WEIGHTED L_p SPACES AND POINTWISE ERGODIC THEOREMS

RYOTARO SATO

Abstract _

In this paper we give an operator theoretic version of a recent result of F. J. Martín-Reyes and A. de la Torre concerning the problem of finding necessary and sufficient conditions for a nonsingular point transformation to satisfy the Pointwise Ergodic Theorem in L_p . We consider a positive conservative contraction T on L_1 of a σ -finite measure space (X, \mathcal{F}, μ) , a fixed function e in L_1 with e > 0 on X, and two positive measurable functions V and W on X. We then characterize the pairs (V, W) such that for any f in $L_p(V d\mu)$ the averages

$$R_0^n(f,e) = \left(\sum_{k=0}^n T^k f\right) \middle/ \left(\sum_{k=0}^n T^k e\right)$$

converge almost everywhere to a function in $L_p(W d\mu)$. The characterizations are given for all $p, 1 \leq p < \infty$.

1. Introduction

Let (X, \mathcal{F}, μ) be a σ -finite measure space and T a positive linear contraction of $L_1(\mu)$. We assume T to be a conservative operator. (For the usual notation we refer the reader to Krengel's book [2].) Thus the class

(1)
$$\mathcal{I} = \mathcal{I}(T) = \{A \in \mathcal{F} : T^* \mathbf{1}_A = \mathbf{1}_A\}$$

of all invariant sets relative to T forms a σ -field, where 1_A denotes the indicator function of A and T^* denotes the adjoint operator of T, acting on $L_{\infty}(\mu)$. Since T is positive, we may extend by a canonical manner the domain of T to the class $M^+(\mu)$ of all nonnegative extended real valued measurable functions on X. Similarly, this is done for T^* . Now let us fix an $e \in L_1(\mu)$ with e > 0 on X. Let $0 < V, W \le \infty$ be two measurable

functions on X. Previously we observed in [6] that if 1 then $for any <math>f \in L_p^+(V d\mu)$ the averages

(2)
$$R_0^n(f,e) = \left(\sum_{k=0}^n T^k f\right) \middle/ \left(\sum_{k=0}^n T^k e\right)$$

converge to a finite limit a.e. on X if and only if

(3)
$$E\{e^{-1}V^{1-p'}|(X,\mathcal{I},e\,d\mu)\}<\infty$$
 a.e. on X,

where 1/p + 1/p' = 1. In [6] we also observed implicitely (see especially p. 76–77 in [6]) that for any $f \in L_1^+(V d\mu)$ the averages $R_0^n(f, e)$ converge to a finite limit a.e. on X if and only if there exists a function U, measurable with respect to \mathcal{I} , such that

(4)
$$V^{-1} \le U < \infty$$
 a.e. on X.

In this paper we intend to study the problem of charactering the case where the limit function $R_0^{\infty}(f, e)$ belongs to $L_p^+(W d\mu)$ for every $f \in L_p^+(V d\mu)$. This study was inspired by the work [3] of Martín-Reyes and de la Torre. See also Assani and Wós [1]. As a result, this paper may be considered to be an operator theoretic version of Martín-Reyes and de la Torre's paper [3]. Using the result obtained we next consider multiparameter pointwise ergodic theorems for commuting positive linear contractions of $L_1(\mu)$ having a common strictly positive fixed point in $L_1(\mu)$.

2. The main result

Theorem 1. Let T be a conservative positive linear contraction of $L_1(\mu)$. Let V, W be two positive real valued measurable functions on X. Fix an $e \in L_1(\mu)$ with e > 0 on X. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(V d\mu)$ the averages $R_0^n(f, e)$ converge a.e. to a function belonging to $L_p^+(W d\mu)$.
- (b) $E\{e^{-1}W|(X,\mathcal{I},e\,d\mu)\}^{1/p} \cdot E\{e^{-1}V^{1-p'}|(X,\mathcal{I},e\,d\mu)\}^{1/p'} \leq C \ a.e.$ on X, where C is a positive constant.
- on X, where C is a positive constant. (c) For any $f \in L^+_{p'}(W^{1-p'} d\mu)$ the averages $R^n_0(f, e)$ converge a.e. to a function belonging to $L^+_{p'}(V^{1-p'} d\mu)$.

