WEIGHTED L_{p} SPACES
 AND POINTWISE ERGODIC THEOREMS

Ryotaro Sato

Abstract

In this paper we give an operator theoretic version of a recent result of F. J. Martín-Reyes and A. de la Torre concerning the problem of finding necessary and sufficient conditions for a nonsingular point transformation to satisfy the Pointwise Ergodic Theorem in L_{p}. We consider a positive conservative contraction T on L_{1} of a σ-finite measure space (X, \mathcal{F}, μ), a fixed function e in L_{1} with $e>0$ on X, and two positive measurable functions V and W on X. We then characterize the pairs (V, W) such that for any f in $L_{p}(V d \mu)$ the averages $$
R_{0}^{n}(f, e)=\left(\sum_{k=0}^{n} T^{k} f\right) /\left(\sum_{k=0}^{n} T^{k} e\right)
$$ converge almost everywhere to a function in $L_{p}(W d \mu)$. The characterizations are given for all $p, 1 \leq p<\infty$.

1. Introduction

Let (X, \mathcal{F}, μ) be a σ-finite measure space and T a positive linear contraction of $L_{1}(\mu)$. We assume T to be a conservative operator. (For the usual notation we refer the reader to Krengel's book [2].) Thus the class

$$
\begin{equation*}
\mathcal{I}=\mathcal{I}(T)=\left\{A \in \mathcal{F}: T^{*} 1_{A}=1_{A}\right\} \tag{1}
\end{equation*}
$$

of all invariant sets relative to T forms a σ-field, where 1_{A} denotes the indicator function of A and T^{*} denotes the adjoint operator of T, acting on $L_{\infty}(\mu)$. Since T is positive, we may extend by a canonical manner the domain of T to the class $M^{+}(\mu)$ of all nonnegative extended real valued measurable functions on X. Similarly, this is done for T^{*}. Now let us fix an $e \in L_{1}(\mu)$ with $e>0$ on X. Let $0<V, W \leq \infty$ be two measurable
functions on X. Previously we observed in [6] that if $1<p<\infty$ then for any $f \in L_{p}^{+}(V d \mu)$ the averages

$$
\begin{equation*}
R_{0}^{n}(f, e)=\left(\sum_{k=0}^{n} T^{k} f\right) /\left(\sum_{k=0}^{n} T^{k} e\right) \tag{2}
\end{equation*}
$$

converge to a finite limit a.e. on X if and only if

$$
\begin{equation*}
E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}<\infty \text { a.e. on } X \tag{3}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$. In $[\mathbf{6}]$ we also observed implicitely (see especially p. 76-77 in $[\mathbf{6}])$ that for any $f \in L_{1}^{+}(V d \mu)$ the averages $R_{0}^{n}(f, e)$ converge to a finite limit a.e. on X if and only if there exists a function U, measurable with respect to \mathcal{I}, such that

$$
\begin{equation*}
V^{-1} \leq U<\infty \text { a.e. on } X \tag{4}
\end{equation*}
$$

In this paper we intend to study the problem of charactering the case where the limit function $R_{0}^{\infty}(f, e)$ belongs to $L_{p}^{+}(W d \mu)$ for every $f \in L_{p}^{+}(V d \mu)$. This study was inspired by the work [3] of Martín-Reyes and de la Torre. See also Assani and Wós [1]. As a result, this paper may be considered to be an operator theoretic version of Martín-Reyes and de la Torre's paper [3]. Using the result obtained we next consider multiparameter pointwise ergodic theorems for commuting positive linear contractions of $L_{1}(\mu)$ having a common strictly positive fixed point in $L_{1}(\mu)$.

2. The main result

Theorem 1. Let T be a conservative positive linear contraction of $L_{1}(\mu)$. Let V, W be two positive real valued measurable functions on X. Fix an $e \in L_{1}(\mu)$ with $e>0$ on X. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the averages $R_{0}^{n}(f, e)$ converge a.e. to a function belonging to $L_{p}^{+}(W d \mu)$.
(b) $E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} \cdot E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \leq C$ a.e. on X, where C is a positive constant.
(c) For any $f \in L_{p^{\prime}}^{+}\left(W^{1-p^{\prime}} d \mu\right)$ the averages $R_{0}^{n}(f, e)$ converge a.e. to a function belonging to $L_{p^{\prime}}^{+}\left(V^{1-p^{\prime}} d \mu\right)$.

