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CHARACTERIZATIONS OF SEMIPERFECT
AND PERFECT RINGS®™

WEIMIN XUE

Abstract

We characterize semiperfect modules, semiperfect rings, and per-
fect rings using locally projective covers and generalized locally
projective covers, where locally projective modules were intro-
duced by Zimmermann-Huisgen and generalized locally projective
coves are adapted from Azumaya’s generalized projective covers.

Introduction

Azumaya [A2] introduced the notion of generalized projective covers
to characterize semiperfect modules and rings. Adapting his concept, we
call a module epimorphism f : P — M a (generalized) cover in case
(Ker(f) € Rad(P)) Ker(f) < P. A (generalized) cover f : P — M is
called a (generalized) projective cover in case P is a projective module,
and it is called a (generalized) locally projective cover in case P is a
locally projective module.

This paper consists of three sections. We obtain some basic proper-
ties of (generalized) covers in Section 1. In Section 2, we characterize
(generalized) semiperfect modules via (generalized) projective covers of
the (generalized) complements. In Section 3, we characterize semiper-
fect rings and modules, perfect rings, and quasi-perfect rings [CX], using
(generalized) locally projective covers.

The terminologies and notations of Anderson and Fuller [AF] will
be freely used. We refer the reader to [AF, Section 27, Section 28]
for a presentation of semiperfect and perfect rings. Throughout R is
an associative ring with identity whose Jacobson radical is denoted by
J. Unless otherwise stated, modules are unitary left R-modules, and
homomorphisms are left R-module homomorphisms. If M is a module,
we recall from [AF] that Rad(M) denotes the radical of M, and (U «
M) U < M means that U is a (superfluous) submodule of M.

(*)This research is supported by the National Natural Science Foundation of China.
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1. Basic properties of (generalized) covers

If P and M are modules, we call an epimorphism f : P — M a
(generalized) cover in case (Ker(f) C Rad(P)) Ker(f) <« P. Since
Rad(P) is the sum of all superfluous submodules of P, every cover is a
generalized cover. We have the following basic properties of (generalized)
covers.

Lemma 1.1. Ifboth f : P — M and g: M — N are (generalized)
covers, then gf : P — N s a (generalized) cover.

Proof: If both f and g are covers, then gf is a cover by [AF, Propo-
sition 5.17(1)].

Now let both f and g be generalized covers. To show Ker(gf) C
Rad(P), we let p € Ker(gf). Then gf(p) = 0 and f(p) C Ker(g) C
Rad(M). Since Ker(f) C Rad(P), it follows from [AF, Proposition 9.15]
that f(Rad(P)) = Rad(M). Hence f(p) = f(p’) for some p’ € Rad(P),
so p—p’ € Ker(f) C Rad(P). We obtain p € Rad(P). &

Lemma 1.2. (1) If each f; : P, — M; (i = 1,2,...,n) is a cover
then ®j_, fi : ®j_ 1 P, — ®}_ M, is a cover.

(2) If each f; : P — M; (i € I) is a generalized cover then ®;crf; :
Qic1 Py — @ierM; is a generalized cover.

Proof: (1) Since each Ker(f;) <« P, we have Ker(®l,f;) =

? , Ker(f;) < @, P;. So @, f; is a cover.

(2) Since each Ker(f;) CRad(P;) we have Ker(®;cr fi) =®icr Ker(f;) C
@;cr Rad(P;) = Rad(®er P;). So ®ier fi is a generalized cover. B

Lemma 1.3. Let f: P — M be a cover. If M is finitely generated
then P is also finitely generated.

Proof: Since P/XKer(f) = M is finitely generated, there is a finitely
generated submodule P’ of P such that

P’ +Ker(f) = P.

Since Ker(f) < P we have P =P. &
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2. (Generalized) projective covers
and M-projective covers

Let M be amodule. If U, U’ < M and M = U+ U’ then U’ is called a
(generalized) complement of U in case (UNU’' C Rad(U)) UNU' < U'.
Clearly, each complement is a generalized complement.