If p = 1, then (a) is equivalent to

(d) $E\{e^{-1}W|(X,\mathcal{I},e\,d\mu)\} \leq CV$ a.e. on X.

Proof: Let 1 . $(a) <math>\Rightarrow$ (b). By (a) the limit function

(5)
$$R_0^{\infty}(f,e) = \lim_n R_0^n(f,e)$$

is finite a.e. on X. Thus by (3) we have

$$E\{e^{-1}V^{1-p'}|(X,\mathcal{I},e\,d\mu)\}<\infty$$
 a.e. on X.

Choose $X_n \in \mathcal{I}, n = 1, 2, \ldots$, so that

(6)
$$X_n \uparrow X \text{ and } \int_{X_n} V^{1-p'} d\mu < \infty.$$

Since $V^{(1-p')p} \cdot V = V^{1-p'}$, it follows that

(7)
$$V^{1-p'} \in L_p^+(X_n, V \, d\mu).$$

On the other hand, since $R_0^{\infty}(\cdot, e)$ is a positive linear operator from $L_p(V d\mu)$ into $L_p(W d\mu)$ by (a), it is bounded, i.e., there exists a constant K > 0 such that

(8)
$$\int |R_0^{\infty}(f,e)|^p W \, d\mu \le K^p \int |f|^p V \, d\mu \quad (f \in L_p(V \, d\mu)).$$

Therefore, for any $A \in \mathcal{I}$ with $A \subset X_n$, (7) yields

(9)
$$\int_{A} R_{0}^{\infty} (V^{1-p'}, e)^{p} W \, d\mu \leq K^{p} \int_{A} V^{1-p'} \, d\mu < \infty.$$

Since $R_0^{\infty}(V^{1-p'}, e) = E\{e^{-1}V^{1-p'}|(X, \mathcal{I}, e d\mu)\}$ a.e. on X (cf. p. 73 in [6]), these inequalities imply

$$R_0^{\infty}(V^{1-p'}, e)^p E\{e^{-1}W|(X, \mathcal{I}, e\,d\mu)\} \le K^p E\{e^{-1}V^{1-p'}|(X, \mathcal{I}, e\,d\mu)\} < \infty \text{ a.e. on } X;$$

and (b) follows.

(b) \Rightarrow (a). Since $e^{-1}f = (e^{-1/p}fV^{1/p})(e^{-1/p'}V^{-1/p})$, the Hölder inequality for the conditional expectation operator and (b) imply that if $f \in L_p^+(V d\mu)$ then

$$\begin{split} R_0^{\infty}(f,e) &= E\{e^{-1}f|(X,\mathcal{I},e\,d\mu)\}\\ &\leq E\{e^{-1}f^pV|(X,\mathcal{I},e\,d\mu)\}^{1/p} \cdot E\{e^{-1}V^{1-p'}|(X,\mathcal{I},e\,d\mu)\}^{1/p'}\\ &\leq CE\{e^{-1}f^pV|(X,\mathcal{I},e\,d\mu)\}^{1/p} \cdot E\{e^{-1}W|(X,\mathcal{I},e\,d\mu)\}^{-1/p} \end{split}$$

a.e. on X; and thus

$$\int R_0^\infty(f,e)^p W \, d\mu \le C^p \int \frac{E\{e^{-1}f^p V | (X,\mathcal{I},e\,d\mu)\}}{E\{e^{-1}W | (X,\mathcal{I},e\,d\mu)\}} W \, d\mu$$
$$= C^p \int E\{e^{-1}f^p V | (X,\mathcal{I},e\,d\mu)\} e \, d\mu$$
$$= C^p \int f^p V \, d\mu < \infty,$$

which proves (a).

