
Publicacions Matemàtiques, Vol 40 (1996), 67–83.

STABILITY RESULTS FOR CONVERGENCE
OF CONVEX SETS AND FUNCTIONS

IN NONREFLEXIVE SPACES

J. Lahrache

Abstract
Let Γ(X) be the convex proper lower semicontinuous functions
on a normed linear space X. We show, subject to Rockafellar’s
constraints qualifications, that the operations of sum, episum and
restriction are continuous with respect to the slice topology that
reduces to the topology of Mosco convergence for reflexive X. We
show also when X is complete that the epigraphical difference is
continuous. These results are applied to convergence of convex
sets.

1. Introduction

Let C(X) be the family of the closed nonempty convex sets of a normed
linear space (X, ‖·‖). U. Mosco [22], [23] defined a notion of convergence
of sequences on C(X) and on Γ(X) the convex proper lower semicon-
tinuous functions via the identification of a function with its epigraph.
This notion of convergence has many applications in reflexive spaces in
the study of variational inequalities, laws of large numbers and Banach
space geometry (see [1], [11], [14], [22], [29]). In fact without reflex-
ivity the Mosco topology is not operational since it is not separated,
the Legendre-Fenchel is not bicontinuous and the polarity is not contin-
uous [9]. G. Beer gives a topology on C(X) which he called the slice
topology and which agrees with the Mosco topology if and only if X is
reflexive [7, Theorem 5.7] (see also Y. Sonntag and C. Zǎlinascu [30] and
J. L. Joly [18]). For this topology the Legendre-Fenchel is bicontinuous
[8, Theorem 4.2], the polarity is continuous [8, Theorem 4.4] and C(X)
is separated when X is a normed linear space.

Moreover Attouch’s theorem is extended in any Banach spaces by
H. Attouch and G. Beer [4, Theorem 4.2] using the slice topology. This
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result is central in the study of continuity of the epigraphical difference
in the last section.

The goal of this article is to show that the epigraphical operations are
continuous with respect to the slice topology which has many applica-
tions in optimization problems. More precisely we produce some results
about continuity of operations of classical analysis and epigraphical anal-
ysis like sum, restriction, episum and epimultiplication with respect to
the slice topology. Using Wijsman convergence in finite dimensional
spaces, McLinden and C. Bergstrôm [20] have studied some of these
operations, corresponding results for Mosco convergence have been ob-
tained by H. Attouch, D. Aze and R. Wets [3] and H. Riahi [27]; see
also J. P. Penot [25]. G. Beer and R. Lucchetti [10] have studied these
operations with respect to Attouch-Wets topology in any normed linear
space. The last part of this paper is reserved for the study of continuity
of the epigraphical difference as already mentioned.

2. Preliminary

In the sequel, (X, ‖ · ‖) will be a normed linear space with continuous
dual (X∗, ‖ · ‖∗) and the value of the functional y ∈ X∗ at x ∈ X
will be denoted by 〈x, y〉. The closed unit ball and the origin of X
will be denoted by U and Θ. We denote the closed (resp. closed and
bounded) convex subsets of X by C(X) (resp. CB(X)) and the weak∗

closed (resp. weak∗ closed and bounded) convex subsets ofX∗ by C∗(X∗)
(resp. CB∗(X∗)).

We now review some standard constructions from convex analysis; for
further information the reader may consult [17], [26]. A function f :
X → (−∞,+∞] is called convex (resp. lower semicontinuous) provided
its epigraph

epi f = {(x, α) ∈ X × R, f(x) ≤ α}
is a convex (resp. closed) subset ofX×R. Furthermore, f is called proper
if its epigraph is nonempty and we denote clf the lower semicontinuous
regularization of f . Again, Γ(X) will denote the convex proper lower
semicontinuous functions on X into (−∞,+∞], Γ∗(X∗) will denote the
convex proper weak∗ lower semicontinuous functions defined on X∗ into
(−∞,+∞]. The convex conjugate (or Legendre-Fenchel transform) of
f ∈ Γ(X) is the function f∗ ∈ Γ∗(X∗) given by

f∗(y) = sup{〈x, y〉 − f(x), x ∈ X}.
The episum of f and g : X → R ∪ {+∞} is the function defined by(

f +
e
g

)
(x) = inf{f(u) + g(x− u), u ∈ X}.
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We note that f +
e
g does not belong in general to Γ(X).

