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ANALYTICAL AND NUMERICAL STUDY
OF SOME VARIANTS OF

KOITER’S LINEAR MODEL OF THIN SHELLS1

Ángeles Vilariño Moreno

Abstract
Koiter’s linear model for thin shells is obtained from the clas-
sic equations of the three-dimensional linear elasticity with the
Kirchhoff-Love hypothesis; the variety of formulations of this
model is based on the precision of the analysis carried out. In
this work we detail these simplifications, and analyse the origin
and the error of some variations of the model. We also approx-
imate some of these versions by a nonconforming finite element
method and compare the numerical results over some classical
bench-marks.

1. Introduction

A thin elastic shell is a three-dimensional elastic solid of which one di-
mension is small with respect to the two others; this particular geometry
leads to two-dimensional models formulated in terms of the middle sur-
face of the shell to study its deformation. Different authors have deduced
different shell models from the classic theory of the three-dimensional
elasticity with the Kirchhoff-Love hypothesis; this variety of equations is
based on different interpretations of the cited hypothesis, on a ledger or
smaller degree of precision on the analysis that continues, etc.

The linear model of Koiter (and its variants, see [5] and [6]) is one
of the most used since it couples the membrane and flexion effects; the
book [1] is an excellent summary of conditions for the existence and
uniqueness of a solution of the model, approximation through finite el-
ement methods, etc. In this work we develop the previous step of an-
alyzing the origin of the different variants of the model, to justify the

1This work is part of the Human Capital and Mobility Program “Shells: Mathemati-
cal Modeling and Analysis, Scientific Computing” of the Commission of the European
Communities (Contract ERBCHRXCT940536).
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equations that appear and study the error order of the differences among
them.

To visualize better the differences among the different versions and how
they are sensitive to the variation of certain parameters (for example, the
thickness of the shell), we have approximated the two more usual variants
of the model, using Sander’s “delinquent” nonconforming finite element
method, whose implementation has permitted us to numerically compare
the results.

Throughout the work we use the classic notation of differential geom-
etry of surfaces and volumes (in particular, the summation convention
for a Greek or Latin repeated index, and the notation vα|β or Vi‖j for
covariant derivatives).

2. Deformation of a shell

Given Ω ⊂ R
2 a bounded domain, with a Lipschitz-continuous bound-

ary Γ, the middle surface S̄ of a shell C̄ is defined as the image of Ω̄ by
mapping �φ; we assume that �φ is of class C3(Ω̄; R3) and that the vectors
�aα = �φ,α are linearly independent. We denote by (aαβ) and (bαβ) the
covariant components of the first and second fundamental form of the
surface S̄ and let a = det(aαβ). Also, {�aα} and {�aα} are the covariant
and contravariant basis of the tangent plane for all points of S̄ and let
�a3 = (�a1 × �a2)/

√
a be the normal and unitary vector.

A shell is defined then as the closed subset of R
3

C̄ =
{
M ∈ R

3 :
−−→
OM = �φ(ξ) + ξ3 �a3(ξ); ξ ∈ Ω̄;

−e(ξ)
2

≤ ξ3 ≤ e(ξ)
2

}
,

e being a function of class C0(Ω̄; R+) such that it describes the thickness.
We make a first thinness hypothesis in the sense that in each point:

(1) e ≤ 1
ℵ min{| RN |} (RN normal curvature radio),

where ℵ is a “large enough” number; furthermore, evidently, e must be
“small” in comparison with the other two dimensions of the shell, whose
orders of magnitude we denote by L. Also, the shell C̄ is obtained by:

(2) �Φ : Ωe → R
3, Ωe = Ω̄ ×

[
−e

2
,
e

2

]
, �Φ = �φ + ξ3 �a3;

we denote by {�gi} and {�gi} the covariant and contravariant basis of
the tangent space, and (gij) and (gij) are the components of the metric
tensor.