A (generalized) cover f: P — M is called a (generalized) projective
cover in case P is a projective module. Since every cover is a generalized
cover, a projective cover is a generalized projective cover as observed in
[A2].

A connection between (generalized) projective covers and (generalized)
complements is given as follows.

Proposition 2.1. If M is a module and U < M, then the following
three statements are equivalent.

(1) M/U has a (generalized) projective cover.

(2) If V<M and M = U~V then U has a (generalized) complement
U’ CV such that U’ has a (generalized) projective cover.

(3) U has a (generalized) complement U’ which has a (generalized)
projective cover.

Proof: (1) = (2). Let f : P — M/U be a (generalized) projective
cover. Since M =U +V,

g: V. — M/V via
v — v+U

is an epimorphism. Since P is projective, there is a homomorphism
h : P — V such that f = gh. It is easy to see that M = U + h(P)
where h(P) C V. Now (Ker(f) C Rad(P)) Ker(f) < P, so we have

U Nh(P) = h(Ker(f)) (C h(Rad(P)) C Rad(h(P))) < h(P)

and h(P) is a (generalized) complement of U C V. Since Ker(h) C
Ker(f) (C Rad(P)) < P,

h:P — h(P)

is a (generalized) projective cover.

(2) = (3). This is obvious.

(3) = (1). Let f: P — U’ be a (generalized) projective cover. Since
U’ is a (generalized) complement of U, the natural epimorphism

g: U — U JUNU) % (U +U")JU = MJU
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is a (generalized) cover. Hence hgf : P — M/U is a (generalized)
projective cover by Lemma 1.1. B

Let M be a module. M is called (generalized) complemented in case
each submodule U has a (generalized) complement U’, and it is called
(generalized) amply complemented in case M = U + V implies that U
has a (generalized) complement U’ C V. According to [A2], M is called
(generalized) semiperfect in case each factor module of M has a (gen-
eralized) projective cover. Azumaya [A2, Theorem 4] proved that M
is generalized semiperfect if and only if each proper submodule of M is
contained in a maximal submodule of M and each simple factor module
of M has a generalized projective cover. The next different character-
ization of (generalized) semiperfect modules follows immediately from
Proposition 2.1, where the non-parenthetical version is [F, Theorem 1].
A characterization of semiperfect modules using locally projective covers
will be given in the next section.

Theorem 2.2. The following three statements are equivalent for a
module M.

(1) M is (generalized) semiperfect.

(2) M is (generalized) amply complemented by complements which
have (generalized) projective covers.

(3) M is (generalized) complemented by complements which have
(generalized) projective covers.

A (generalized) cover f : P — M is called a (generalized) M-
projective cover in case P is a M-projective module. Modifying the
proof of Proposition 2.1, we have an analogous result.

Proposition 2.3. If M is a module and U < M, then the following
three statements are equivalent.

(1) M/U has a (generalized) M -projective cover.

(2) If V<M and M = U+YV then U has a (generalized) complement
U' CV such that U has a (generalized) M -projective cover.

(3) U has a (generalized) complement U' which has a (generalized)
M -projective cover.

We call a module M (generalized) quasi-semiperfect in case each factor
module of M has a (generalized) M-projective cover. Now we have the
following result by Proposition 2.3.

Theorem 2.4. The following three statements are equivalent for a
module M .

(1) M is (generalized) quasi-semiperfect.



SEMIPERFECT AND PERFECT RINGS 119

(2) M is (generalized) amply complemented by complements which
have (generalized) M -projective covers.

(3) M is (generalized) complemented by complements which have
(generalized) M -projective covers.

Using an idea of Azumaya’s proof given in [A2, Theorem 4] we obtain

Theorem 2.5. Let R be a semilocal ring and M a finitely generated
left R-module. Then M is (generalized) quasi-semiperfect if and only if
each simple factor module of M has a (generalized) M -projective cover.

Proof: (=). This is obvious.