(b)
$$\Leftrightarrow$$
 (c). Direct from (a) \Leftrightarrow (b).
Let $p = 1$.
(a) \Leftrightarrow (d). For any $f \in L_1^+(V \, d\mu)$ we obtain

$$\int R_0^\infty(f, e) W \, d\mu = \int E\{e^{-1}f|(X, \mathcal{I}, e \, d\mu)\} W \, d\mu$$

$$= \int E\{e^{-1}f|(X, \mathcal{I}, e \, d\mu)\} E\{e^{-1}W|(X, \mathcal{I}, e \, d\mu)\} e \, d\mu$$

$$= \int fE\{e^{-1}W|(X, \mathcal{I}, e \, d\mu)\} \, d\mu$$

$$= \int fV(E\{e^{-1}W|(X, \mathcal{I}, e \, d\mu)\} \cdot V^{-1}) \, d\mu.$$

Hence, by (8) with p = 1, (a) is equivalent to

(a')
$$\int fV(E\{e^{-1}W|(X,\mathcal{I},e\,d\mu)\} \cdot V^{-1})\,d\mu \leq K \int fV\,d\mu \text{ for every} f \in L_1^+(V\,d\mu);$$

and (a') is clearly equivalent to (d). The proof is complete.

Corollary 1. In addition to the hypotheses of Theorem 1, if we assume that T is ergodic, i.e., that \mathcal{I} is trivial, then the following are equivalent, for every $1 \leq p < \infty$:

- (a) For any $f \in L_p^+(V d\mu)$ the averages $R_0^n(f, e)$ converge a.e. to a function belonging to $L_p^+(W d\mu)$. (b) $W \in L_1(\mu)$ and $V^{-1} \in L_{p'}(V d\mu)$, where $p' = \infty$ when p = 1.

3. Applications

Let $d \ge 1$ be an integer and T_1, \ldots, T_d be commuting positive linear contractions of $L_1(\mu)$. In this section we assume that there exists an $e \in L_1(\mu)$ with e > 0 on X such that

(10)
$$T_i e = e \quad (1 \le i \le d).$$

Thus each T_i is a conservative operator and satisfies the mean ergodic theorem in $L_1(\mu)$. And by an induction argument we see that for any $f \in L_1(\mu)$ the averages

(11)
$$A_n(T_1,\ldots,T_d)f = A_n(T_1)\ldots A_n(T_d)f$$

converge in L_1 -norm, where $A_n(T_i) = \frac{1}{n} \sum_{k=0}^{n-1} T_i^k$. By Theorem 1 of [5], for any $f \in L_1(\mu)$ the averages $A_n(T_1, \ldots, T_d)f$ converge a.e. on X. Let us denote the limit function by $A(T_1, \ldots, T_d)f$; thus

(12)
$$A(T_1, \ldots, T_d)f = \lim_n A_n(T_1, \ldots, T_d)f$$
 a.e. on X.

If we let

(13)
$$T = \frac{1}{d} \sum_{i=1}^{d} T_i$$

then T also satisfies the mean ergodic theorem in $L_1(\mu)$; and we get the direct decomposition

$$L_1(\mu) = \{ f \in L_1(\mu) : Tf = f \} \oplus \{ g - Tg : g \in L_1(\mu) \}^-.$$

Since Tf = f if and only if $T_i f = f$ for each $1 \le i \le d$ by the Brunel-Falkowitz lemma (cf. p. 82 in [2]) and

$$\lim_{n} \|A_{n}(T_{1}, \dots, T_{d})(g - Tg)\|_{1} = 0$$

by the equation $g - Tg = \frac{1}{d} \sum_{i=1}^{d} (g - T_i g)$, it follows that for any $f \in L_1(\mu)$ the limit function $A(T_1, \ldots, T_d)f$ coincides a.e. with the limit function (14) $A(T)f = \lim_n A_n(T)f.$

Further, since $\mathcal{I}(T) = \bigcap_{i=1}^{d} \mathcal{I}(T_i)$ (in the sequel \mathcal{I} will denote this σ -field), it follows that for any $f \in L_1^+(\mu)$

(15)
$$A(T_1, \dots, T_d)f = \lim_n A_n(T)f$$
$$= \lim_n e\left(\sum_{k=0}^n T^k f\right) / \left(\sum_{k=0}^n T^k e\right)$$
$$= eE\{e^{-1}f|(X, \mathcal{I}, e\,d\mu)\} \text{ a.e. on } X.$$

Hence, by an approximation argument, for any $f \in M^+(\mu)$ the limit $A(T_1, \ldots, T_d)f = \lim_n A_n(T_1, \ldots, T_d)f$ exists a.e. on X and satisfies (15).