Koiter’s lineal model of thin shells 217

We consider the boundary problem that describes the equilibrium of
the shell C̄, submitted to the action of different forces and clamped on
a part of its lateral boundary; let C̄∗ be the deformed configuration and
we denote by �U : C̄ → C̄∗ the corresponding displacement field, �u being
its restriction to S̄. We see below how, under the acceptance of different
hypothesis, �U is determined as function of �u, that, at the same time, is
decomposed in the form �u = ui �a

i; the utilization of the map �φ permits
the conclusion that the effective unknowns of the problem are, thus, the
functions ui : Ω̄ → R (i = 1, 2, 3).

In addition to accepting the previous thinness hypothesis, we work on a
linear theory : small loads that imply small displacement; this hypothesis
permits the simplification of expressions in which appear powers of ui of
different orders. The following is obtained:

Proposition 1. Denoting with a bar above the concepts referring to
the deformed middle surface, it is verified that:

�̄a3 − �a3 = �θ(�u) = θα(�u)�aα with θα(�u) = −(u3,α + bβ
α uβ),(3)

āαβ − aαβ = uα|β + uβ|α − 2 bαβ u3,(4)

b̄αβ − bαβ = −0.5 (θα|β(�u) + θβ|α(�u) − bλ
α uλ|β − bλ

β uλ|α)(5)

− bλ
α bλβ u3.

Proof: First, for the deformed middle surface we have:

�̄φ = �φ + �u, �̄aα = �aα + �u,α;

with the aid of the Gauss and Weingarten formulae we have

�u,α = (uβ|α − bβα u3)�a β − θα(�u)�a3.

Finally, by remembering the concepts of the normal vector and the fun-
damental forms, and by repeatedly applying the linear assumption we
obtain the result.

We recall that �θ(�u) is known as the vector of rotation of the normal
and that the covariant components of the strain and change of curvature
tensors of the middle surface S̄ are respectively defined by:

γαβ(�u) = 0.5 (āαβ − aαβ), �̄αβ(�u) = b̄αβ − bαβ .
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3. The Kirchhoff-Love assumptions

Most authors derive their equations on the basis of the “classic”
Kirchhoff-Love assumptions:

H1 The normal to the undeformed middle surface, considered as a set
of points, remains normal to the deformed middle surface, and the
displacements in the direction of the normals are independent of
the position on the middle surface.

H2 The effect of the normal stress, on surfaces parallel to the middle
surface, may be neglected in the stress-strain relations.

These assumptions have an approximate character; nevertheless, they
are contradictory as we prove now. For it, we consider a kinematically
admissible displacement field �V , the linear strain tensor ε(�V ) defined by

ε(�V ) =
1
2

(
∇�V + ∇�V

)
= εij(�V )�g i ⊗ �g j ,

and the Piola-Kirchhoff stress tensor σ(�V ) defined by

σ(�V ) =
E ν

(1 + ν) (1 − 2 ν)
tr(ε(�V )) I +

E

1 + ν
ε(�V ) = σij(�V )�gi ⊗ �gj

(for an elastic, homogeneous and isotropic material, of Young’s modulus
E and Poisson’s coefficient ν), and we operate with them.

Proposition 2. As consequence of H1 it is deduced that

(6) �V = �v + d(ξ3) �θ(�v) + (d(ξ3) − ξ3)�a3,

where d is the function that measures the elongations on the normal.
Furthermore:

◦
εαβ(�V ) = γαβ(�v),

◦
εαβ,3(�V ) = −�̄αβ(�v),
◦
εαβ‖3(�V ) = −�̄αβ(�v) + bλ

α γλβ(�v) + bλ
β γαλ(�v),

◦
εα3(�V ) =

◦
ε33(�V ) =

◦
εα3,3(�V ) =

◦
ε33,3(�V ) =

◦
εα3‖3(�V ) =

◦
ε33‖3(�V ) = 0,

where we denote the values at the middle surface with a small circle above
functions.

Proof: With the mathematical expressions of the Assumption H1, the
Relation (6) is a simple consequence of (3). From here, we differentiate
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this expression following the definition of ε(�V ) and by evaluating at the
middle surface we obtain the relations for

◦
εij(�V ) and for their derivatives;

we remark that to obtain the final expressions we use:

d(0) = 0, d′(0) = 1, d′′(0) = 0,

since the function d has in the proximity of the middle surface an anal-
ogous behavior to the identity (see [9] for the details).