The epimultiplication of λ > 0 and f is the function λ ∗ f defined for
every x ∈ X by

(λ ∗ f)(x) = λf(x/λ).

The term epimultiplication was chosen because epi(λ ∗ f) = λ epi f . If
A ⊆ X, δ(·, A) is the indicator function of A, it is equal to 0 on A and
+∞ elswhere; s(·A) is its support function, s(y,A) = sup{〈x, y〉, x ∈ A}
for y ∈ X∗. The restriction of f to A is the function f |A = f + δ(·, A).

For x ∈ X and A a nonempty subset of X, we write d(x,A) for
inf{‖x − a‖, a ∈ A} and for A, B nonempty subsets of X, we write
D(A,B) for inf{d(a,B), b ∈ B}. We say that a net (Aν) of closed sub-
sets of X is convergent in the Kuratowski-Painleve sense to the closed
subset A [1], [12] if A = lim inf Aν = lim supAν , where

lim inf Aν = {x ∈ X, ∀ ε > 0∃ ν0 : (x+ εU) ∩Aν �= ∅ for all ν ≥ ν0},
lim supAν = {x ∈ X, ∀ ε > 0∀ν ∃ ν′ ≥ ν : (x+ εU) ∩Aν′ �= ∅}.

The slice topology τs on C(X) is the weak topology determined by the
family of gap functionals {D(B, ·}, B ∈ CB(X)}; it has as sub-base all
sets of the form (see [8, Theorem 5.3])

V − = {A ∈ C(X), A ∩ V �= ∅}, V norm open
(Bc) = {A ∈ C(X) : D(A,B) > 0}, B ∈ CB(X).

The weak topology on C(X) determined by the family of gap func-
tionals {D(K, ·), K weakly compact of X} is the Mosco topology τM
which induces the Mosco convergence in any Banach space. The topol-
ogy of uniform convergence of distance functions on bounded sets is the
Attouch-Wets topology also called the bounded Hausdorff topology, and
noted τAW , [5], [10], [24], [27]. We shall work with another topology on
C∗(X∗), the dual slice topology τ∗s . It has as sub-base all the sets of the
form

V − = {A ∈ C∗(X∗), C ∩ V �= ∅}, V norm open in X∗

(Bc)++ = {A ∈ C∗(X∗) : D(A,B) > 0}, B ∈ CB∗(X∗).

We shall use a diagonalization method, Corollary 3, and a result charac-
terizing slice convergence of nets, Proposition 6 in the appendix, which
generalize Corollary 1.11 [1] and Corollary 3.6 [8] respectively.
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3. Principal result

Theorem 3.1. Let X be a normed linear space. Suppose ϕ, (ϕν), ψ,
(ψν) are nets in Γ(X) and there exists x0 ∈ domϕ, ρ0 > 0 such that
sup

ν
ψν(ξ) ≤M < +∞, ∀ ξ ∈ B(x0, ρ0). If ϕ = τs − limϕν and ψ = τs −

limψν , then eventually ϕν +ψν is proper and ϕ+ψ = τs − lim(ϕν +ψν).

In duals spaces we have the same result:

Theorem 3.1(b). Let X be a normed linear space. Suppose ϕ, (ϕν),
ψ, (ψν) are nets in Γ(X∗) and there exists y0 ∈ domϕ, ρ > 0 such that
sup

ν
ψν(ξ) ≤M < +∞, ∀ ξ ∈ B(y0, ρ0). If ϕ = τ∗s − limϕν and ψ = τ∗s −

limψν , then eventually ϕν +ψν is proper and ϕ+ψ = τ∗s − lim(ϕν +ψν).

Proof of Theorem 3.1:

(3.1) From Proposition 6(ii), it is easy to see that M majories ψ on
the open ball B(x0, ρ0) and then ψ is continuous on this ball.

Since ϕν and ψν are proper, −∞ < ϕν + ψν . The same reference
above implies that there exists (xν) convergent strongly to x0 such that
ϕ(x0) = limϕν(xν).

(3.2) We note that the assumptions easily imply a uniform Lipschitz
estimate for ψν that, jointly with slice convergence, implies pointwise
convergence.

