

Ψ
(MΦf(x)

λ

)
dx =

∫ ∞

0

Ψ′(t)|{x ∈ Ω : MΦf(x) > tλ}| dt

≥ c

∫ ∞

0

Ψ′(t)
∫

Etλ

Φ
( |f |
tλ

)
dx dt

= c

∫
Ω

∫ MΦ(f)
λ

0

Ψ′(t)Φ
( |f |
tλ

)
dt dx

≥ c

∫
Ω

∫ f(x)
λ

0

Ψ′(t)Φ
( |f |
tλ

)
dt dx
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since Φ(t) is convex.
Finally, we get

∫
Ω

Ψ
(MΦf(x)

λ

)
dx ≥ c

∫
Ω

Θ
( |f |
λ

)
dx,

which implies (2.4), then the theorem is proved .

Remark 1. Theorem 1 with Φ and Ψ both Young functions, is proved
in [BP].

Moreover, in the particular case Φ(t) = t and Ψ(t) any Orlicz function,
Theorem 1 gives Proposition 3.1 of [GIM].

Using the previous result, we develop a useful estimate for the com-
position MΨ ◦MΦ, where Φ and Ψ are Young functions.

Theorem 2. Let Ψ(t) and Φ(t) be two Young functions. For

Θ(t) =
∫ t

0

Ψ′(s)Φ
(
t

s

)
ds,

there exist two positive constants, c1 and c2, such that for every f ∈
LΘ

loc(R
n) we have

(2.6) c1MΘf(x) ≤ MΨ (MΦf(x)) ≤ c2MΘf(x)

almost everywhere.

Proof: Let us fix x ∈ R
n and a cube Q containing x. Put f = f1 + f2

with f1 = fχ3Q, we have, by triangle inequality of the Luxemburg norm
|| ||Ψ,

(2.7) ||MΦf ||Ψ,Q ≤ ||MΦf1||Ψ,Q + ||MΦf2||Ψ,Q = I + II.

In order to estimate I, consider

MΦf(x) = sup{||f ||Φ,Q̄ : x ∈ Q̄, Q̄ ⊆ 3Q}

and we observe that there exists a constant c(n) such that

(2.8) MΦf1(x) ≤ c(n)MΦf1(x).
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Namely, for every cube Q̃ ⊆ R
n, Q̃ � x, Q̃ ∩ C(3Q) �= ∅ the following

inequality holds∫
Q̃

Φ(|f1|) =
1
|Q̃|

∫
Q̃∩3Q

Φ(|f1|) ≤ 3n

∫
3Q

Φ(|f1|)

and then, if λ > 0 is such that∫
3Q

Φ
( |f1|

λ

)
≤ 1

we have
1
3n

∫
Q̃

Φ
( |f1|

λ

)
≤ 1.

By convexity of Φ, we get ∫
Q̃

Φ
( |f1|

3nλ

)
≤ 1

and this implies

(2.9) ||f1||Φ,Q̃ ≤ 3n||f1||Φ,3Q.

Note that (2.9) is trivial if Q̃ ⊆ 3Q.
Observing that ||f1||Φ,3Q ≤ MΦf1(x) and taking the supremum over

all cubes Q̃ of R
n containing x on the left hand side of (2.9), we have

(2.8). By formulas (2.8) and (2.2), applied with M and Ω = 3Q, we
deduce

I = ||MΦf1||Ψ,Q ≤ C||f ||Θ,Q.

To estimate II it suffices to observe that

(2.10) MΦf2(y) ≤ C inf
Q
MΦf2 ∀y ∈ Q.

In fact, let us fix a point y ∈ Q and a cube Q̄ � y such that Q̄∩C(3Q) �= ∅;
the cube 3Q̄ contains every point x ∈ Q. Reasoning as before, we obtain

||f2||Φ,Q̄ ≤ 3n||f2||Φ,3Q̄ ≤ CMΦf2(x)

and so (2.10). Now we observe that there are positive constants c1, c2, t0,
depending on Φ and Ψ, such that Φ(c1t) ≤ c2Θ(t), for t ≥ t0. Namely,

Θ(t) =
∫ t

0

Ψ′(s)Φ
(
t

s

)
ds

≥
∫ t

0

Ψ(s)Φ′
(
t

s

)
t

s2
ds

≥ c0

∫ t

t0

Φ′
(
t

s

)
t

s2
ds

= c0

∫ t
t0

1

Φ′(σ) dσ = c−1
2 Φ

(
t

t0

)
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and then there exists a positive constant c3 such thatMΦf(x)≤c3MΘf(x)
a.e. .

By (2.7), (2.9) and (2.10), we conclude that

(2.11) ||MΦf ||Ψ,Q ≤ C1||f ||Θ,Q + C2MΘf(x).

Taking the supremum over the cubes Q containing x in (2.11), we get

(2.12) MΨ(MΦf(x)) ≤ c2MΘf(x) a.e. .

On the other hand, formula (2.4) implies that

(2.13) MΨ(MΦf(x)) ≥ c1MΘf(x) a.e. .

Formulas (2.12) and (2.13) give the thesis.

Let us give some example of such compositions.

Example 1. Let us consider

Ψ(t) = tp

Φ(t) =
{

1 t ≤ 1
tq t > 1,

p, q ≥ 1

recalling that

Mrf(x) = sup
x∈Q

(∫
Q

fr

) 1
r

we have

Mpf(x) = MΨf(x)
Mqf(x) = MΦf(x).

Theorem 2 implies that

Mp ◦Mq ∼
{
Mr r = max{p, q}, p �= q

MLq log L p = q.