Proposition 3. As consequence of H2 it is deduced that

(7) ε33(�V ) = − ν

1 − ν
gαβ εαβ(�V ).

Proof: The Assumption H2 is equivalent to asserting that σ33(�V ) is
zero; on the other hand, the definition of σ(�V ) permits us to write:

σij(�V )=E ijklεkl(�V ), with E ijkl =
E ν gij gkl

(1 + ν)(1 − 2 ν)
+
E(gik gjl + gil gjk)

2(1 + ν)
;

by combining it with the expressions of the components (gij) (deduced
from (2)) we obtain (7).

We have already sufficient elements to show the contradiction of the
classic Kirchhoff-Love assumptions. In fact, by evaluating (7) at the
middle surface and taking into account the results in Proposition 2 we
arrive at the fact that the trace of the strain tensor of the middle surface
(γαβ) is zero, and it is not necessarily true for an arbitrary shell.

In [5], Koiter introduces a new “modified” version of the Kirchhoff-
Love assumptions, substituting H1 for:

H1’ The effect of the transverse shear stresses, acting on surfaces par-
allel to the middle surface, may be neglected in the stress-strain
relations.

Let see its consistency and the modifications that it introduces (com-
pare with the results of Proposition 2).

Proposition 4. As consequence of H1’ it is deduced that:

◦
εαβ(�V ) = γαβ(�v),

◦
εαβ‖3(�V ) = −�̄αβ(�v) + bλ

α γλβ(�v) + bλ
β γαλ(�v) +

ν

1 − ν
bαβ aλµ γλµ(�v),

◦
εα3(�V ) =

◦
εα3‖3(�V ) = 0;
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furthermore, for the displacement field �V we have

(8) �V = �v + ξ3 �θ(�v) + ξ3 ◦
ε33(�V )�a 3.

Proof: The Assumption H1’ is equivalent to stating that σα3(�V ) is
zero; by working as in Proposition 3 we arrive at the fact that εα3(�V ) is
also zero. From here the expressions of

◦
εij(�V ) and their derivatives are

deduced from the customary rules of the covariant derivation. Making a
Taylor’s limited development of first order (linear theory) in each point
of the middle surface, in the form

�V =
◦
�V + ξ3

◦
�V ,3;

it is easy to see that:

◦
�V = �v and

◦
�V ,3 = �θ(�v) +

◦
ε33(�V )�a3,

and from here we arrive finally at (8).

It is important to note that the Assumptions H1’ and H2 do not present
contradiction in their formulation, since there is not an ambiguity for
◦
ε33(�V ), for which the expression (7) is conserved, and

(9) ε33‖3(�V ) = − ν

1 − ν
gαβ εαβ‖3(�V )

for its derivative. Also, we indicate that (8) permits the possibility of
small shears on the normal component of the displacement.

In the following, we will suppose that the shell is fixed on a part C0

of its lateral boundary. A simple calculation from (8) permits us to
conclude that:

�v = �0, v3,ν = 0, on S0,

where S0 is the projection on S̄ of C0 and �ν is the outward unit normal
vector to S0; this is known as clamped conditions on S0.

4. Koiter’s linear model

The basic idea of Koiter’s shell theory is to effect an integration on the
thickness; we recall that the strain energy of a solid for an admissible
displacement field �V , is given by

(10) A(�V ) =
1
2

∫
C

tr(σ(�V ) ◦ ε(�V )) dM =
1
2

∫
C
σij(�V ) εij(�V ) dM.
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Proposition 5. Under the acceptance of the thinness hypothesis, the
strain energy of the shell admits the expression
(11)

A(�V ) =
1
2

∫
S
eEαβλµ

(
◦
εαβ(�V )

◦
ελµ(�V ) +

e2

12
◦
εαβ‖3(�V )

◦
ελµ‖3(�V )

)
dP,

where the tensor of elastic moduli (Eαβλµ) is given by

Eαβλµ =
E

2 (1 + ν)

(
aαλ aβµ + aαµ aβλ +

2 ν
1 − ν

aαβ aλµ

)
.

