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WEIGHTED Lp SPACES
AND POINTWISE ERGODIC THEOREMS

Ryotaro Sato

Abstract
In this paper we give an operator theoretic version of a recent re-
sult of F. J. Mart́ın-Reyes and A. de la Torre concerning the prob-
lem of finding necessary and sufficient conditions for a nonsingular
point transformation to satisfy the Pointwise Ergodic Theorem in
Lp. We consider a positive conservative contraction T on L1 of
a σ-finite measure space (X,F , µ), a fixed function e in L1 with
e > 0 on X, and two positive measurable functions V and W on
X. We then characterize the pairs (V, W ) such that for any f in
Lp(V dµ) the averages

Rn
0 (f, e) =

(
n∑

k=0

T kf

)/(
n∑

k=0

T ke

)

converge almost everywhere to a function in Lp(W dµ). The char-
acterizations are given for all p, 1 ≤ p < ∞.

1. Introduction

Let (X,F , µ) be a σ-finite measure space and T a positive linear con-
traction of L1(µ). We assume T to be a conservative operator. (For the
usual notation we refer the reader to Krengel’s book [2].) Thus the class

(1) I = I(T ) = {A ∈ F : T ∗1A = 1A}

of all invariant sets relative to T forms a σ-field, where 1A denotes the
indicator function of A and T ∗ denotes the adjoint operator of T , acting
on L∞(µ). Since T is positive, we may extend by a canonical manner the
domain of T to the class M+(µ) of all nonnegative extended real valued
measurable functions on X. Similarly, this is done for T ∗. Now let us fix
an e ∈ L1(µ) with e > 0 on X. Let 0 < V , W ≤ ∞ be two measurable
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functions on X. Previously we observed in [6] that if 1 < p < ∞ then
for any f ∈ L+

p (V dµ) the averages

(2) Rn
0 (f, e) =

(
n∑

k=0

T kf

)/ (
n∑

k=0

T ke

)

converge to a finite limit a.e. on X if and only if

(3) E{e−1V 1−p′ |(X, I, e dµ)} < ∞ a.e. on X,

where 1/p + 1/p′ = 1. In [6] we also observed implicitely (see especially
p. 76–77 in [6]) that for any f ∈ L+

1 (V dµ) the averages Rn
0 (f, e) converge

to a finite limit a.e. on X if and only if there exists a function U ,
measurable with respect to I, such that

(4) V −1 ≤ U < ∞ a.e. on X.

In this paper we intend to study the problem of charactering the
case where the limit function R∞

0 (f, e) belongs to L+
p (W dµ) for every

f ∈ L+
p (V dµ). This study was inspired by the work [3] of Mart́ın-Reyes

and de la Torre. See also Assani and Wós [1]. As a result, this paper
may be considered to be an operator theoretic version of Mart́ın-Reyes
and de la Torre’s paper [3]. Using the result obtained we next consider
multiparameter pointwise ergodic theorems for commuting positive lin-
ear contractions of L1(µ) having a common strictly positive fixed point
in L1(µ).

2. The main result

Theorem 1. Let T be a conservative positive linear contraction of
L1(µ). Let V , W be two positive real valued measurable functions on X.
Fix an e ∈ L1(µ) with e > 0 on X. If 1 < p < ∞ and 1/p + 1/p′ = 1,
then the following are equivalent:

(a) For any f ∈ L+
p (V dµ) the averages Rn

0 (f, e) converge a.e. to a
function belonging to L+

p (W dµ).
(b) E{e−1W |(X, I, e dµ)}1/p · E{e−1V 1−p′ |(X, I, e dµ)}1/p′ ≤ C a.e.

on X, where C is a positive constant.
(c) For any f ∈ L+

p′(W 1−p′
dµ) the averages Rn

0 (f, e) converge a.e.
to a function belonging to L+

p′(V 1−p′
dµ).