Then we have ψ(x0) = limψν(xν) and for ν sufficiently large ϕν(xν)+
ψν(xν) < +∞; for such ν ϕν + ψν is proper. Observe that the Re-
mark (3.1) above implies that ϕ+ ψ is proper and x0 ∈ dom(ϕ+ ψ).

Now we show that conditions (i) and (ii) of Proposition 6 characteriz-
ing slice convergence of nets are met.

Let (xν) be a bounded net in X and (y, η) ∈ epi(ϕ + ψ)∗ with η >
(ϕ+ ψ)∗(y). We are going to show that

(3.3) (ϕν + ψν)(xν) > 〈xν , y〉 − η eventually.

From (ϕ+ψ)∗(y) =
(
ϕ∗ +

e
ψ∗

)∗∗
(y) = lim inf

z→y

(
ϕ∗ +

e
ψ∗

)
(z), η > (ϕ+

ψ)∗(y) implies that ∃ v ∈ X∗, ‖v‖∗ < r0/2 sup ‖xn‖, ∃ζy ∈ X∗ such that

η > ϕ∗(ζy) + ψ∗(y + v − ζy) + r0,
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where r0 = (η − (ϕ + ψ)∗(y))/2. From the bicontinuity property of the
Legendre-Fenchel transform [8, Theorem 4.2], we have

ϕ∗ = τ∗s − limϕ∗ν and ψ∗ = τ∗s − limψ∗
ν .

Then, using Proposition 6, there exists (ζν) and (ξν) elements of X∗

convergent strongly respectively to ζy and y + v − ζy such that

ϕ∗(ζy) = limϕ∗ν(ζν) and ψ∗(y + v − ζy) = limψ∗
ν(ξν).

Then for ν sufficiently large we have

η > ϕ∗ν(ζν) + ψ∗
ν(ξν) + r0/2.

Definition of the conjugate gives

ϕ∗ν(ζν) ≥ 〈ζν , xν〉 − ϕν(xν),
ψ∗

ν(ξν) ≥ 〈ξν , xν〉 − ψν(xν).

Combining these last three inequalities yields

η > 〈ζν + ξν , xν〉 − (ϕν + ψν)(xν) + r0/2
η > 〈y, xν〉 − (ϕν + ψν)(xν) + 〈ζν + ξν − y, xν〉 + r0/2.

Which implies for ν sufficiently large

η > 〈y, xν〉 − (ϕν + ψν)(xν) + r0/2 − ‖ζν + ξν − y‖ ‖xν‖.

Because (xν) is bounded and ‖ζν + ξν − y‖ goes to ‖v‖∗, the above
inequality shows

η > 〈y, xν〉 − (ϕν + ψν)(xν) eventually.

Which is exactly (3.3).
Let us verify the second assertion of characterization of τs-convergence.
Let x ∈ domϕ∩ domψ, otherwise there is nothing to prove. For inte-

ger p ≥ 1, pose xp = (p−1)/px+1/px0, then from convexity of ϕ and ψ
we have xp ∈ domϕ∩ domψ (since we showed above x0 ∈ dom(ϕ+ψ)).
As ϕ = τs−limϕν , using Proposition 6 again, there exists a net (xν

p) con-
vergent strongly to xp such that ϕ(xp) = limϕν(xν

p). By Proposition 6,
choose xν → x with ψν(xν) → ψ(x). Now ψν(xν) ≤ K some K and all
large ν. For p fixed, choose ν0 such that conv(xν , B(x0, ρ0)) contains a
neighborhood of xp say B(xp, δp) for all ν ≥ ν0. Now on B(xp, δp/2), ψν
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for ν ≥ ν0 are uniformly Lipschitz with Lipschitz constant L. And we
obtain ψ(xp) = limψν(xν

p) from Remark (3.2) and the inequalities

|ψν(xν
p) − ψ(xp)| ≤ |ψν(xν

p) − ψν(xp)| + |ψν(xp) − ψ(xp)|
≤ L‖xν

p − xp‖ + |ψν(xp) − ψ(xp)|.

Since ϕ+ψ is continuous on segments of its domain, we have (ϕ+ψ)(x) =
lim

p→+∞
(ϕ+ ψ)(xp). Then we have

(xp, (ϕ+ ψ)(xp)) = ‖ · ‖ × | · | − lim
ν

(xν
p , (ϕν + ψν)(xν

p)),

(x, (ϕ+ ψ)(x)) = ‖ · ‖ × | · | − lim
p

(xp, (ϕ+ ψ)(xp)).