We are now in position to state the first application of Theorem 1.

Theorem 2. Let T_1, \ldots, T_d be commuting positive linear contractions of $L_1(\mu)$ such that $T_i e = e$ $(1 \le i \le d)$ for some $e \in L_1(\mu)$ with e > 0 on X. Let $0 < V, W < \infty$ be two measurable functions on X. If 1and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(V d\mu)$ the limit function $A(T_1, \ldots, T_d)f$ belongs to $L_p^+(W d\mu)$.
- (b) $E\{e^{p-1}W|(X,\mathcal{I},e\,d\mu)\}^{1/p}E\{e^{-1}V^{1-p'}|(X,\mathcal{I},e\,d\mu)\}^{1/p'} \le C \text{ a.e.}$ on X.
- (c) For any $f \in L^+_{p'}(e^{-p'}W^{1-p'}d\mu)$ the limit function $A(T_1,\ldots,T_d)f$ belongs to $L^+_{p'}(e^{-p'}V^{1-p'}d\mu)$.

If p = 1, then (a) is equivalent to

- (d) E{W|(X, I, e dμ)} ≤ CV a.e. on X. Consequently, in case I is trivial, (a) is equivalent, for every 1 ≤ p < ∞, to
- (e) $e^p W \in L_1(\mu)$ and $V^{-1} \in L_{p'}(V d\mu)$, where $p' = \infty$ when p = 1.

Proof: For any $f \in L_p^+(V d\mu)$ we have, by (15), $A(T_1, \ldots, T_d)f = eR_0^{\infty}(f, e)$. Thus (a) is equivalent to

(a') For any $f \in L_p^+(V d\mu)$ the limit function $R_0^{\infty}(f, e)$ (relative to T) belongs to $L_p^+(e^pW d\mu)$.

Therefore, by Theorem 1, we see (a) \Leftrightarrow (b) when $1 , and (a) <math>\Leftrightarrow$ (d) when p = 1. When $1 , (b) <math>\Leftrightarrow$ (c) follows from the equivalence (a) \Leftrightarrow (b). This completes the proof.

Corollary 2. Let T_1, \ldots, T_d and e be the same as in Theorem 2. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(\mu)$ the limit function $A(T_1, \ldots, T_d)f$ belongs to $L_p^+(\mu)$.
- (b) $E\{e^{p-1}|(X,\mathcal{I},e\,d\mu)\}^{1/p}E\{e^{-1}|(X,\mathcal{I},e\,d\mu)\}^{1/p'} \leq C \text{ a.e. on } X.$ Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every
- 1
- (c) $\mu(X) < \infty$ and $e \in L_p(\mu)$.

Remark. We note that (a) of Corollary 2 always holds when p = 1.

We next consider the adjoint operators T_1^*, \ldots, T_d^* . Since $\int (T_i^* f) e \, d\mu = \int f(T_i e) \, d\mu = \int f e \, d\mu$ for $f \in L_{\infty}^+(\mu), T_1^*, \ldots, T_d^*$ can be regarded as commuting positive linear contractions of $L_1(e \, d\mu)$. Since

(16)
$$T_i^* 1 = 1 \in L_1(e \, d\mu) \quad (1 \le i \le d),$$

if we replace the measure μ and the function e by $e d\mu$ and 1, respectively, then the above-given argument shows that for any $f \in M^+(\mu) = M^+(e d\mu)$ the limit

(17)
$$A(T_1^*, \dots, T_d^*)f = \lim_n A_n(T_1^*, \dots, T_d^*)f$$

exists a.e on X; further, since $\mathcal{I} = \bigcap_{i=1}^{d} \mathcal{I}(T_i) = \bigcap_{i=1}^{d} \mathcal{I}(T_i^*)$, it follows that

(18) $A(T_1^*, \ldots, T_d^*)f = \lim_n A_n(T^*)f = E\{f|(X, \mathcal{I}, e\,d\mu)\}$ a.e. on X,

where
$$T^* = \frac{1}{d} \sum_{i=1}^{d} T_i^*$$
.

