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COLLAPSING MEROMORPHIC PRODUCTS
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Abstract
Let K be an algebraically closed complete ultrametric field. Let
a ∈ K, r > 0. We consider a meromorphic product F (x) =∏
n∈N

x − an

x − bn
, where (an)n∈N, (bn)n∈N are sequences satisfying

|bn−a| < r whenever n ∈ N, lim
n→+∞

|bn−a| = r, lim
n→∞

an−bn = 0

and min
m�=n

|bm−bn| > 0. We prove that if K has characteristic zero,

then F is collapsing if and only if

∞∑
n=0

(an)j − (bn)j = 0 for ev-

ery j ∈ N. Moreover, if K has characteristic �= 0, then there

exists a meromorphic product f of the form
∏
n∈N

x − cn

x − en
such that

F (x) = (f(x))p whenever x ∈ {x ∈ K| |x − a| ≥ r} if and only if
∞∑

n=0

(an)j − (bn)j = 0 for every j ∈ N.

Notations and definitions

Let K be an algebraically closed field, complete with respect to an
ultrametric absolute value. Given a set D in K, H(D) denotes the set
of the analytic elements in D, i.e., the completion of the algebra R(D)
of rational functions with no pole in D, with respect to the topology of
uniform convergence.

Given a ∈ K and r > 0, d(a, r) (resp. d(a, r−)) denotes the disk
{x ∈ K| |x − a| ≤ r} (resp. {x ∈ K| |x − a| < r}).

We put V = d(a, r−) and E = K \ V . A sequence (en)n∈N in V
satisfying lim

n→∞
|en − a| = r and min

m�=n
|em − en| > 0 will be called a polar

sequence associated to V .
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Henceforth, (bn)n∈N will denote a polar sequence associated to V and
(an)n∈N will denote a sequence in K such that lim

n→∞
an − bn = 0.

For every x ∈ K \ {b0, . . . , bn, . . . } the product Fm =
m∏

n=0

x − an

x − bn

converges to a limit F (x) =
∏
n∈N

x − an

x − bn
. Such a function F (x) defined

in K \{b1, . . . , bn, . . . } is called a meromorphic product associated to the
sequence (bn)n∈N.

The meromorphic product
∏
n∈N

x − an

x − bn
associated to the sequence

(bn)n∈N will be said to be collapsing if there exists � ∈ K such that
F satisfies lim

|x−a|→r
F (x) = �.

By [5], [7] it is well known that a meromorphic product f is collapsing
if and only if f−1 is vanishing along the increasing filter F of center 0 and
diameter 1, and in particular this requires F to be a T -filter [4]. Now,
the question whether a meromorphic product is collapsing, in connection
with the sequences (an)n∈N, (bn)n∈N, is a quite hard question. Here we
will give an answer. In particular, this will be used in the study of the
homomorphisms from the group of meromorphic products into the circle
C(0, 1).

By [5], [7] we have Lemma a.

Lemma a. The following are equivalent.

(1) F is collapsing,
(2) lim

|x−a|→r
F (x) = 1,

(3) F (x) = 1 whenever x ∈ E.

Next result is taken from [5].

Theorem 0. Let f ∈ H(E) satisfy lim
|x|→∞

f(x) = 1 and ‖f −1‖E < 1.

Let ε ∈]0, ‖f − 1‖E [. There exist a polar sequence (en)n∈N associated

to V , together with a meromorphic product
∞∏

n=0

x − cn

x − en
associated to the

sequence (en)n∈N, satisfying further |cn − en| < r(‖f − 1‖E + ε), and
∞∏

n=0

x − cn

x − en
= f(x) whenever x ∈ E.
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We notice that for every j ∈ N
∗ the series

∞∑
n=0

aj
n − bj

n is convergent.

Lemma b below is easy and will be used in proving Lemma c.

Lemma b. Let λ ∈ K. The following are equivalent.

i)
∞∑

n=0

aj
n − bj

n = 0 for every j ∈ N
∗

ii)
∞∑

n=0

(an + λ)j − (bn + λ)j = 0 for every j ∈ N
∗.

Lemma c. F satisfies F ′(x) = 0 for all x ∈ E if and only if for every

j ∈ N
∗ the sequences (an)n∈N and (bn)n∈N satisfy

∞∑
n=0

(an)j − (bn)j = 0.