By diagonalization, Corollary 3, there exists an increasing mapping ν →
p(ν) such that:

(x, (ϕ+ ψ)(x)) = ‖ · ‖ × | · | − lim
ν

(xν
p(ν), (ϕν + ψν)(xν

p(ν)).

Denoting xν = xν
p(ν), we have:

x = limxν and (ϕ+ ψ)(x) = lim(ϕν + ψν)(xν).

Which completes the proof of Theorem 3.1. The proof of Theorem 3.1(b)
is the same.

Remark 3.2. a) The fact that the (ψν) are uniformly bounded above
on the open ball centered at a point of domϕ in Theorem 3.1 is super-
fluous to have condition (i) of Proposition 6.

b) If in Theorem 3.1 we have ψν ≡ ψ, then the implication (ϕ =
τs−limϕν) ⇒ (ϕν+ψ are eventually proper and ϕ+ψ = τs−lim(ϕν+ψ))
is satisfied if ψ is continuous and finite valued at some point of domϕ.

Corollary 3.3. Let X be a normed linear space and let (ϕν , Aν) be a
net in (Γ(X), τs) × (C(X), τs) convergent to (ϕ,A). Suppose that either
(ϕν) are uniformly bounded above on the ball centered at some point of
A or domϕ ∩ int

(
∩
ν
Aν

)
�= ∅. Then ϕν |Aν is τs-convergent to ϕ|A.

Proof: Apply Theorem 3.1 with ψν = δ(·, Aν) and ψ = δ(·, A).
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Corollary 3.4. Let X be a normed linear space. Suppose (Aν) and
(Bν) are nets in C(X) with A = τs − limAν and B = τs − limBν .
Suppose further that int

(
∩
ν
Aν

)
∩B �= ∅. Then A∩B = τs− limAν ∩Bν .

Proof: For each ν, let ϕν = δ(·, Bν) and let ϕ = δ(·, B). Then for
each ν, ϕν |Aν = δ(·, Aν ∩ Bν). By Corollary 3.3 and the fact that the
mapping C → δ(·, C) is is an embedding of (C(X), τs) into (Γ(X), τs)
[8, Theorem 3.1] we obtain A ∩B = τs − limAν ∩Bν .

Corollary 3.5. Let X be a normed linear space. Suppose f , (fν) and
g, (gν) are nets in Γ(X) and there exists y0 ∈ dom f∗, ρ0 > 0 such that
sup g∗ν(ξ) ≤ M < +∞ for all ξ ∈ B(y0, ρ0). Then f = τs − lim fν and
g = τs − lim gν implies that f +

e
g is proper and fν +

e
gν is proper for ν

sufficiently large. Furthermore, we have

cl

(
f +

e
g

)
= τs − lim cl

(
fν +

e
gν

)
.

Proof: From the bicontinuity property of the Legendre-Fenchel trans-
form with respect to slice topology [8, Theorem 4.2] we have

f∗ = τ∗s − lim f∗ν and g∗ = τ∗s − lim g∗ν .

Hence from Theorem 3.1(b) we deduce that f∗ + g∗ and f∗ν + g∗ν are
proper for ν sufficiently large and

f∗ + g∗ = τ∗s − lim(f∗ν + g∗ν).

Which it means (
f +

e
g

)∗
= τ∗s − lim

(
fν +

e
gν

)∗
.

Finally, the conclusion is obtained again from Theorem 4.2 [8].

Take gν ≡ g ∈ Γ(X), then Corollary 3.5 is reduced to the following
corollary.

Corollary 3.6. Let X be a normed linear space. Suppose g, f , (fν)
a net in Γ(X) and g∗ is continuous and finite valued at some point of

dom f∗. Then f=τs−lim fν implies that cl
(
f +

e
g

)
=τs−lim cl

(
fν +

e
g

)
.

Corollary 3.7. Let X be a normed linear space. Suppose A, (Aν)
and B, (Bν) are nets in C(X) such that sup

ν
s(y,Bν) ≤ M < ∞ for all
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y ∈ B(y0, ρ0) where ρ0 > 0 and y ∈ dom s(·, A). Then A = τs − limAν

and B = τs − limBν implies that cl(A+B) = τs − lim cl(Aν +Bν).