(<). Let U < M and M = M/U. Since R is semilocal and M
is finitely generated, JM = Rad(M) < M and M/JM is semisim-
ple. Let M/JM = @@ ,S; be a direct sum of simple submodules S;
(i=1,2,...,n). Since each S; is isomorphic to a simple factor module
of M, it has a (generalized) M-projective cover f; : P, — S; where
(Ker(f;) € Rad(P;) = JP;) Ker(f;) < P,. Since P;/Ker(f;) = S; is
simple, Ker(f;) is a maximal submodule of P and so (Ker(f;) = JP;)
Ker(f;) = JP; < P;. By Lemma 1.2,

f=@l fi:P=0} P, — &S =M/JM

is a (generalized) M-projective cover, where (Ker(f) = JP) Ker(f) =
JP < P. Let g: M — M /JM be the natural epimorphism. Since P is
M-projective, there is a homomorphism h : P — M such that f = gh.
Now f is an epimorphism and Ker(g) = JM < M, it follows from [AF,
Corollary 5.15] that h is an epimorphism. Since (Ker(h) C Ker(f) = JP)
Ker(h) C Ker(f) = JP <« P, we see that

h:P—M

is a (generalized) M-projective cover. Hence M is a (generalized) quasi-
semiperfect module. W

3. (Generalized) locally projective covers

A module P is called locally projective [Z1] in case it satisfies any of the
following equivalent conditions: (a) if A and B are modules, g : A — B
is an epimorphism and f : P — B is a homomorphism then for every
finitely generated (cyclic) submodule Py of P there is a homomorphism
h: P — A such that f|p, = gh|p,; (b) if M is a module and f: M —
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P is an epimorphism then for every finitely generated (cyclic) submodule
Py of P there is a homomorphism ¢ : P — M such that fg|p, = 1p,.
Clearly, every finitely generated (even countably generated [A1]) locally
projective module is projective. The following facts are also known and
we shall freely use them without reference (for the proofs, see [Z1] and
[A1]): (1) a direct sum of modules is locally projective if and only if
each summand is locally projective; (2) a pure submodule of a locally
projective module is locally projective; and (3) if P is a locally projective
module, then (i) P is flat, (ii) Rad(P) = JP, and (iii) if Rad(P) = P
then P = 0.

A (generalized) cover f : P — M is called a (generalized) locally
projective cover in case P is a locally projective module. Since any cover
is a generalized cover, a locally projective cover is a generalized locally
projective cover. According to the facts of locally projective modules
and Lemmas 1.1, 1.2 and 1.3, we have the following three lemmas.

Lemma 3.1. If f : P — M is a (generalized) locally projective
cover and g : M — N is a (generalized) cover then gf : P — N is a
(generalized) locally projective cover.

Lemma 3.2. (1) If each f; : P, — M; (i = 1,2,... ,n) is a locally
projective cover then ®]_, fi : @7 P; — ®]_1 M; is a locally projective
cover.

(2) If each f; : P, — M; (i € I) is a generalized locally projective
cover then ®icrfi : Bicr Pi — ®ierM; is a generalized locally projective
cover.

Lemma 3.3. Let f: P — M be a locally projective cover. If M is a
finitely generated module then P is a finitely generated projective module.

The following proposition is an analogous result of [A2, Proposition 1].

Proposition 3.4. Let f: P — M be a generalized locally projective
cover. If g: Q — M is a projective cover where Q is finitely generated
then there is an isomorphism h : P = Q such that f = gh.