If $p=1$, then (a) is equivalent to
(d) $E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} \leq C V$ a.e. on X.

Proof: Let $1<p<\infty$.
(a) $\Rightarrow(\mathrm{b})$. By (a) the limit function

$$
\begin{equation*}
R_{0}^{\infty}(f, e)=\lim _{n} R_{0}^{n}(f, e) \tag{5}
\end{equation*}
$$

is finite a.e. on X. Thus by (3) we have

$$
E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}<\infty \text { a.e. on } X
$$

Choose $X_{n} \in \mathcal{I}, n=1,2, \ldots$, so that

$$
\begin{equation*}
X_{n} \uparrow X \text { and } \int_{X_{n}} V^{1-p^{\prime}} d \mu<\infty \tag{6}
\end{equation*}
$$

Since $V^{\left(1-p^{\prime}\right) p} \cdot V=V^{1-p^{\prime}}$, it follows that

$$
\begin{equation*}
V^{1-p^{\prime}} \in L_{p}^{+}\left(X_{n}, V d \mu\right) \tag{7}
\end{equation*}
$$

On the other hand, since $R_{0}^{\infty}(\cdot, e)$ is a positive linear operator from $L_{p}(V d \mu)$ into $L_{p}(W d \mu)$ by (a), it is bounded, i.e., there exists a constant $K>0$ such that
(8) $\quad \int\left|R_{0}^{\infty}(f, e)\right|^{p} W d \mu \leq K^{p} \int|f|^{p} V d \mu \quad\left(f \in L_{p}(V d \mu)\right)$.

Therefore, for any $A \in \mathcal{I}$ with $A \subset X_{n}$, (7) yields

$$
\begin{equation*}
\int_{A} R_{0}^{\infty}\left(V^{1-p^{\prime}}, e\right)^{p} W d \mu \leq K^{p} \int_{A} V^{1-p^{\prime}} d \mu<\infty \tag{9}
\end{equation*}
$$

Since $R_{0}^{\infty}\left(V^{1-p^{\prime}}, e\right)=E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}$ a.e. on X (cf. p. 73 in $[6]$), these inequalities imply

$$
\begin{aligned}
R_{0}^{\infty}\left(V^{1-p^{\prime}}, e\right)^{p} E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} & \leq K^{p} E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\} \\
& <\infty \text { a.e. on } X
\end{aligned}
$$

and (b) follows.
(b) \Rightarrow (a). Since $e^{-1} f=\left(e^{-1 / p} f V^{1 / p}\right)\left(e^{-1 / p^{\prime}} V^{-1 / p}\right)$, the Hölder inequality for the conditional expectation operator and (b) imply that if $f \in L_{p}^{+}(V d \mu)$ then

$$
\begin{aligned}
R_{0}^{\infty}(f, e) & =E\left\{e^{-1} f \mid(X, \mathcal{I}, e d \mu)\right\} \\
& \leq E\left\{e^{-1} f^{p} V \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} \cdot E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \\
& \leq C E\left\{e^{-1} f^{p} V \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} \cdot E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\}^{-1 / p}
\end{aligned}
$$

a.e. on X; and thus

$$
\begin{aligned}
\int R_{0}^{\infty}(f, e)^{p} W d \mu & \leq C^{p} \int \frac{E\left\{e^{-1} f^{p} V \mid(X, \mathcal{I}, e d \mu)\right\}}{E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\}} W d \mu \\
& =C^{p} \int E\left\{e^{-1} f^{p} V \mid(X, \mathcal{I}, e d \mu)\right\} e d \mu \\
& =C^{p} \int f^{p} V d \mu<\infty
\end{aligned}
$$

which proves (a).
(b) $\Leftrightarrow(\mathrm{c})$. Direct from $(\mathrm{a}) \Leftrightarrow(b)$.