Proof: We operate in the integrand using Taylor’s limited development
in each point of the middle surface in the form

Ψ(�V ) = σij(�V ) εij(�V ) =
◦
Ψ(�V ) + ξ3

◦
Ψ‖3(�V ) +

1
2

(ξ3)2
◦
Ψ‖33(�V ).

Developing this relation, effecting the integration on the thickness (we
note that

√
g and

√
a are the volume and surface elements, respectively)

and simplifying to the maximum, we obtain

∫ e/2

−e/2

Ψ(�V )
√
g√
a
dξ3 = e

◦
E ijkl

(
◦
εij(�V )

◦
εkl(�V ) +

e2

12
◦
εij‖3(�V )

◦
εkl‖3(�V )

)
;

from here we deduce (11) making the substitutions (7) and (9). It is
important to indicate that in the previous simplification we have ne-
glected all those terms whose order of magnitude is O(1/ℵ), O(1/ℵ2)
or O(e2/L2), with respect to some of the conserved terms; as we can
see, the accomplished thinness hypothesis causes this simplification to
be admissible, because these terms are “indeed negligible”.

It remains only to substitute the components
◦
εαβ(�V ) and their co-

variant derivatives by their corresponding expressions deduced as a con-
sequence of the Kirchhoff-Love assumptions; with respect to the first
there is no problem, but for the second we see that neither of the previ-
ously obtained expressions permits us to arrive at Koiter’s classic model,
which is directly obtained substituting in (11) the components

◦
εαβ‖3(�V )

by −�̄αβ(�v). It can be observed that with the Asssumption H1 we obtain
the previous relation by differentiating εαβ(�V ) in the usual way, and not
in the covariant way.

In [6] Koiter introduces a modified model by making the following
substitution for the derivatives of the linear strain tensor

(12)
◦
εαβ‖3(�V ) = −�̄αβ(�v) +

1
2
bλ
α γλβ(�v) +

1
2
bλ
β γαλ(�v);
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this is, in a certain way, an arithmetic mean among the expression used
in the classic model and the relation obtained as a consequence of the
Kirchhoff-Love assumptions.

Nevertheless, we can see that the addition to
◦
εαβ‖3(�V ) of terms of

the form C bλ
α γλβ(�v) (C small constant) produces in (11) addends whose

order of magnitude is O(1/ℵ) or O(1/ℵ2) with respect to the already ex-
isting (the same proof of Proposition (5) is valid); again, by recalling the
thinness hypothesis, the variety of the existing formulations is justified.

Before ending this section we remark that with the potential energy of
exterior forces F(�V ) we can accomplish the same limited development
of Taylor and the subsequent process of simplification and integration
on the thickness; then, we obtain

F(�V ) =
∫
S
pi vi dM +

∫
S1

(N i vi + Mα θα(�v)) dσ,

where �p = pi �ai is the superficial density on S̄ of the volume loads applied
and �N = N i �ai and �M = εαβ Mβ �aα are, respectively, the linear density
and the resulting linear moment on S1 (the part of the boundary of S̄
complementary to S0) of the boundary loads applied.

5. Variational formulation of the problem

The variational formulation of the problem and the establishment of
the existence and uniqueness of a solution requires a previous step that
is the formulation on the reference domain Ω̄, which is made through a
simple variable change in the corresponding integral.

Taking into account the expressions of the strain and the change of
curvature tensors of the middle surface and adding the boundary condi-
tions, we arrive at the space of admissible displacement

�V =
{
�v = (v1, v2, v3) ∈ (H1(Ω))2 ×H2(Ω) : vi = v3,n = 0 on Γ0

}
,

equipped with the Sobolev usual norm. It can be proved that the strain
energy A and the potential energy of exterior forces F are associated,
respectively, to a symmetric bilinear form a and to a linear form f ,
defined on �V and both �V-continuous; their expressions are:

a(�u,�v) =
∫

Ω

eEαβλµ

(
γαβ(�v) γλµ(�u) +

e2

12
�̄αβ(�v) �̄λµ(�u)

) √
a dξ,

f(�v) =
∫

Ω

pi vi

√
a dξ +

∫
Γ1

(N i vi + Mα θα(�v)) |�φ,t| dγ.