If p = 1, then (a) is equivalent to
(d) E{e−1W |(X, I, e dµ)} ≤ CV a.e. on X.
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Proof: Let 1 < p < ∞.
(a) ⇒ (b). By (a) the limit function

(5) R∞
0 (f, e) = lim

n
Rn

0 (f, e)

is finite a.e. on X. Thus by (3) we have

E{e−1V 1−p′ |(X, I, e dµ)} < ∞ a.e. on X.

Choose Xn ∈ I, n = 1, 2, . . . , so that

(6) Xn ↑ X and
∫

Xn

V 1−p′
dµ < ∞.

Since V (1−p′)p · V = V 1−p′
, it follows that

(7) V 1−p′ ∈ L+
p (Xn, V dµ).

On the other hand, since R∞
0 (·, e) is a positive linear operator from

Lp(V dµ) into Lp(W dµ) by (a), it is bounded, i.e., there exists a constant
K > 0 such that

(8)
∫

|R∞
0 (f, e)|pW dµ ≤ Kp

∫
|f |pV dµ (f ∈ Lp(V dµ)).

Therefore, for any A ∈ I with A ⊂ Xn, (7) yields

(9)
∫

A

R∞
0 (V 1−p′

, e)pW dµ ≤ Kp

∫
A

V 1−p′
dµ < ∞.

Since R∞
0 (V 1−p′

, e) = E{e−1V 1−p′ |(X, I, e dµ)} a.e. on X (cf. p. 73 in
[6]), these inequalities imply

R∞
0 (V 1−p′

, e)pE{e−1W |(X, I, e dµ)} ≤ KpE{e−1V 1−p′ |(X, I, e dµ)}
< ∞ a.e. on X;

and (b) follows.
(b) ⇒ (a). Since e−1f = (e−1/pfV 1/p)(e−1/p′

V −1/p), the Hölder in-
equality for the conditional expectation operator and (b) imply that if
f ∈ L+

p (V dµ) then

R∞
0 (f, e) = E{e−1f |(X, I, e dµ)}

≤ E{e−1fpV |(X, I, e dµ)}1/p · E{e−1V 1−p′ |(X, I, e dµ)}1/p′

≤ CE{e−1fpV |(X, I, e dµ)}1/p · E{e−1W |(X, I, e dµ)}−1/p
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a.e. on X; and thus∫
R∞

0 (f, e)pW dµ ≤ Cp

∫
E{e−1fpV |(X, I, e dµ)}
E{e−1W |(X, I, e dµ)} W dµ

= Cp

∫
E{e−1fpV |(X, I, e dµ)}e dµ

= Cp

∫
fpV dµ < ∞,

which proves (a).
(b) ⇔ (c). Direct from (a) ⇔ (b).
Let p = 1.
(a) ⇔ (d). For any f ∈ L+

1 (V dµ) we obtain∫
R∞

0 (f, e)W dµ =
∫

E{e−1f |(X, I, e dµ)}W dµ

=
∫

E{e−1f |(X, I, e dµ)}E{e−1W |(X, I, e dµ)}e dµ

=
∫

fE{e−1W |(X, I, e dµ)} dµ

=
∫

fV (E{e−1W |(X, I, e dµ)} · V −1) dµ.

Hence, by (8) with p = 1, (a) is equivalent to

(a′)
∫

fV (E{e−1W |(X, I, e dµ)} · V −1) dµ ≤ K

∫
fV dµ for every

f ∈ L+
1 (V dµ);

and (a′) is clearly equivalent to (d). The proof is complete.

Corollary 1. In addition to the hypotheses of Theorem 1, if we as-
sume that T is ergodic, i.e., that I is trivial, then the following are
equivalent, for every 1 ≤ p < ∞:

(a) For any f ∈ L+
p (V dµ) the averages Rn

0 (f, e) converge a.e. to a
function belonging to L+

p (W dµ).
(b) W ∈ L1(µ) and V −1 ∈ Lp′(V dµ), where p′ = ∞ when p = 1.