Let $p=1$.
(a) $\Leftrightarrow(\mathrm{d})$. For any $f \in L_{1}^{+}(V d \mu)$ we obtain

$$
\begin{aligned}
\int R_{0}^{\infty}(f, e) W d \mu & =\int E\left\{e^{-1} f \mid(X, \mathcal{I}, e d \mu)\right\} W d \mu \\
& =\int E\left\{e^{-1} f \mid(X, \mathcal{I}, e d \mu)\right\} E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} e d \mu \\
& =\int f E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} d \mu \\
& =\int f V\left(E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} \cdot V^{-1}\right) d \mu
\end{aligned}
$$

Hence, by (8) with $p=1$, (a) is equivalent to
(a') $\int f V\left(E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} \cdot V^{-1}\right) d \mu \leq K \int f V d \mu$ for every $f \in L_{1}^{+}(V d \mu) ;$
and $\left(\mathrm{a}^{\prime}\right)$ is clearly equivalent to (d). The proof is complete.
Corollary 1. In addition to the hypotheses of Theorem 1, if we assume that T is ergodic, i.e., that \mathcal{I} is trivial, then the following are equivalent, for every $1 \leq p<\infty$:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the averages $R_{0}^{n}(f, e)$ converge a.e. to a function belonging to $L_{p}^{+}(W d \mu)$.
(b) $W \in L_{1}(\mu)$ and $V^{-1} \in L_{p^{\prime}}(V d \mu)$, where $p^{\prime}=\infty$ when $p=1$.

3. Applications

Let $d \geq 1$ be an integer and T_{1}, \ldots, T_{d} be commuting positive linear contractions of $L_{1}(\mu)$. In this section we assume that there exists an $e \in L_{1}(\mu)$ with $e>0$ on X such that

$$
\begin{equation*}
T_{i} e=e \quad(1 \leq i \leq d) \tag{10}
\end{equation*}
$$

Thus each T_{i} is a conservative operator and satisfies the mean ergodic theorem in $L_{1}(\mu)$. And by an induction argument we see that for any $f \in L_{1}(\mu)$ the averages

$$
\begin{equation*}
A_{n}\left(T_{1}, \ldots, T_{d}\right) f=A_{n}\left(T_{1}\right) \ldots A_{n}\left(T_{d}\right) f \tag{11}
\end{equation*}
$$

converge in L_{1}-norm, where $A_{n}\left(T_{i}\right)=\frac{1}{n} \sum_{k=0}^{n-1} T_{i}^{k}$. By Theorem 1 of [5], for any $f \in L_{1}(\mu)$ the averages $A_{n}\left(T_{1}, \ldots, T_{d}\right) f$ converge a.e. on X. Let us denote the limit function by $A\left(T_{1}, \ldots, T_{d}\right) f$; thus

$$
\begin{equation*}
A\left(T_{1}, \ldots, T_{d}\right) f=\lim _{n} A_{n}\left(T_{1}, \ldots, T_{d}\right) f \text { a.e. on } X \tag{12}
\end{equation*}
$$

If we let

$$
\begin{equation*}
T=\frac{1}{d} \sum_{i=1}^{d} T_{i} \tag{13}
\end{equation*}
$$

then T also satisfies the mean ergodic theorem in $L_{1}(\mu)$; and we get the direct decomposition

$$
L_{1}(\mu)=\left\{f \in L_{1}(\mu): T f=f\right\} \oplus\left\{g-T g: g \in L_{1}(\mu)\right\}^{-}
$$

Since $T f=f$ if and only if $T_{i} f=f$ for each $1 \leq i \leq d$ by the BrunelFalkowitz lemma (cf. p. 82 in [2]) and

$$
\lim _{n}\left\|A_{n}\left(T_{1}, \ldots, T_{d}\right)(g-T g)\right\|_{1}=0
$$

by the equation $g-T g=\frac{1}{d} \sum_{i=1}^{d}\left(g-T_{i} g\right)$, it follows that for any $f \in L_{1}(\mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ coincides a.e. with the limit function

$$
\begin{equation*}
A(T) f=\lim _{n} A_{n}(T) f \tag{14}
\end{equation*}
$$

Further, since $\mathcal{I}(T)=\bigcap_{i=1}^{d} \mathcal{I}\left(T_{i}\right)$ (in the sequel \mathcal{I} will denote this σ-field),
it follows that for any $f \in L_{1}^{+}(\mu)$

$$
\begin{align*}
A\left(T_{1}, \ldots, T_{d}\right) f & =\lim _{n} A_{n}(T) f \\
& =\lim _{n} e\left(\sum_{k=0}^{n} T^{k} f\right) /\left(\sum_{k=0}^{n} T^{k} e\right) \tag{15}\\
& =e E\left\{e^{-1} f \mid(X, \mathcal{I}, e d \mu)\right\} \text { a.e. on } X .
\end{align*}
$$