Proof: Let @ = Y. | Rg;. Then f(p;) = g(¢;) for some p; € P
(i=1,2,...,n). Since Py = Y., Rp; is a finitely generated submodule
of P there is a homomorphism h : P — @ such that f|p, = gh|p,.
Now g(¢;) = f(pi) = gh(pi), so ¢ — h(p:;) € Ker(g) and we have Q =
h(Py)+Ker(g). But Ker(g) < @ we obtain h(Py) = @, so h(P) = Q and
h is an epimorphism. Since @ is projective, h splits. Let K = Ker(h) C
Ker(f) and P = K @ K’ for some K’ < P. Since f : P — M is
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a generalized locally projective cover, we have Ker(f) C JP and then
K CJP =JK @ JK'. It follows that K = JK. Since K is locally
projective, we get K = 0, i.e., h is a monomorphism. Thus A is an
isomorphism. W

Recall that R is semiperfect if R/J is semisimple and idempotents
lift modulo J. It is known that R is semiperfect if and only if every
simple (finitely generated, cyclic) left R-module has a projective cover
(see, e.g. [AF, Theorem 27.6]). Azumaya [A2, Theorem 3| generalized
this and proved that if every simple left R-module has a generalized
projective cover then R is semiperfect. Modifying his proof we generalize
his theorem as follows.

Theorem 3.5. The following three statements are equivalent for a
ring R.
(1) R is semiperfect.
(2) Ewvery simple left R-module has a locally projective cover.
(3) Ewvery simple left R-module has a generalized locally projective
cover.

Proof: (1) = (2) = (3). These are clear.

(3) = (1). To show R = R/J is semisimple, we only need to prove
each simple left R-module S is locally projective (since a simple locally
projective module is projective). We regard S as a simple left R-module,
so there is a generalized locally projective cover f : P — S, where
Ker(f) € Rad(P) = JP. Since Ker(f) is a maximal submodule of P
we must have Ker(f) = JP and so P/JP = S. Since P is a locally
projective R-module, P/JP is a locally projective R-module, so S is a
locally projective R-module. Therefore R is semisimple.

Let € be an idempotent of R. We want to show that e can be lifted
to an idempotent of R, so we may assume that € # 0 and € # 1. Then
both Re and R(T — &) are non-zero left ideals of the semisimple ring R.
Let Re =S, ®---® Sy and R(T —¢) = Sky1 ®--- @ S, be direct sums
of simple left ideals S;’s. We view S; as a simple left R-module and let
fi : P, — S; be a generalized locally projective cover (i = 1,2,...,n).
Then

f=®i1fi: P=0{ P — &5

is a generalized locally projective cover by Lemma 3.2. Since the natural
epimorphism ¢ : R — R is a projective cover, by Proposition 3.4 there is
an isomorphism h : P — R such that f = gh. Let L=h(P,®---® Py)
and L' = h(Pxy1 ® -+ ® P,). Then L and L’ are left ideals of R and
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R=L®L" Let L =Re and L' = Re' for some idempotents e and ¢’ of
R with e+ ¢’ = 1. Let € = g(e) € R. Then

Re=g(Re) =g(L) =gh(PL& - ® Py) = f(PL&--- & P)
= [i(P) @& fi(P) =1 @ @ Sy = Re.

Similarly, if we let & = g(e’) € R then Re’ = R(T —¢). Now 1 = g(1) =
gle+¢') =e+¢€. By [AF, Proposition 7.2] we must have e =€, i.e., ¢
can be lifted to the idempotent e € R. &

Corollary 3.6. The following three statements are equivalent for a
ring R.
(1) R is semiperfect.
(2) Every finitely generated (cyclic) left R-module has a locally pro-
jective cover.
(3) Ewery finitely generated (cyclic) left R-module has a generalized
locally projective cover.

Next we characterize semiperfect modules using locally projective cov-
ers, but we need a lemma, first.

Lemma 3.7. If a module M has a generalized locally projective cover
then (1) Rad(M) = JM; and (2) M has a mazimal submodule if M # 0.

Proof: Let f : P — M be a generalized locally projective cover.
Then Ker(f) € Rad(P) = JP. By [AF, Proposition 9.15], we have
Rad(M) = f(Rad(P)) = f(JP) = J(f(P)) = JM. If M # 0, then
P # 0 and Rad(P) # P. So P has a maximal submodule U. Since
Ker(f) C Rad(P) C U, f(U) must be a maximal submodule of f(P) =
M. n

Proposition 3.8. A module M is semiperfect if and only if M has
a projective cover and every factor module of M has a locally projective
cover.