3. Applications

Let d ≥ 1 be an integer and T1, . . . , Td be commuting positive linear
contractions of L1(µ). In this section we assume that there exists an
e ∈ L1(µ) with e > 0 on X such that

(10) Tie = e (1 ≤ i ≤ d).
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Thus each Ti is a conservative operator and satisfies the mean ergodic
theorem in L1(µ). And by an induction argument we see that for any
f ∈ L1(µ) the averages

(11) An(T1, . . . , Td)f = An(T1) . . . An(Td)f

converge in L1-norm, where An(Ti) = 1
n

n−1∑
k=0

T k
i . By Theorem 1 of [5],

for any f ∈ L1(µ) the averages An(T1, . . . , Td)f converge a.e. on X. Let
us denote the limit function by A(T1, . . . , Td)f ; thus

(12) A(T1, . . . , Td)f = lim
n

An(T1, . . . , Td)f a.e. on X.

If we let

(13) T =
1
d

d∑
i=1

Ti

then T also satisfies the mean ergodic theorem in L1(µ); and we get the
direct decomposition

L1(µ) = {f ∈ L1(µ) : Tf = f} ⊕ {g − Tg : g ∈ L1(µ)}−.

Since Tf = f if and only if Tif = f for each 1 ≤ i ≤ d by the Brunel-
Falkowitz lemma (cf. p. 82 in [2]) and

lim
n

‖An(T1, . . . , Td)(g − Tg)‖1 = 0

by the equation g−Tg = 1
d

d∑
i=1

(g−Tig), it follows that for any f ∈ L1(µ)

the limit function A(T1, . . . , Td)f coincides a.e. with the limit function

(14) A(T )f = lim
n

An(T )f.

Further, since I(T ) =
d⋂

i=1

I(Ti) (in the sequel I will denote this σ-field),

it follows that for any f ∈ L+
1 (µ)

A(T1, . . . , Td)f = lim
n

An(T )f

= lim
n

e

(
n∑

k=0

T kf

)/ (
n∑

k=0

T ke

)
(15)

= eE{e−1f |(X, I, e dµ)} a.e. on X.

Hence, by an approximation argument, for any f ∈ M+(µ) the limit
A(T1, . . . , Td)f = lim

n
An(T1, . . . , Td)f exists a.e. on X and satisfies (15).

We are now in position to state the first application of Theorem 1.
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Theorem 2. Let T1, . . . , Td be commuting positive linear contractions
of L1(µ) such that Tie = e (1 ≤ i ≤ d) for some e ∈ L1(µ) with e > 0 on
X. Let 0 < V , W < ∞ be two measurable functions on X. If 1 < p < ∞
and 1/p + 1/p′ = 1, then the following are equivalent:

(a) For any f ∈ L+
p (V dµ) the limit function A(T1, . . . , Td)f belongs

to L+
p (W dµ).

(b) E{ep−1W |(X, I, e dµ)}1/pE{e−1V 1−p′ |(X, I, e dµ)}1/p′ ≤ C a.e.
on X.

(c) For any f ∈ L+
p′(e−p′

W 1−p′
dµ) the limit function A(T1, . . . , Td)f

belongs to L+
p′(e−p′

V 1−p′
dµ).

If p = 1, then (a) is equivalent to
(d) E{W |(X, I, e dµ)} ≤ CV a.e. on X.

Consequently, in case I is trivial, (a) is equivalent, for every
1 ≤ p < ∞, to

(e) epW ∈ L1(µ) and V −1 ∈ Lp′(V dµ), where p′ = ∞ when p = 1.

Proof: For any f ∈ L+
p (V dµ) we have, by (15), A(T1, . . . , Td)f =

eR∞
0 (f, e). Thus (a) is equivalent to
(a′) For any f ∈ L+

p (V dµ) the limit function R∞
0 (f, e) (relative to T )

belongs to L+
p (epW dµ).