So, the principle of virtual work allows us to write the variational
formulation of the problem, i.e.:

Problem 1. Find �u ∈ �V such that a(�u,�v) = f(�v), for all �v ∈ �V.
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Theorem 1. Problem 1 has one and only one solution.

We refer to [1] (and to the references given there) for the study of the
existence and uniqueness of the solution of Problem 1; nevertheless, we
indicate that the proof given there can be generalized to any variant of
Koiter’s linear model since the theorem of the rigid body in which it is
based is also valid under expressions of the type (12).

6. Approximation by F.E.M.

We approximate the shell problem using Sander’s “delinquent” non-
conforming finite element method (see [8]), which uses the P2-Lagrange-
edge triangle for the approximation of the tangential components of the
displacement, and Sander’s delinquent triangle for the normal compo-
nent. The definition of these two finite elements is described in Figure 1,
using the classic notation of [4].

a3

a2

a1

∼

∼

∼

a3

a2

a1

∼

∼

∼

∼

∼
∼

∼∼
∼

P2-Lagrange-edge triangle
PK = P2(K) (dimPK = 6)

ΣK =
{
p(ai),

1
li

∫
Ki

p dγ : i = 1, 2, 3
}

(li = |Ki|)

Sander’s delinquent triangle
PK = P ′

3(K) ⊕ 〈λ1 λ2 λ3 λi〉i=1,2,3 (dimPK = 12)

ΣK =
{
p(ai),

1
li

∫
Ki

p dγ,
1
li

∫
Ki

λj p,ni dγ : i = 1, 2, 3, j = i− 1, i + 1
}

Figure 1. Sander’s “delinquent” finite element method
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We indicate that it is a nonconforming method, since the second finite
element is not of class C1 (and neither is C0); so, if we build the finite
element spaces �Vh associated to a regular family of triangulations Th of
Ω̄ in the usual way, we have:

�Vh ⊂ (H1(Ω))2 ×
∏

K∈Th

H2(K) ⊂ (H1(Ω))2 × L2(Ω), �Vh �⊂ �V;

also, the bilinear form a and the linear form f have to be approximated
in �Vh by:

ah(�uh, �vh) =
∫

Ω

eEαβλµ γαβ(�vh) γλµ(�uh)
√
a dx dy

+
∑

K∈Th

∫
K

e3

12
Eαβλµ �̄αβ(�vh) �̄λµ(�uh)

√
a dx dy,

fh(�vh) =
∫

Ω

pi vhi

√
a dx dy +

∑
K∈Th

∫
K∩Γ1

(N i vhi + Mα θα(�vh)) |�φ,t| dγ.

We can already to state the discrete problem:

Problem 2. Find �uh ∈ �Vh such that ah(�uh, �vh) = fh(�vh), for all
�vh ∈ �Vh.

The analysis, the resolution and the implementation of this problem
has been realized in [3], [9] and [7], and the following is obtained:

Theorem 2. Problem 2 admits a unique solution satisfying

‖�u− �uh‖h = O(h2)

if �uh ∈ (H3(Ω))2 ×H4(Ω), where ‖ · ‖h denotes the Sobolev usual norm
in the space (H1(Ω))2 ×

∏
K∈Th

H2(K).

7. Numerical tests

In order to illustrate the previous considerations, we present some nu-
merical experiments derived using Sander’s finite element method on the
two versions of Koiter’s linear model. These tests have been obtained
with the aid of the MODULEF Library (see [2]), in which we have im-
plemented the previous methods.