Hence, by an approximation argument, for any $f \in M^{+}(\mu)$ the limit $A\left(T_{1}, \ldots, T_{d}\right) f=\lim _{n} A_{n}\left(T_{1}, \ldots, T_{d}\right) f$ exists a.e. on X and satisfies (15).

We are now in position to state the first application of Theorem 1.

Theorem 2. Let T_{1}, \ldots, T_{d} be commuting positive linear contractions of $L_{1}(\mu)$ such that $T_{i} e=e(1 \leq i \leq d)$ for some $e \in L_{1}(\mu)$ with $e>0$ on X. Let $0<V, W<\infty$ be two measurable functions on X. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ belongs to $L_{p}^{+}(W d \mu)$.
(b) $E\left\{e^{p-1} W \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \leq C$ a.e. on X.
(c) For any $f \in L_{p^{\prime}}^{+}\left(e^{-p^{\prime}} W^{1-p^{\prime}} d \mu\right)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ belongs to $L_{p^{\prime}}^{+}\left(e^{-p^{\prime}} V^{1-p^{\prime}} d \mu\right)$.

If $p=1$, then (a) is equivalent to
(d) $E\{W \mid(X, \mathcal{I}, e d \mu)\} \leq C V$ a.e. on X.

Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1 \leq p<\infty$, to
(e) $e^{p} W \in L_{1}(\mu)$ and $V^{-1} \in L_{p^{\prime}}(V d \mu)$, where $p^{\prime}=\infty$ when $p=1$.

Proof: For any $f \in L_{p}^{+}(V d \mu)$ we have, by (15), $A\left(T_{1}, \ldots, T_{d}\right) f=$ $e R_{0}^{\infty}(f, e)$. Thus (a) is equivalent to
(a^{\prime}) For any $f \in L_{p}^{+}(V d \mu)$ the limit function $R_{0}^{\infty}(f, e)$ (relative to T) belongs to $L_{p}^{+}\left(e^{p} W d \mu\right)$.
Therefore, by Theorem 1, we see (a) \Leftrightarrow (b) when $1<p<\infty$, and (a) \Leftrightarrow (d) when $p=1$. When $1<p<\infty$, (b) \Leftrightarrow (c) follows from the equivalence (a) \Leftrightarrow (b). This completes the proof.

Corollary 2. Let T_{1}, \ldots, T_{d} and e be the same as in Theorem 2. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(\mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ belongs to $L_{p}^{+}(\mu)$.
(b) $E\left\{e^{p-1} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} E\left\{e^{-1} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \leq C$ a.e. on X.

Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1<p<\infty$, to
(c) $\mu(X)<\infty$ and $e \in L_{p}(\mu)$.

Remark. We note that (a) of Corollary 2 always holds when $p=1$.
We next consider the adjoint operators $T_{1}^{*}, \ldots, T_{d}^{*}$. Since $\int\left(T_{i}^{*} f\right) e d \mu=\int f\left(T_{i} e\right) d \mu=\int f e d \mu$ for $f \in L_{\infty}^{+}(\mu), T_{1}^{*}, \ldots, T_{d}^{*}$ can be regarded as commuting positive linear contractions of $L_{1}(e d \mu)$. Since

$$
\begin{equation*}
T_{i}^{*} 1=1 \in L_{1}(e d \mu) \quad(1 \leq i \leq d) \tag{16}
\end{equation*}
$$

if we replace the measure μ and the function e by $e d \mu$ and 1 , respectively, then the above-given argument shows that for any $f \in M^{+}(\mu)=$ $M^{+}(e d \mu)$ the limit