Therefore, by Theorem 1, we see (a) ⇔ (b) when 1 < p < ∞, and
(a) ⇔ (d) when p = 1. When 1 < p < ∞, (b) ⇔ (c) follows from the
equivalence (a) ⇔ (b). This completes the proof.

Corollary 2. Let T1, . . . , Td and e be the same as in Theorem 2. If
1 < p < ∞ and 1/p + 1/p′ = 1, then the following are equivalent:

(a) For any f ∈ L+
p (µ) the limit function A(T1, . . . , Td)f belongs to

L+
p (µ).

(b) E{ep−1|(X, I, e dµ)}1/pE{e−1|(X, I, e dµ)}1/p′ ≤ C a.e. on X.
Consequently, in case I is trivial, (a) is equivalent, for every

1 < p < ∞, to
(c) µ(X) < ∞ and e ∈ Lp(µ).

Remark. We note that (a) of Corollary 2 always holds when p = 1.

We next consider the adjoint operators T ∗
1 , . . . , T ∗

d . Since∫
(T ∗

i f)e dµ =
∫

f(Tie) dµ =
∫

fe dµ for f ∈ L+
∞(µ), T ∗

1 , . . . , T ∗
d can be

regarded as commuting positive linear contractions of L1(e dµ). Since

(16) T ∗
i 1 = 1 ∈ L1(e dµ) (1 ≤ i ≤ d),



Pointwise ergodic theorems 279

if we replace the measure µ and the function e by e dµ and 1, respec-
tively, then the above-given argument shows that for any f ∈ M+(µ) =
M+(e dµ) the limit

(17) A(T ∗
1 , . . . , T ∗

d )f = lim
n

An(T ∗
1 , . . . , T ∗

d )f

exists a.e on X; further, since I =
d⋂

i=1

I(Ti) =
d⋂

i=1

I(T ∗
i ), it follows that

(18) A(T ∗
1 , . . . , T ∗

d )f = lim
n

An(T ∗)f = E{f |(X, I, e dµ)} a.e. on X,

where T ∗ =
1
d

d∑
i=1

T ∗
i .

Theorem 3. Let T1, . . . , Td and e be the same as in Theorem 2. Let
0 < V , W < ∞ be two measurable functions on X. If 1 < p < ∞ and
1/p + 1/p′ = 1, then the following are equivalent:

(a) For any f ∈ L+
p (V dµ) the limit function A(T ∗

1 , . . . , T ∗
d )f belongs

to L+
p (W dµ).

(b) E{e−1W |(X, I, e dµ)}1/pE{(e−1V )1−p′ |(X, I, e dµ)}1/p′ ≤ C a.e.
on X.

(c) For any f ∈ L+
p′(ep′

W 1−p′
dµ) the limit function A(T ∗

1 , . . . , T ∗
d )f

belongs to L+
p′(ep′

V 1−p′
dµ).

(d) For any f ∈ L+
p′(W 1−p′

dµ) the limit function A(T1, . . . , Td)f be-
longs to L+

p′(V 1−p′
dµ).

(e) For any f ∈ L+
p (e−pV dµ) the limit function A(T1, . . . , Td)f be-

longs to L+
p (e−pW dµ).

If p = 1, then (a) is equivalent to
(f) E{e−1W |(X, I, e dµ)} ≤ C(e−1V ) a.e. on X.

Consequently, in case I is trivial, (a) is equivalent, for every
1 ≤ p < ∞, to

(g) W ∈ L1(µ) and eV −1 ∈ Lp′(V dµ), where p′ = ∞ when p = 1.