Let us note that in some very special cases one can determine the
constants c1, c2.

Example 2. For r > 1, if f is a nonincreasing function f : (0,∞) →
(0,∞) then

Mrf(x) ≤ M(Mrf(x)) ≤ r

r − 1
Mrf(x),



Composition of maximal operators 405

by Kolmogorov inequality (see [BDS]). Moreover

∫ x

0

f(t)

[
1 + log

xf(t)∫ x

0
f(s) ds

]
dt ≤ M(Mf(x))

≤ e

e− 1

∫ x

0

f(t)

[
1 + log

xf(t)∫ x

0
f(s) ds

]
dt.

Let us consider Bagby’s formula, (see [B]), for such f . If Φα(t) = t[1 +
(log+ t)α], α > 0, then

c1MΦα
f(t) ≤ 1

t

∫ t

0

(
log

t

s

)α

f(s) ds ≤ c2MΦα
f(t),

and observe that MΦα
◦MΦβ

∼ MΦα+β+1 .

Remark 2. If in Theorem 2 Φ(t) = t, we get

Θ(t)
t

=
∫ t

0

Ψ′(s)
s

ds.

It is easy to verify that

c1MΨf(x) ≤ MΨ(Mf)(x) ≤ c2MΨf(x)

if and only if Ψ(t) = A(t)tp, where A(t) is a continuous increasing func-
tion and p > 1.

Moreover, we have that

c1MΦf(x) ≤ M(MΦf)(x) ≤ c2MΦf(x)

if and only if Φ(t) = tp, where p > 1. So, we reobtain the mentioned
result of [CR].

3. Some consequences.

Corollary 1. Let A(t) be a Young function in (0,∞). The n-compo-
sition, MA ◦MA ◦ · · · ◦MA, of the maximal operator MA, is equivalent
to the maximal operator MAn , where

(3.1) An(t) =
∫ t

0

A′(s)An−1

(
t

s

)
ds.
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Proof: Put A1(t) = A(t). For n = 2, (3.1) follows by Theorem 1.
By an induction argument, we have the assertion for every positive
integer n.

In particular, the n-iterate of the Hardy-Littlewood maximal operator
is equivalent to the operator

ML logn−1 L

(see [L], [LN], [P]).

Let f be a measurable function defined on R
n. We denote by µ the

distribution function of f , namely, for t > 0 we set

µ(t) = |{x ∈ R
n : |f(x)| > t}|.

Then we define the decreasing rearrangement f∗ of f :

f∗(s) = sup{t > 0 : µ(t) > s} (s > 0).

The following theorem states the equivalence between (Mf)∗ andM(f∗).

Theorem 3 (Herz). If f ∈ L1
loc(R

n) then ∀t > 0 it holds that

4−n(Mf)∗(t) ≤ M(f∗)(t) ≤ (2n + 1)(Mf)∗(t).

Proof: See [BS].

Another corollary of Theorem 2 is the following Herz type inequality
for the L logn L-maximal operator.

Corollary 2. There exist c1(n), c2(n) > 0 such that, if f belongs to
L logk L, k ∈ N, then ∀t > 0

c1(ML logk Lf)∗(t) ≤ ML logk L(f∗)(t) ≤ c2(ML logk Lf)∗(t).

Proof: Let us prove the thesis for k = 1. Herz inequality states that

(3.2) c1(Mg)∗(t) ≤ M(g∗)(t) ≤ c2(Mg)∗(t).

Formula (3.2), with g replaced by Mf , becomes

(3.3) c1(M ◦M(f))∗(t) ≤ M((Mf)∗)(t) ≤ c2(M ◦M(f))∗(t)

and using (3.2) again in the right hand side of (3.3), we get

(3.4) (M ◦M(f))∗(t) ∼ M((Mf)∗)(t) ∼ M ◦M(f∗).

Applying Theorem 1 in (3.4), with Φ(t) = Ψ(t) = t, we get

(3.5) (ML log Lf)∗(t) ∼ (M ◦M(f))∗ ∼ ML log L(f∗)(t).

The thesis follows arguing by induction.

As another application of Theorem 2, we obtain a pointwise estimate
about the maximal function of the jacobian of a function f (see [IS],
[M]). Namely we have the following
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Theorem 4. If |Df |n ∈ L1
loc(R

n), then we have

(3.6) ML log LJ(x) ≤ c(n)M(|Df |n)(x) a.e. x ∈ R
n

where J = Jf (x) ≥ 0 is the jacobian of f .

Proof: In [IS] is proved that if |Df |n ∈ L1
loc(R

n) for any cube Q ⊂ R
n,

0 < σ < 1, then we have

∫
σQ

J dy ≤ c(n)
[∫

Q

|Df | n2
n+1 dy

]n+1
n

,

and so

(3.7) MJ(x) ≤ c(n)[M(|Df |n n
n+1 )]

n+1
n (x).

Now, thanks to Theorem 2, applying the maximal function M to both
sides in (3.7), we get

(3.8)

ML log L(J)(x) ≤ cM [(M(|Df | n
n+1 ))

n+1
n ](x)

= c
(
Mn+1

n
(M [|Df | n2

n+1 ])(x)
)n+1

n

≤ cM(|Df |n)

as desired.

Remark 3. Let us observe that, in general, the following estimate

MΘJ(x) ≤ c(n)MΨ(|Df |n)(x) a.e. x ∈ R
n

holds, where Ψ(t) is a Young function, |Df |n ∈ LΨ
loc(R

n) and

Θ(t) = Ψ(t) +
1

n+ 1
t

∫ t

0

Ψ(s)
s2

ds.
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