$$
\begin{equation*}
A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f=\lim _{n} A_{n}\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f \tag{17}
\end{equation*}
$$

exists a.e on X; further, since $\mathcal{I}=\bigcap_{i=1}^{d} \mathcal{I}\left(T_{i}\right)=\bigcap_{i=1}^{d} \mathcal{I}\left(T_{i}^{*}\right)$, it follows that (18) $\quad A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f=\lim _{n} A_{n}\left(T^{*}\right) f=E\{f \mid(X, \mathcal{I}, e d \mu)\}$ a.e. on X, where $T^{*}=\frac{1}{d} \sum_{i=1}^{d} T_{i}^{*}$.

Theorem 3. Let T_{1}, \ldots, T_{d} and e be the same as in Theorem 2. Let $0<V, W<\infty$ be two measurable functions on X. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ belongs to $L_{p}^{+}(W d \mu)$.
(b) $E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} E\left\{\left(e^{-1} V\right)^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \leq C$ a.e. on X.
(c) For any $f \in L_{p^{\prime}}^{+}\left(e^{p^{\prime}} W^{1-p^{\prime}} d \mu\right)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ belongs to $L_{p^{\prime}}^{+}\left(e^{p^{\prime}} V^{1-p^{\prime}} d \mu\right)$.
(d) For any $f \in L_{p^{\prime}}^{+}\left(W^{1-p^{\prime}} d \mu\right)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ belongs to $L_{p^{\prime}}^{+}\left(V^{1-p^{\prime}} d \mu\right)$.
(e) For any $f \in L_{p}^{+}\left(e^{-p} V d \mu\right)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ belongs to $L_{p}^{+}\left(e^{-p} W d \mu\right)$.

$$
\text { If } p=1 \text {, then (a) is equivalent to }
$$

(f) $E\left\{e^{-1} W \mid(X, \mathcal{I}, e d \mu)\right\} \leq C\left(e^{-1} V\right)$ a.e. on X.

Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1 \leq p<\infty$, to
(g) $W \in L_{1}(\mu)$ and $e V^{-1} \in L_{p^{\prime}}(V d \mu)$, where $p^{\prime}=\infty$ when $p=1$.

Proof: Since $L_{p}^{+}(V d \mu)=L_{p}^{+}\left(e^{-1} V e d \mu\right)$ and $L_{p}^{+}(W d \mu)=$ $L_{p}^{+}\left(e^{-1} W e d \mu\right)$, if we apply Theorem 2 to commuting positive linear contractions $T_{1}^{*}, \ldots, T_{d}^{*}$ of $L_{1}(e d \mu)$, then (16) yields (a) \Leftrightarrow (f) when $p=1$, and (a) \Leftrightarrow (b) \Leftrightarrow (c) when $1<p<\infty$. If we write (b) as

$$
\begin{aligned}
E\left\{e^{p-1}\left(e^{-p} W\right) \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} E\left\{e^{-1}\left(e^{-p} V\right)^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \\
\leq C \text { a.e. on } X
\end{aligned}
$$

and apply Theorem 2 to commuting positive linear contractions T_{1}, \ldots, T_{d} of $L_{1}(\mu)$, then we obtain $(\mathrm{b}) \Leftrightarrow(\mathrm{e}) \Leftrightarrow(\mathrm{d})$ when $1<p<\infty$. The proof is complete.

Corollary 3 (cf. [3] and [4]). Let T_{1}, \ldots, T_{d} and e be the same as in Theorem 2. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(\mu)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ belongs to $L_{p}^{+}(\mu)$.
(b) $E\left\{e^{-1} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p} E\left\{e^{p^{\prime}-1} \mid(X, \mathcal{I}, e d \mu)\right\}^{1 / p^{\prime}} \leq C$ a.e. on X.
(c) For any $f \in L_{p^{\prime}}^{+}(\mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ belongs to $L_{p^{\prime}}^{+}(\mu)$.

If $p=1$, then (a) is equivalent to
(d) $E\left\{e^{-1} \mid(X, \mathcal{I}, e d \mu)\right\} \leq C e^{-1}$ a.e. on X.

Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1 \leq p<\infty$, to
(e) $\mu(X)<\infty$ and $e \in L_{p^{\prime}}(\mu)$, where $p^{\prime}=\infty$ when $p=1$.

Corollary 4. Suppose (X, \mathcal{F}, μ) is a finite measure space. Let T_{1}, \ldots, T_{d} be commuting positive linear contractions of $L_{1}(\mu)$, and assume that μ is invariant under T_{1}, \ldots, T_{d}, i.e., that $T_{i} 1=1 \in L_{1}(\mu)$ $(1 \leq i \leq d)$. Let $0<V, W<\infty$ be two measurable functions on X. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ belongs to $L_{p}^{+}(W d \mu)$.
(b) $E\{W \mid(X, \mathcal{I}, \mu)\}^{1 / p} E\left\{V^{1-p^{\prime}} \mid(X, \mathcal{I}, \mu)\right\}^{1 / p^{\prime}} \leq C$ a.e. on X.
(c) For any $f \in L_{p^{\prime}}^{+}\left(W^{1-p^{\prime}} d \mu\right)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ belongs to $L_{p^{\prime}}^{+}\left(V^{1-p^{\prime}} d \mu\right)$.

If $p=1$, then (a) is equivalent to
(d) $E\{W \mid(X, \mathcal{I}, \mu)\} \leq C V$ a.e. on X.

Consequently, in case \mathcal{I} is trivial, (a) is equivalent, for every $1 \leq p<\infty$, to
(e) $W \in L_{1}(\mu)$ and $V^{-1} \in L_{p^{\prime}}(V d \mu)$, where $p^{\prime}=\infty$ when $p=1$.

Remark. Under the hypotheses of Corollary 4, it follows (see (15) and (18)) that for any $f \in M^{+}(\mu)$

$$
A\left(T_{1}, \ldots, T_{d}\right) f=A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f=E\{f \mid(X, \mathcal{I}, \mu)\} \text { a.e. on } X
$$

so that the function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ can be replaced by the function $A\left(T_{1}, \ldots, T_{d}\right) f$ in Corollary 4, without any influence.

4. Concluding remarks

Throughout this section, (X, \mathcal{F}, μ) is a σ-finite measure space, and T_{1}, \ldots, T_{d} are commuting positive linear contractions of $L_{1}(\mu)$ such that $T_{i} e=e(1 \leq i \leq d)$ for some $e \in L_{1}(\mu)$ with $e>0$ on X. Here we briefly discuss the problem of characterizing a positive measurable function V on X such that if $f \in L_{p}^{+}(V d \mu)$ then the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ (or $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$) is finite a.e. on X. As in the preceding section, we will denote $\mathcal{I}=\bigcap_{i=1}^{d} \mathcal{I}\left(T_{i}\right)$. The results may be stated as follows. (For a related result we refer the reader to $[\mathbf{7}]$.)

Theorem 4. Let $0<V \leq \infty$ be a measurable function on X. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ is finite a.e. on X.
(b) $E\left\{e^{-1} V^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}<\infty$ a.e. on X.

If $p=1$, then (a) is equivalent to
(c) $V^{-1} \leq U<\infty$ a.e. on X for some U, measurable with respect to \mathcal{I}.

Proof: By virtue of (15) and the result mentioned in Introduction (see especially (3) and (4)), Theorem 4 follows immediately.

Corollary 5. If $1<p<\infty$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(\mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ is fintie a.e. on X.
(b) There exist $X_{n} \in \mathcal{I}, n=1,2, \ldots$, such that $X_{n} \uparrow X$ and $\mu\left(X_{n}\right)<$ ∞.
(c) For any $f \in \bigcup_{1<r \leq \infty} L_{r}^{+}(\mu)$ the limit function $A\left(T_{1}, \ldots, T_{d}\right) f$ is finite a.e. on \bar{X}.

Proof: Since the implications $(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow$ (a) are obvious, we only prove (a) $\Leftrightarrow(b)$. To do this we apply Theorem 4 with $V=1$ on X and see that (a) is equivalent to

$$
E\left\{e^{-1} \mid(X, \mathcal{I}, e d \mu)\right\}<\infty \text { a.e. on } X
$$

which is clearly equivalent to (b). The proof is complete.