Proof: By Lemma b we may clearly assume a = 0 without loss of
generality. Let r′ ∈ [r, +∞[ be such that |an| < r′ for every n ∈ N, and

let E′ = K \ d(0, r′−). We can see that ‖F − 1‖′E ≤ sup
n∈N

|bn − an|
r′

< 1.

Hence F ′

F obviously belongs to H(E′). Let g = F ′

F . It is seen that

g(x) =
∞∑

n=0

1
x − an

− 1
x − bn

. For each α, β ∈ V , and for every x ∈ E′

we have
1

x − α
− 1

x − β
=

∞∑
j=0

αj − βj

xj+1
=

∞∑
j=1

αj − βj

xj+1
.

Applying this to each term 1
x−an

− 1
x−bn

, we obtain

g(x) =
∞∑

n=0


 ∞∑

j=1

(an)j − (bn)j

xj+1




for all x ∈ E′. Now, let us fix x ∈ E′. We see that when j tends to +∞,
the convergence of (an)j−(bn)j

xj+1 to 0 is uniform with respect to n. Hence
we have

g(x) =
∞∑

j=1

[ ∞∑
n=0

(an)j − (bn)j

xj+1

]
.
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But now, this holds for any x ∈ E′. Besides, as F belongs to H(E),
we know that its Mittag-Leffler series [3], [4] is the same in H(E) and in
H(E′), hence this is the Mittag-Leffler series of F in H(E). Hence we see
that F ′(x) = 0 if and only if the Mittag-Leffler series of g is identically

equal to 0, i.e.:
∞∑

n=0

(an)j − (bn)j = 0 for every j ∈ N
∗. This ends the

proof.

Now, we can conclude

Theorem 1. K is supposed to have characteristic zero. Then F is
collapsing if and only if for every j ∈ N

∗ the sequences (an)n∈N and

(bn)n∈N satisfy (Ej)
∞∑

n=0

(an)j − (bn)j = 0.

Proof: Indeed, since K has characteristic zero, by [1] we know that
F ′(x) is identically zero in E if and only if F (x) is a constant in E, i.e.,
F is collapsing.

Theorem 2. Assume K to be of characteristic p �= 0. There exists
a polar sequence (en)n∈N associated to V , and a meromorphic product

f(x) =
∏
n∈N

x − cn

x − en
, associated to the sequence (en)n∈N, satisfying F (x) =

(f(x))p whenever x ∈ E if and only if for every j ∈ N
∗ the sequences

(an)n∈N and (bn)n∈N satisfy (Ej)
∞∑

n=0

(an)j − (bn)j = 0.

Proof: If there exists a meromorphic product f associated to the se-
quence (bn)n∈N such that (f(x))p = F (x) for all x ∈ E, then obviously
we have F ′(x) = 0 for all x ∈ E, and therefore, by Lemma c, we have

(Ej)
∞∑

n=0

(an)j − (bn)j = 0 for every j ∈ N
∗.

Reciprocally, we suppose Relations (Ej) satisfied. By Lemma b we
have F ′(x) = 0 for all x ∈ E. Hence, there exists g ∈ H(E) such that
(g(x))p = F (x) for all x ∈ E. Besides, since F is a meromorphic product
associated to the sequence (bn)n∈N, we notice that lim

|x|→+∞
F (x) = 1. As

a consequence, we can choose g such that lim
|x|→+∞

g(x) = 1. Further, it

is seen that gp =
(
(g − 1) + 1

)p = (g − 1)p + 1, and therefore we have
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(1) ‖F − 1‖E =
(
‖g − 1‖E

)p
,

hence ‖g − 1‖E < 1. Let ε ∈]0, 1[. Then by (1) and by Theorem 0 there
does exists a polar sequence (en)n∈N associated to V , and a meromorphic

product f of the form
∏
n∈N

x − cn

x − en
such that f(x) = g(x) whenever x ∈ E,

and such that |en − cn| ≤ p
√
‖F − 1‖E + ε. This ends the proof.

Remark. In [5], and [6] it was shown how one can construct a collaps-
ing meromorphic product, with the help of certain unbounded functions
analytic in the disk d(0, r−).
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Les Cézeaux
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