The first experiment is a hyperbolic paraboloid which is clamped and
submitted to a uniform pressure of density q; a sketching of this shell as
well as the physical data of the discussed problem are given in Figure 2.
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E = 2.85 ∗ 104

ν = 0.4
e = 0.8
q = 0.01
b = 50.
c = 10.2b

c

�e1

�e2C

B

�e3

A
cc

c

2b

→

→

→

→

→

→

→

→

→

→
→

→

→
→

Figure 2. Hyperbolic paraboloid

In Figure 3 we show the deformations along the sides AB and AC.
With the reference configuration (the nodes of the triangulation are la-
beled with ∗), we also show the deformed configurations (labeled with o).
We note that in these figures, whose deformations are magnified with a
coefficient of 200 for better visualization, we exhibit the results obtained
with the classic model and with the modified model, but its graphs are
superimposed (even with the above-mentioned magnification) because of
the similar behaviour of the numerical results.

35.

−40.
0.

SIDE

75. 0. 75.
−40.

35.
∗ = REF. : = DEF.∗ = REF. : = DEF.o o

SIDEAB AC

Figure 3. Hyperbolic paraboloid: deformations
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Thickness U3(A) clas. U3(A) modif. % Relat. error % Change
e/3 0.0416920940 0.0416888700 0.0077326890 0.480
e/2 0.0297627322 0.0297600199 0.0091130410 0.566
e 0.0242857928 0.0242897008 0.0160917538 1.000
2e 0.0152566484 0.0152673617 0.0702202060 4.363
3e 0.0092417958 0.0092529293 0.1204689351 7.486
4e 0.0057903262 0.0057998190 0.1639437514 10.188
5e 0.0037729762 0.0037804555 0.1982337968 12.318

Table 1. Hyperbolic paraboloid: results
In Table 1 we give the results obtained in the center of the paraboloid

(point A) when we change the thickness of the shell; in this way, taking
the value e = 0.8 as a reference, we have analyzed the results for e/3,
e/2, 2e, 3e, 4e and 5e. As can be observed, the percentage of change is
sensitive to the increase in the thickness, something that was expected,
since the differences between these models are terms of the order O(1/ℵ)
or O(1/ℵ2), and ℵ is related with e through (1).

The second experiment is the classic test carried out on a cylindri-
cal roof with a rigid diaphragm fixed to its two curved sides that only
permits movements in the direction of the axis of the cylinder, and sub-
mitted to its own weight of load density q. In Figure 4 we give the data
and the characteristics of the problem.

�e1

�e2

C
B

�e3

A

E = 3. ∗ 106

ν = 0.
e = 3.
q = −0.625
R = 300.
L = 600.
α = 40◦.

�

→

→

→ →

→

→

D
L

Rα

Figure 4. Cylindrical roof
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375.

175.
200.0.

∗ = REF. : = DEF.

SIDE

o

C B

Figure 5. Cylindrical roof: deformations

We consider the central half-arch BC, and we give in Figure 5 the
reference configuration (labeled with ∗) and the deformed configurations
(labeled with o) corresponding to the classic model and to the modified
model. As in the previous example, for better visualization, the defor-
mations are amplified with a coefficient 100; in spite of this, the graphs
corresponding to the two models are superimposed.

We conclude carrying out the same study of the sensitivity of the model
change with respect to the thickness change, by examining the vertical
displacement of the point B (in absolute value, the greater displacement
of the shell). As can be noted, the results are totally analogous for the
behavior of the percentages of change (we indicate that in this case the
lower values for the percentages of change are due to the existence of a
unique curvature in the structures of cylindrical type).

Thickness U3(B) clas. U3(B) modif. % Relat. error % Change
e/3 −34.79117673 −34.79133249 0.000447700 0.160
e/2 −16.19772821 −16.19787827 0.000926426 0.331
e −3.59804675 −3.59814735 0.002795878 1.000
2e −0.66375276 −0.66380562 0.007965059 2.848
3e −0.26131452 −0.26134978 0.013491672 4.825
4e −0.14486851 −0.14489491 0.018224940 6.518
5e −0.09595338 −0.09597447 0.021983488 7.862

Table 2. Cylindrical roof: results
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