Theorem 3. Let T_1, \ldots, T_d and e be the same as in Theorem 2. Let $0 < V, W < \infty$ be two measurable functions on X. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(V d\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ belongs to $L_p^+(W d\mu)$.
- (b) $E\{e^{-1}W|(X,\mathcal{I},e\,d\mu)\}^{1/p}E\{(e^{-1}V)^{1-p'}|(X,\mathcal{I},e\,d\mu)\}^{1/p'} \leq C \ a.e.$ on X.
- (c) For any $f \in L^+_{p'}(e^{p'}W^{1-p'}d\mu)$ the limit function $A(T^*_1, \ldots, T^*_d)f$ belongs to $L^+_{p'}(e^{p'}V^{1-p'}d\mu)$.
- (d) For any $f \in L^+_{p'}(W^{1-p'} d\mu)$ the limit function $A(T_1, \ldots, T_d)f$ belongs to $L^+_{n'}(V^{1-p'} d\mu)$.
- (e) For any $f \in L_p^+(e^{-p}V d\mu)$ the limit function $A(T_1, \ldots, T_d)f$ belongs to $L_p^+(e^{-p}W d\mu)$.
 - If p = 1, then (a) is equivalent to
- (f) E{e⁻¹W|(X, I, e dμ)} ≤ C(e⁻¹V) a.e. on X. Consequently, in case I is trivial, (a) is equivalent, for every 1 ≤ p < ∞, to
- (g) $W \in L_1(\mu)$ and $eV^{-1} \in L_{p'}(V d\mu)$, where $p' = \infty$ when p = 1.

Proof: Since $L_p^+(V d\mu) = L_p^+(e^{-1}Ve d\mu)$ and $L_p^+(W d\mu) = L_p^+(e^{-1}We d\mu)$, if we apply Theorem 2 to commuting positive linear contractions T_1^*, \ldots, T_d^* of $L_1(e d\mu)$, then (16) yields (a) \Leftrightarrow (f) when p = 1, and (a) \Leftrightarrow (b) \Leftrightarrow (c) when 1 . If we write (b) as

$$E\{e^{p-1}(e^{-p}W)|(X,\mathcal{I},e\,d\mu)\}^{1/p}E\{e^{-1}(e^{-p}V)^{1-p'}|(X,\mathcal{I},e\,d\mu)\}^{1/p'} \le C \text{ a.e. on } X,$$

and apply Theorem 2 to commuting positive linear contractions T_1, \ldots, T_d of $L_1(\mu)$, then we obtain (b) \Leftrightarrow (e) \Leftrightarrow (d) when 1 . The proof is complete.

Corollary 3 (cf. [3] and [4]). Let T_1, \ldots, T_d and e be the same as in Theorem 2. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ belongs to $L_p^+(\mu)$.
- (b) $E\{e^{-1}|(X,\mathcal{I},e\,d\mu)\}^{1/p}E\{e^{p'-1}|(X,\mathcal{I},e\,d\mu)\}^{1/p'} \leq C \text{ a.e. on } X.$
- (c) For any $f \in L_{p'}^+(\mu)$ the limit function $A(T_1, \ldots, T_d)f$ belongs to $L_{p'}^+(\mu)$.
 - If p = 1, then (a) is equivalent to
- (d) $E\{e^{-1}|(X, \mathcal{I}, e d\mu)\} \leq Ce^{-1}$ a.e. on X. Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1 \leq p < \infty$, to
- (e) $\mu(X) < \infty$ and $e \in L_{p'}(\mu)$, where $p' = \infty$ when p = 1.