Proof: From Theorem 3.1 [8], it is equivalent to show that

δ(·, cl(A+B)) = τs − lim δ(·, cl(Aν +Bν)).

But from the same reference we have

δ(·, A) = τs − lim δ(·, Aν) and δ(·, B) = τs − lim δ(·, Bν).

Corollary 3.5 implies that

cl

(
δ(·, A) +

e
δ(·, B)

)
= τs − lim cl

(
δ(·, Aν) +

e
δ(·, Bν)

)

which means that cl(δ(·, A+ B)) = τs − lim cl(δ(·, Aν + Bν)). And this
is exactly the desired equality since we have cl(δ(·, G)) = δ(·, clG) for
G ⊆ X.

Examples 3.8. The following examples are well known. They show
that results of Theorem 3.1 fail in general without equi-upperboundness
of (ψν) (although ψ is finite and continuous at some point of domϕ (see
[10])).

a) X = R, ψn ≡ ψ ≡ ϕ ≡ δ(·, {Θ}) and ϕn(x) = n|x− 1/n|.
b) X = l2(N) {en, n ≥ 1} its hilbertian base. Take An = {en+1/n}

and Bn = {x,Σ〈x, ei〉2 ≤ 1 and 〈x, ei〉 = 0 for i > n}. Denotant
ϕn = δ(·, An), ϕ = δ(·, {Θ}), ψn = δ(·, Bn) and ψ = δ(·, U)
we have (ϕn) (resp. (ψn)) Mosco converges to ϕ (resp. ψ). But
ϕn + ψn isn’t proper for all n since An ∩Bn = ∅.

In [5], using Kenmochi’s conditions, H. Attouch and R. Wets gave a
module of continuity of the operation (λ, f) → λ∗f with respect to the ρ-
Hausdorff distance when the functions are quadratically minorized. Here
we prove that this operation is continuous from ((0,+∞)×Γ(X), |·|×τs)
into (Γ(X), τs).

Theorem 3.9. Let X be a normed linear space. Then the mapping
(λ, f) → λ∗f is continuous from ((0,+∞)×Γ(X), |·|×τs) into (Γ(X), τs).
Similary, the mapping (α, h) → α ∗ h is continuous from ((0,+∞) ×
Γ∗(X∗), | · | × τ∗s into (Γ∗(X∗), τ∗s ).

Proof: Suppose fν converges slice to f and λν → λ ∈ (0,+∞). Now
let W be any bounded closed convex set in X × R. Then D(W, epi(λν ∗
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fν)) = D(W,λν epi fν) = λνD(W/λν , epi fν). Now |λνD(W/λν , epi fν)−
λD(W/λ, epi fν)| → 0. From this it follows that λνD(W/λν , epi fν) →
λD(W/λ, epi f) since fν converges slice to f . Hence D(W,λν epi fν) →
D(W,λ epi f) which shows that λν ∗ fν converges slice to λ ∗ f .

The same argument clearly works for other forms of gap convergence,
in particular for w∗-slice convergence.

We know that whenX∗ is strongly separable then (C(X), τs) is metris-
able [7, Theorem 5.10]. So continuity can be proved using sequences,
Corollary 3.6 [8] permits us to have another proof of Theorem 3.9, we left
it to the reader. On the other hand if f = δ(·, C) we have λ∗f = δ(·, λC),
then using Theorem 3.9 above and Theorem 3.1 [8] we obtain the fol-
lowing corollary.

Corollary 3.10. Let X be a normed linear space. Then the map-
ping (λ,C) → λC is continuous from ((0,+∞) × C(X), | · | × τs) into
(C(X), τs). Similary, in the dual space, the mapping (λ,C) → λC is
continuous from ((0,+∞) × C∗(X∗), | · | × τ∗s ) into (C∗(X∗), τ∗s ).

4. Epigraphical difference and slice topology

The role of the epigraphical sum is well known in optimization and
in the study of variational problems. Now we turn to the inverse oper-
ation which is the main concern of this section. It can be formulated
as follows: given g and h two real extended valued functions defined
on X, find f a real extended valued function such that f +

e
g = h.