Proof: (=). This is obvious.

(<). Let U be a proper submodule of M. Then M/U is a non-zero
factor module of M. By Lemma 3.7, M/U has a maximal submodule.
This means that U is contained in a maximal submodule of M. By
assumption, every simple factor module of M has a locally projective

cover which is a projective cover by Lemma 3.3. Hence M is semiperfect
by [A2, Theorems 4 and 6]. B
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Corollary 3.9. A projective module M is semiperfect if and only if
every factor module of M has a locally projective cover.

Recall that R is left perfect if every left R-module has a projective
cover. An interesting characterization of left perfect rings was presented
in [AF, Theorem 28.4] which was due to Bass [B]. Now we characterize
left perfect rings using (generalized) locally projective covers.

Theorem 3.10. The following three statements are equivalent for a
ring R.

(1) R is left perfect.

(2) Every left R-module has a locally projective cover.

(3) Ewvery left R-module has a generalized locally projective cover.

Proof: (1) = (2) = (3). These are clear.

(3) = (1). By Theorem 3.5 or Corollary 3.6, R is semiperfect. By
Lemma 3.7, every non-zero left R-module has a maximal submodule.
Hence R is left perfect by [AF, Theorem 28.4]. ®

It is known that if every semisimple left R-module has a projective
cover then R is left perfect. We do not know whether the condition
“projective cover” can be weakened to “locally projective cover”.

Azumaya [A2, Theorem 1] showed that a flat module having a gen-
eralized projective cover is projective. An analogous result for locally
projective modules is the following

Proposition 3.11. If M is a flat module having a generalized locally
projective cover then M is locally projective.

Proof: Let f: P — M be a generalized locally projective cover and
K = Ker(f). Then K C Rad(P) = JP. By [AF, Lemma 19.18] K is a
pure submodule of P, so K is also locally projective and JK = KNJP 2
K. We get K = JK, and so K = 0. Hence P = M and M is locally
projective. B

As pointed out by Zimmermann-Huisgen in [Z2, p. 60], R is left perfect
if and only if every flat left R-module is locally projective. Hence by
Proposition 3.11 we obtain

Corollary 3.12. A ring R is left perfect if and only if every flat left
R-module has a (generalized) locally projective cover.

Camillo and Xue [CX] called a ring R left quasi-perfect in case every
artinian left R-module has a projective cover, and showed that the class
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of left quasi-perfect rings lies strictly between that of left perfect rings
and that of semiperfect rings. It was proved in [CX, Theorem 1] that
a semiperfect ring R is left quasi-perfect if and only if every non-zero
artinian left R-module has a maximal submodule (has finite length, is
finitely generated). Now we characterize left quasi-perfect rings using
(generalized) locally projective covers.

Theorem 3.13. The following three statements are equivalent for a
ring R.
(1) R is left quasi-perfect.
(2) Every artinian left R-module has a locally projective cover.
(3) Every artinian left R-module has a generalized locally projective
cover.

Proof: (1) = (2) = (3). These are clear.

(3) = (1). Since simple modules are artinian, R is semiperfect by
Theorem 3.5. By (3) and Lemma 3.7, we see that every non-zero artinian
left R-module has a maximal submodule. Hence R is left quasi-perfect
by [CX, Theorem 1]. B

A module M is called strongly artinian [CX2] in case every proper
submodule of M has finite length. Clearly a strongly artinian module
is artinian, but the converse is false. Cai and Xue [CX2, Theorem 4]
proved that a semiperfect ring R is left quasi-perfect if and only if every
(non-zero) strongly artinian left R-module has a projective cover (has
a maximal submodule). Using these results and modifying the proof of
Theorem 3.13 we have our concluding result.

Theorem 3.14. The following three statements are equivalent for a
ring R.
(1) R is left quasi-perfect.
(2) Ewery strongly artinian left R-module has a locally projective
cover.
(3) Every strongly artinian left R-module has a generalized locally
projective cover.
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