Corollary 4. Suppose (X, \mathcal{F}, μ) is a finite measure space. Let T_1, \ldots, T_d be commuting positive linear contractions of $L_1(\mu)$, and assume that μ is invariant under T_1, \ldots, T_d , i.e., that $T_i 1 = 1 \in L_1(\mu)$ $(1 \leq i \leq d)$. Let 0 < V, $W < \infty$ be two measurable functions on X. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(V d\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ belongs to $L_p^+(W d\mu)$.
- (b) $E\{W|(X,\mathcal{I},\mu)\}^{1/p}E\{V^{1-p'}|(X,\mathcal{I},\mu)\}^{1/p'} \leq C \text{ a.e. on } X.$
- (c) For any $f \in L_{p'}^+(W^{1-p'} d\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ belongs to $L_{p'}^+(V^{1-p'} d\mu)$.

If p = 1, then (a) is equivalent to (d) $E\{W|(X, \mathcal{I}, \mu)\} \leq CV$ a.e. on X.

Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1 \leq p < \infty$, to

(e) $W \in L_1(\mu)$ and $V^{-1} \in L_{p'}(V d\mu)$, where $p' = \infty$ when p = 1.

Remark. Under the hypotheses of Corollary 4, it follows (see (15) and (18)) that for any $f \in M^+(\mu)$

$$A(T_1, \ldots, T_d)f = A(T_1^*, \ldots, T_d^*)f = E\{f|(X, \mathcal{I}, \mu)\}$$
 a.e. on X,

so that the function $A(T_1^*, \ldots, T_d^*)f$ can be replaced by the function $A(T_1, \ldots, T_d)f$ in Corollary 4, without any influence.

4. Concluding remarks

Throughout this section, (X, \mathcal{F}, μ) is a σ -finite measure space, and T_1, \ldots, T_d are commuting positive linear contractions of $L_1(\mu)$ such that $T_i e = e \ (1 \le i \le d)$ for some $e \in L_1(\mu)$ with e > 0 on X. Here we briefly discuss the problem of characterizing a positive measurable function Von X such that if $f \in L_p^+(V d\mu)$ then the limit function $A(T_1, \ldots, T_d)f$ (or $A(T_1^*, \ldots, T_d^*)f$) is finite a.e. on X. As in the preceding section, we will denote $\mathcal{I} = \bigcap \mathcal{I}(T_i)$. The results may be stated as follows. (For a

related result we refer the reader to [7].)

Theorem 4. Let $0 < V \leq \infty$ be a measurable function on X. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any f ∈ L⁺_p(V dμ) the limit function A(T₁,...,T_d)f is finite a.e. on X.
 (b) E{e⁻¹V^{1-p'}|(X, I, e dμ)} < ∞ a.e. on X.
- If p = 1, then (a) is equivalent to (c) $V^{-1} \leq U < \infty$ a.e. on X for some U, measurable with respect to T_{i}

Proof: By virtue of (15) and the result mentioned in Introduction (see especially (3) and (4)), Theorem 4 follows immediately. \blacksquare

Corollary 5. If 1 , then the following are equivalent:

- (a) For any $f \in L_p^+(\mu)$ the limit function $A(T_1, \ldots, T_d)f$ is finite a.e. on X.
- (b) There exist $X_n \in \mathcal{I}$, n = 1, 2, ..., such that $X_n \uparrow X$ and $\mu(X_n) < \infty$
- (c) For any $f \in \bigcup_{\substack{1 \le r \le \infty \\ finite \ a.e. \ on \ X}} L_r^+(\mu)$ the limit function $A(T_1, \ldots, T_d)f$ is

Proof: Since the implications (b) \Rightarrow (c) \Rightarrow (a) are obvious, we only prove (a) \Leftrightarrow (b). To do this we apply Theorem 4 with V = 1 on X and see that (a) is equivalent to

$$E\{e^{-1}|(X,\mathcal{I},e\,d\mu)\}<\infty \text{ a.e. on } X,$$

which is clearly equivalent to (b). The proof is complete. \blacksquare

R. Sato

Theorem 5. Let $0 < V \leq \infty$ be a measurable function on X. If 1 and <math>1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(V d\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ is finite (b) $E\{(e^{-1}V)^{1-p'}|(X,\mathcal{I},e\,d\mu)\} < \infty \ a.e. \ on \ X.$
- If p = 1, then (a) is equivalent to
- (c) $eV^{-1} \leq U < \infty$ a.e. on X for some U, measurable with respect to \mathcal{I} .