When we talk about indicator functions the problem has the follow-
ing geometric interpretation: given B and C two subsets of a linear
space Y , find a subset A such that A + B = C. In general these prob-
lems have no solutions. Existence and uniqueness of such solutions have
been studied by J. B. Hiriart-Urruty and M. L. Mazure [16] and M. L.
Mazure and M. Volle [21]. We shall write (when it is uniquely defined)
f = h −

e
g as the epigraphical difference of h and g. In this section, we

study the continuity properties of the inverse mapping h → f = h −
e
g

and we extend some results of H. Attouch, D. Aze and G. Beer [2] and
B. E. Ghali [13] (see also [19]). In the end, we write the recession func-
tion as an epigraphical difference.

We shall use the following result which is a net version of Attouch-
Beer’s theorem ([4, Theorem 4.2]). The proof of this proposition is
identical as for Theorem 4.2 [4]. In fact it reposes on Theorem 3.1
[4] and himself can easily extended to nets by using Corollary 3 and
Proposition 6 in the appendix.
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Proposition 4.1. Let X be a Banach space, let (fν) be a net in Γ(X),
and let f ∈ Γ(X). Then f = τs − lim fν if and only if the following two
conditions are met:

(i) ∂f = lim ∂fν (in the Kuratowski-Painleve sense in X × R).
(ii) there exists (u, z) ∈ ∂f and for each ν, (uν , zν) ∈ ∂fν for which

(u, f(u), z) = lim(uν , fν(uν), zν).

Theorem 4.2. Let X be a Banach space, let (fν) be a net in Γ(X),
and let g ∈ Γ(X). Suppose that g∗ is continuously differentiable. Then
the following are equivalent:

(i) cl
(
f +

e
g

)
= τs − lim cl

(
fν +

e
g

)
,

(ii) f = τs − lim fν .

Proof: It is the same as the proof of Theorem 2.1 [2] using Proposi-
tion 4.1 in place of Theorem 3.66 [1]. Remark that from Corollary 3.6
we want only that g∗ is continuous and finite valued at some point of
dom f∗ for the implication (ii) ⇒ (i).

When X is a reflexive Banach space we deduce from Theorem 5.7 [7]
and Theorem 4.2 the following corollary:

Corollary 4.3 (Theorem 2.1 [2]). Let X be a reflexive Banach space.
Suppose g, f, f1, f2, . . . are in Γ(X) and g∗ is continuously differentiable.
Then the following are equivalent:

(i) f +
e
g = τM − lim fn +

e
g,

(ii) f = τM − lim fn.

From the bicontinuity property of the Legendre-Fenchel transform [8,
Theorem 4.2] and Theorem 4.2 we have the following Corollary 4.4. Note
that from Remark 3.2b) we want only that ψ is continuous and finite
valued at some point of domϕ in the implication (ii) ⇒ (i).

Corollary 4.4. Let X be a Banach space. Suppose (ϕν) is a net in
Γ(X) and ψ ∈ Γ(X) is continuously differentiable. Then the following
are equivalent

(i) ϕ+ ψ = τs − lim(ϕν + ψ),
(ii) ϕ = τs − limϕν .

Let X be a normed linear space and C a nonempty closed convex set
of X. The recession cone C∞ of C is the convex set of vectors x such
that C + x ⊆ C. It is easy to verify that if f ∈ Γ(X) then (epi f)∞ the
recession cone of the epigraph of f is still an epigraph. We denote f∞
the function whose epigraph is (epi f)∞.
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Proposition 4.5. Let X be a normed linear space and f a proper
lower semicontinuous function from X to R ∪ (+∞). Then we have

f −
e
f = f∞.

Proof: From [28, p. 66], in finite dimensional space, we have that f∞
is positively homogeneous and is given by the formula

f∞(x) = sup{f(u+ x) − f(u), u ∈ dom f}
= sup

λ>0
(f(x0 + λx) − f(x0))/λ = lim

λ→∞
(f(x0 + λx) − f(x0))/λ,

for all x0 ∈ dom f and this result can be easily extended to normed linear
spaces. So by Hiriart-Urruty [15] we have f −

e
f = f∞.

In Theorem 4.2, taking hν = cl
(
fν +

e
g

)
and h = cl

(
f +

e
g

)
, we

have proved that the τs-convergence of (hν) to h ensures τs-convergence
of hν −

e
g = fν to h−

e
g = f when g∗ is continuously differentiable. The

question is under what hypothesis does the τs-convergence of (hν) to h

and (gν) to g ensures τs-convergence of
(
hν −

e
gν

)
to h−

e
g for gν ∈ Γ(X).