Proof: Since L+
p (V dµ) = L+

p (e−1V e dµ) and L+
p (W dµ) =

L+
p (e−1We dµ), if we apply Theorem 2 to commuting positive linear

contractions T ∗
1 , . . . , T ∗

d of L1(e dµ), then (16) yields (a) ⇔ (f) when
p = 1, and (a) ⇔ (b) ⇔ (c) when 1 < p < ∞. If we write (b) as

E{ep−1(e−pW )|(X, I, e dµ)}1/pE{e−1(e−pV )1−p′ |(X, I, e dµ)}1/p′

≤ C a.e. on X,
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and apply Theorem 2 to commuting positive linear contractions
T1, . . . , Td of L1(µ), then we obtain (b) ⇔ (e) ⇔ (d) when 1 < p < ∞.
The proof is complete.

Corollary 3 (cf. [3] and [4]). Let T1, . . . , Td and e be the same as
in Theorem 2. If 1 < p < ∞ and 1/p + 1/p′ = 1, then the following are
equivalent:

(a) For any f ∈ L+
p (µ) the limit function A(T ∗

1 , . . . , T ∗
d )f belongs to

L+
p (µ).

(b) E{e−1|(X, I, e dµ)}1/pE{ep′−1|(X, I, e dµ)}1/p′ ≤ C a.e. on X.
(c) For any f ∈ L+

p′(µ) the limit function A(T1, . . . , Td)f belongs to
L+

p′(µ).
If p = 1, then (a) is equivalent to

(d) E{e−1|(X, I, e dµ)} ≤ Ce−1 a.e. on X.
Consequently, in case I is trivial, (a) is equivalent, for every

1 ≤ p < ∞, to
(e) µ(X) < ∞ and e ∈ Lp′(µ), where p′ = ∞ when p = 1.

Corollary 4. Suppose (X,F , µ) is a finite measure space. Let
T1, . . . , Td be commuting positive linear contractions of L1(µ), and as-
sume that µ is invariant under T1, . . . , Td, i.e., that Ti1 = 1 ∈ L1(µ)
(1 ≤ i ≤ d). Let 0 < V , W < ∞ be two measurable functions on X. If
1 < p < ∞ and 1/p + 1/p′ = 1, then the following are equivalent:

(a) For any f ∈ L+
p (V dµ) the limit function A(T ∗

1 , . . . , T ∗
d )f belongs

to L+
p (W dµ).

(b) E{W |(X, I, µ)}1/pE{V 1−p′ |(X, I, µ)}1/p′ ≤ C a.e. on X.
(c) For any f ∈ L+

p′(W 1−p′
dµ) the limit function A(T ∗

1 , . . . , T ∗
d )f

belongs to L+
p′(V 1−p′

dµ).
If p = 1, then (a) is equivalent to

(d) E{W |(X, I, µ)} ≤ CV a.e. on X.
Consequently, in case I is trivial, (a) is equivalent, for every

1 ≤ p < ∞, to
(e) W ∈ L1(µ) and V −1 ∈ Lp′(V dµ), where p′ = ∞ when p = 1.

Remark. Under the hypotheses of Corollary 4, it follows (see (15)
and (18)) that for any f ∈ M+(µ)

A(T1, . . . , Td)f = A(T ∗
1 , . . . , T ∗

d )f = E{f |(X, I, µ)} a.e. on X,

so that the function A(T ∗
1 , . . . , T ∗

d )f can be replaced by the function
A(T1, . . . , Td)f in Corollary 4, without any influence.
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4. Concluding remarks

Throughout this section, (X,F , µ) is a σ-finite measure space, and
T1, . . . , Td are commuting positive linear contractions of L1(µ) such that
Tie = e (1 ≤ i ≤ d) for some e ∈ L1(µ) with e > 0 on X. Here we briefly
discuss the problem of characterizing a positive measurable function V
on X such that if f ∈ L+

p (V dµ) then the limit function A(T1, . . . , Td)f
(or A(T ∗

1 , . . . , T ∗
d )f) is finite a.e. on X. As in the preceding section, we

will denote I =
d⋂

i=1

I(Ti). The results may be stated as follows. (For a

related result we refer the reader to [7].)