Proof: By the proof of Theorem 4, we see that in this case it is enough to use (18) instead of (15), completing the proof. \blacksquare

Corollary 6. If $1 \le p < \infty$ and 1/p + 1/p' = 1, then the following are equivalent:

- (a) For any $f \in L_p^+(\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ is finite a.e. on X.
- (b) There exists an $\tilde{e} \in L_1(\mu) \cap L_{p'}(\mu)$ such that $\tilde{e} > 0$ on X and $T_i \tilde{e} = \tilde{e} \ (1 \le i \le d).$
- (c) For any $f \in \bigcup_{\substack{p \le r \le \infty \\ finite \ a.e. \ on \ X}} L_r^+(\mu)$ the limit function $A(T_1^*, \ldots, T_d^*)f$ is

Proof: (a) \Rightarrow (b). By Theorem 5 with V = 1 on X, (a) implies the existence of $X_n \in \mathcal{I}$, $n = 1, 2, \ldots$, such that

$$X_n \uparrow X$$
 and $e \cdot 1_{X_n} \in L_{p'}(\mu)$.

Thus choosing a suitable sequence d_n , $n = 1, 2, \ldots$, of positive real numbers we have

$$\tilde{e} = \sum_{n=1}^{\infty} d_n (e \cdot 1_{X_n}) \in L_1(\mu) \cap L_{p'}(\mu)$$

and

$$T_i \tilde{e} = \tilde{e}$$
 for all $1 \le i \le d$.

(b) \Rightarrow (c). Since T_1^*, \ldots, T_d^* are commuting positive linear contractions of $L_1(\tilde{e} d\mu)$ with $T_i^* 1 = 1 \in L_1(\tilde{e} d\mu)$ $(1 \le i \le d)$, it is enough to show that

$$f \in L_1(\tilde{e} d\mu)$$
 for every $f \in \bigcup_{p \le r \le \infty} L_r^+(\mu)$.

And this follows, as $\tilde{e} \in L_1(\mu) \cap L_{p'}(\mu)$ implies

$$\tilde{e} \in \bigcap_{1 \le r' \le p'} L_{r'}(\mu)$$

by the Hölder inequality.

(c) \Rightarrow (a). Trivial. The proof is complete.

References

- 1. I. ASSANI AND J. Wós, An equivalent measure for some nonsingular transformations and application, *Studia Math.* **97** (1990), 1–12.
- 2. U. KRENGEL, "Ergodic Theorems," Walter de Gruyter, Berlin, 1985.
- 3. F. J. MARTÍN-REYES AND A. DE LA TORRE, On the pointwise ergodic theorem in L_p, Studia Math. 108 (1994), 1–4.
- 4. C. RYLL-NARDEWSKI, On the ergodic theorems, I (Generalized ergodic theorems), *Studia Math.* **12** (1951), 65–73.
- 5. R. SATO, Individual ergodic theorems for commuting operators, *Tôhoku Math. J.* **35** (1983), 129–135.
- R. SATO, On pointwise ergodic theorems for positive operators, *Stu*dia Math. 97 (1990), 71–84.
- 7. R. SATO, Multiparameter pointwise ergodic theorems for Markov operators on L_{∞} , *Publ. Mat.* **38** (1994), 395–410.

 $\mathit{Keywords.}$ weighted L_p spaces, pointwise ergodic theorems, positive contractions of L_1 spaces

1991 Mathematics subject classifications: Primary 47A35

Department of Mathematics Faculty of Science Okayama University Okayama 700 JAPAN

Rebut el 7 de Novembre de 1994