As we have seen, the answer is positive if gν ≡ g and g∗ continuously
differentiable. From Proposition 4.5 and taking hν = gν = fν , the
answer of this question permits us to study the continuity of f → f∞
with respect to the slice topology in any Banach space.

Appendix

The purpose of this appendix is to verify the net analog of [8, Corol-
lary 3.6] that was needed in the proof of Theorem 3.1.

A relation ≥ directs a set A if it is transitive (if α ≥ β and β ≥ γ, then
α ≥ γ, for α, β and γ in A) reflexive on A (α ≥ α for α in A) and has
the property: for α in A and β in A there is γ in A such that γ ≥ α and
γ ≥ β. A net (or generalized sequence) is a pair {x,≥} such that x is a
function and ≥ directs the domain of x. More generally, {xα, α ∈ A,≥},
or simply {xα, α ∈ A}, is called a net if x is a function whose domain
contains A and ≥ directs A.

Lemma 1. Let {aν,λ, ν ∈ N,λ ∈ Λ} a double indexed generalized
sequence in R. Then there exists an increasing mapping ν → λ(ν) such
that

(1) lim inf
ν∈N

aν,λ(ν) ≥ lim inf
λ∈Λ

(
lim inf

ν∈N
aν,λ

)
.
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Proof: Let aλ = lim inf
ν∈N

aν,λ and a = lim inf
λ∈Λ

aλ. If a = −∞; there is

nothing to prove. So, let us assume a > −∞ and take (ap)p∈N a sequence
of real numbers strictly increasing to a:

if a < +∞, take ap = a− 2−p;
if a = +∞, take ap = p.

By definition of a, there exists an increasing map p→ λ(p) such that

∀ p ∈ N : aλ ≥ ap for all λ ≥ λ(p).

This can be condensed in:

(2) aλ ≥ inf{a− 2−p, p}, for all λ ≥ λ(p).

In the same way: there exists an increasing map p→ ν(p) such that

(3) aν,λ(p) ≥ inf{aλ(p) − 2−p, p}, for all ν ≥ ν(p).

Set λ(ν) = λ(p) if ν(p) ≤ ν and not ν(p + 1) ≤ ν and λ(ν) = λ(0)
elswhere. When ν(p) ≤ ν, from (2) and (3)

aν,λ(ν) ≥ inf{inf{a− 2−p, p} − 2−p, p}.

It follows that

lim inf
ν∈N

aν,λ(ν) ≥ inf{inf{a− 2−p, p} − 2−p, p}.

This being true for any p ∈ N, using the fact that for any a ∈ R,

inf{inf{a− 2−p, p} − 2−p, p}

increases to a as p goes to +∞, we get:

lim inf
ν∈N

aν,λ(ν) ≥ a = lim inf
λ∈Λ

(
lim inf

ν∈N
aν,λ

)
.

Corollary 2. Let {aν,λ, ν ∈ N,λ ∈ Λ} a double indexed generalized
sequence in R. Then there exists an increasing mapping ν → λ(ν) such
that

lim sup
ν∈N

aν,λ(ν) ≤ lim sup
λ∈Λ

(
lim sup

ν∈N
aν,λ

)
.
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Corollary 3. Let (X, τ) be a topological metrizable space and
{xν,λ, ν ∈ N,λ ∈ Λ} a double indexed generalized sequence in X such
that (xν,λ) τ -converges to xλ for all λ ∈ Λ and (xλ) τ -converges to x.
Then there exists an increasing mapping ν → λ(ν) such that (xν,λ(ν))
τ -converges to x.

Proof: Let us denote by d a distance on X inducting the topology τ ,
and aν,λ = d(xν,λ, x); the double indexed family {aν,λ, ν ∈ N,λ ∈ Λ}
belongs to R, and from Corollary 2, there exists an increasing mapping
ν → λ(ν) such that

lim sup
ν∈N

aν,λ(ν) ≤ lim sup
λ∈Λ

(
lim sup

ν∈N
aν,λ

)
.

By definition of aν,λ:

lim sup
ν∈N

aν,λ = lim
ν∈N
d(xν,λ, x) = d(xλ, x)

and

lim sup
λ∈Λ

(
lim sup

ν∈N
aν,λ

)
= lim

λ∈Λ
d(xλ, x) = 0.