Theorem 5. Let $0<V \leq \infty$ be a measurable function on X. If $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(V d \mu)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ is finite a.e. on X.
(b) $E\left\{\left(e^{-1} V\right)^{1-p^{\prime}} \mid(X, \mathcal{I}, e d \mu)\right\}<\infty$ a.e. on X. If $p=1$, then (a) is equivalent to
(c) $\mathrm{eV}^{-1} \leq U<\infty$ a.e. on X for some U, measurable with respect to \mathcal{I}.

Proof: By the proof of Theorem 4, we see that in this case it is enough to use (18) instead of (15), completing the proof.

Corollary 6. If $1 \leq p<\infty$ and $1 / p+1 / p^{\prime}=1$, then the following are equivalent:
(a) For any $f \in L_{p}^{+}(\mu)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ is finite a.e. on X.
(b) There exists an $\tilde{e} \in L_{1}(\mu) \cap L_{p^{\prime}}(\mu)$ such that $\tilde{e}>0$ on X and $T_{i} \tilde{e}=\tilde{e}(1 \leq i \leq d)$.
(c) For any $f \in \bigcup_{p \leq r \leq \infty} L_{r}^{+}(\mu)$ the limit function $A\left(T_{1}^{*}, \ldots, T_{d}^{*}\right) f$ is finite a.e. on \bar{X}.

Proof: (a) \Rightarrow (b). By Theorem 5 with $V=1$ on X, (a) implies the existence of $X_{n} \in \mathcal{I}, n=1,2, \ldots$, such that

$$
X_{n} \uparrow X \text { and } e \cdot 1_{X_{n}} \in L_{p^{\prime}}(\mu)
$$

Thus choosing a suitable sequence $d_{n}, n=1,2, \ldots$, of positive real numbers we have

$$
\tilde{e}=\sum_{n=1}^{\infty} d_{n}\left(e \cdot 1_{X_{n}}\right) \in L_{1}(\mu) \cap L_{p^{\prime}}(\mu)
$$

and

$$
T_{i} \tilde{e}=\tilde{e} \text { for all } 1 \leq i \leq d
$$

(b) $\Rightarrow(\mathrm{c})$. Since $T_{1}^{*}, \ldots, T_{d}^{*}$ are commuting positive linear contractions of $L_{1}(\tilde{e} d \mu)$ with $T_{i}^{*} 1=1 \in L_{1}(\tilde{e} d \mu)(1 \leq i \leq d)$, it is enough to show that

$$
f \in L_{1}(\tilde{e} d \mu) \text { for every } f \in \bigcup_{p \leq r \leq \infty} L_{r}^{+}(\mu)
$$

And this follows, as $\tilde{e} \in L_{1}(\mu) \cap L_{p^{\prime}}(\mu)$ implies

$$
\tilde{e} \in \bigcap_{1 \leq r^{\prime} \leq p^{\prime}} L_{r^{\prime}}(\mu)
$$

by the Hölder inequality.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Trivial. The proof is complete.

References

1. I. Assani and J. Wós, An equivalent measure for some nonsingular transformations and application, Studia Math. 97 (1990), 1-12.
2. U. Krengel, "Ergodic Theorems," Walter de Gruyter, Berlin, 1985.
3. F. J. Martín-Reyes and A. de la Torre, On the pointwise ergodic theorem in L_{p}, Studia Math. 108 (1994), 1-4.
4. C. Ryll-Nardewski, On the ergodic theorems, I (Generalized ergodic theorems), Studia Math. 12 (1951), 65-73.
5. R. Sato, Individual ergodic theorems for commuting operators, Tôhoku Math. J. 35 (1983), 129-135.
6. R. Sato, On pointwise ergodic theorems for positive operators, Studia Math. 97 (1990), 71-84.
7. R. Sato, Multiparameter pointwise ergodic theorems for Markov operators on L_{∞}, Publ. Mat. 38 (1994), 395-410.

Keywords. weighted L_{p} spaces, pointwise ergodic theorems, positive contractions of L_{1} spaces
1991 Mathematics subject classifications: Primary 47A35

Department of Mathematics
Faculty of Science
Okayama University
Okayama 700
JAPAN