Theorem 4. Let 0 < V ≤ ∞ be a measurable function on X. If
1 < p < ∞ and 1/p + 1/p′ = 1, then the following are equivalent:

(a) For any f ∈ L+
p (V dµ) the limit function A(T1, . . . , Td)f is finite

a.e. on X.
(b) E{e−1V 1−p′ |(X, I, e dµ)} < ∞ a.e. on X.

If p = 1, then (a) is equivalent to
(c) V −1 ≤ U < ∞ a.e. on X for some U , measurable with respect to

I.

Proof: By virtue of (15) and the result mentioned in Introduction (see
especially (3) and (4)), Theorem 4 follows immediately.

Corollary 5. If 1 < p < ∞, then the following are equivalent:

(a) For any f ∈ L+
p (µ) the limit function A(T1, . . . , Td)f is fintie a.e.

on X.
(b) There exist Xn ∈ I, n = 1, 2, . . . , such that Xn ↑ X and µ(Xn) <

∞.
(c) For any f ∈

⋃
1≤r≤∞

L+
r (µ) the limit function A(T1, . . . , Td)f is

finite a.e. on X.

Proof: Since the implications (b) ⇒ (c) ⇒ (a) are obvious, we only
prove (a) ⇔ (b). To do this we apply Theorem 4 with V = 1 on X and
see that (a) is equivalent to

E{e−1|(X, I, e dµ)} < ∞ a.e. on X,

which is clearly equivalent to (b). The proof is complete.
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Theorem 5. Let 0 < V ≤ ∞ be a measurable function on X. If
1 < p < ∞ and 1/p + 1/p′ = 1, then the following are equivalent:

(a) For any f ∈ L+
p (V dµ) the limit function A(T ∗

1 , . . . , T ∗
d )f is finite

a.e. on X.
(b) E{(e−1V )1−p′ |(X, I, e dµ)} < ∞ a.e. on X.

If p = 1, then (a) is equivalent to
(c) eV −1 ≤ U < ∞ a.e. on X for some U , measurable with respect

to I.

Proof: By the proof of Theorem 4, we see that in this case it is enough
to use (18) instead of (15), completing the proof.

Corollary 6. If 1 ≤ p < ∞ and 1/p + 1/p′ = 1, then the following
are equivalent:

(a) For any f ∈ L+
p (µ) the limit function A(T ∗

1 , . . . , T ∗
d )f is finite

a.e. on X.
(b) There exists an ẽ ∈ L1(µ) ∩ Lp′(µ) such that ẽ > 0 on X and

Tiẽ = ẽ (1 ≤ i ≤ d).
(c) For any f ∈

⋃
p≤r≤∞

L+
r (µ) the limit function A(T ∗

1 , . . . , T ∗
d )f is

finite a.e. on X.

Proof: (a) ⇒ (b). By Theorem 5 with V = 1 on X, (a) implies the
existence of Xn ∈ I, n = 1, 2, . . . , such that

Xn ↑ X and e · 1Xn ∈ Lp′(µ).

Thus choosing a suitable sequence dn, n = 1, 2, . . . , of positive real num-
bers we have

ẽ =
∞∑

n=1

dn(e · 1Xn
) ∈ L1(µ) ∩ Lp′(µ)

and
Tiẽ = ẽ for all 1 ≤ i ≤ d.

(b) ⇒ (c). Since T ∗
1 , . . . , T ∗

d are commuting positive linear contrac-
tions of L1(ẽ dµ) with T ∗

i 1 = 1 ∈ L1(ẽ dµ) (1 ≤ i ≤ d), it is enough to
show that

f ∈ L1(ẽ dµ) for every f ∈
⋃

p≤r≤∞
L+

r (µ).

And this follows, as ẽ ∈ L1(µ) ∩ Lp′(µ) implies

ẽ ∈
⋂

1≤r′≤p′

Lr′(µ)
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by the Hölder inequality.
(c) ⇒ (a). Trivial. The proof is complete.
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