So,
lim sup

ν∈N
aν,λ(ν) = lim sup

ν∈N
d(xν,λ(ν), x) = 0,

which means that (xν,λ(ν)) τ -converges to x.

Lemma 4 (Lemma 3.4 [9]). Let X be a normed linear space. Suppose
f ∈ Γ(X) and f ∈ (Bc)++ where B is a closed and bounded convex
subset of X × R. Then there exists (y, η) ∈ epi f∗ such that the graph of
x → 〈x, y〉 − η strongly separates epi f and B. Similary, if h ∈ Γ(X∗)
and h ∈ (Bc)++ where B is a weak∗ closed and bounded convex subset
of X∗ × R, then there exists (x, α) ∈ epih∗ such that the graph of y →
〈x, y〉 − α strongly separates epih and B.

Lemma 5 (Theorem 3.5 [9]). A sub-base for the slice topology on
Γ(X) consists of all sets of the form (s(ρ, y, η)c)++:

s(ρ, y, η) = {(x, α) ∈ X × R, ‖x‖ ≤ ρ, α = 〈x, y〉 − η},

where ρ > 0, y ∈ X∗ and η ∈ R, and all the sets of the form
(V×] − ∞, α[)− where V is norm open in X and α ∈ R. A sub-base



80 J. Lahrache

for the weak∗ slice topology on Γ∗(X∗) consists of all sets of the form
(s∗(ρ, x, α)c)++:

s∗(ρ, x, α) = {(y, β) ∈ X∗ × R, ‖y‖∗ ≤ ρ, β = 〈x, y〉 − α},

where ρ > 0, x ∈ X and α ∈ R, and all the sets of the form
(V×] −∞, η[)− where V is norm open in X∗ and η ∈ R.

Proposition 6. Let X be a normed linear space and let f , (fν)ν∈N

be a net in Γ(X). Then f = τs − lim fν if and only if the following
conditions hold:

(i) whenever (xν) is a bounded net in X, for each (y, η) ∈ epi f∗ with
η > f∗(y), we have fν(xν) > 〈xν , y〉 − η eventually;

(ii) at each x0 ∈ X, there exists (xν)ν∈N convergent strongly to x0
for which lim fν(xν) = f(x0).

Similary for a net h, (hν) in Γ∗(X∗), we have h = τ∗s − limhν if and
only if:

(i∗) whenever (yν) is a bounded net in X∗, for each (x, α) ∈ epih∗

with α > h∗(x), we have hν(yν) > 〈x, yν〉 − α eventually;
(ii∗) at each y0 ∈ X∗, there exists (yν) convergent strongly to y0 for

which limhν(yν) = h(y0).

Proof: Suppose first that f = τs − lim fν . To verify (i), fix (y, η) ∈
epi f∗ with η > f∗(y). Then if H denotes the graph of x → 〈x, y〉 − η,
we have f ∈ (Hc)++. Now suppose (xν) a bounded net, i.e. there exists
ρ > 0 with {xν , ν ∈ N} ⊆ ρU . Since f ∈ (s(ρ, y, η)c)++, we must
have fν ∈ (s(ρ, y, η)c)++ eventually. In particular (xν , fν(xν)) must lie
above the graph of x → 〈x, y〉 − η eventually. For (ii), using the other
kind of sub-basic open sets we can find a net (xν) strongly convergent
to x0 such that lim sup

ν
fν(xν) ≤ f(x0). But since f is the supremum of

all the continuous affine functions which it majories, (i) guarantees that
lim inf

ν
fν(xν) ≥ f(x0). Together these give (ii).

For the converse, suppose first that f ∈ (s(ρ, y, η)c)++ where ρ > 0,
y ∈ X∗ and η ∈ R. By Lemma 4, there exists (y0, η0) ∈ epi f∗ such
that the graph of x→ 〈x, y0〉− η0 strongly separates epi f and s(ρ, y, η).
Evidently, condition (i) says that eventually, the epigraph of fν must
lie above s(ρ + 1, y0, η0). For such ν, we have fν ∈ (s(ρ, y, η)c)++.
On the other hand, it is clear that (ii) garantees that whenever
f ∈ (V×] − ∞, α[)− where V is norm open in X and α ∈ R, then
the same is true for fν for all sufficiently large ν.
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