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GLOBAL APPROXIMATION BY
MODIFIED BASKAKOV TYPE OPERATORS

Vijay Gupta

Abstract
In the present paper, we prove a global direct theorem for the
modified Baskakov type operators in terms of so called Ditzian-
Totik modulus of smoothness.

1. Introduction

Motivated by the integral modification of Bernstein polynomials by
Durrmeyer [3], Sahai and Prasad [6] first defined and studied modified
Baskakov operators. Sinha et al. [7] improved and corrected the re-
sults of [6]. Recently the author [4], introduced another modification of
Baskakov operators by taking the weight function of Beta operators on
L1[0,∞) as

(1.1) (Bnf)(x) =
∞∑

k=0

pn,k(x)
∫ ∞

0

bn,k(t)f(t) dt, x ∈ [0,∞)

where

pn,k(x) =
(
n + k − 1

k

)
xk(1 + x)−n−k

and
bn,k(t) = [B(k + 1, n)]−1tk(1 + t)−n−k−1,

B(k + 1, n) being the Beta function given by k!(n− 1)!/(n + k)!.
In [4], the author has obtained only local direct theorems in simulta-

neous approximation, as the operators defined by (1.1) give better ap-
proximation than the earlier integral modification of Baskakov operators
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studied in [5], [6] and [7] etc., this motivated us to extend the results
of [4] to the whole interval [0,∞) and we study a global result for the
operators (1.1).

By Lr
1[0,∞), we denote the class of functions g given by

Lr
1[0,∞) := {g : g(r) ∈ L1[0, a] for every a ∈ (0,∞) and

|g(r)(t)| ≤ M(1 + t)m, M and m are constants depending on g}.

We may remark that Lr
p[0,∞) is not contained in Lr

1[0,∞).
Following [2], the modulus of smoothness of f is given by

ω2
φ(f, t)p = sup

0<h≤t
‖∆2

hφf‖p, φ(x) =
√

x(1 + x)

where

∆2
hf(x) =

{
f(x− h) − 2f(x) + f(x + h), if [x− h, x + h] ⊂ [0,∞)
0, otherwise.

This modulus of smoothness is equivalent to the modified k-functional
(see e.g. [2]) given by

K̄2
φ(f, t2)p = inf{‖f − g‖p + t2‖φ2g′′‖p + t4‖g′′‖p; g ∈ W̄ 2

p (φ, [0,∞))}

where

W̄ 2
p (φ, [0,∞)) = {g ∈ Lp[0,∞) : g′ ∈ ACloc[0,∞); φ2g′′ ∈ Lp[0,∞)}.

In [4] the author was not able to obtain global results. In the present
paper, we prove a global direct theorem in simultaneous approximation
for the operators (Bnf)(x) defined by (1.1) in terms of Ditzian-Totik
modulus of second order.

Throughout the paper we denote by C the positive constants not nec-
essarily the same at each occurrence.

2. Auxiliary results

In this section, we shall give certain definitions and lemmas which will
be used in the sequel.

For every n ∈ N and n > (r + 1) we have

(2.1)

∞∑
k=0

pn,k(x) = 1,
∫ ∞

0

bn,k(t) dt = 1

k

n
pn,k(x) = xpn+1,k−1(x),

∫ ∞

0

tbn−r,k+r(t) dt =
k + r + 1
n− r − 1

.
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Lemma 2.1 [4]. Let m, r ∈ N0, we define

Tr,n,m(x) =
∞∑

k=0

pn+r,k(x)
∫ ∞

0

bn−r,k+r(t)(t− x)m dt

then

Tr,n,0(x) = 1, Tr,n,1(x) =
1 + r + x(1 + 2r)

(n− r − 1)
,

Tr,n,2(x) =
2(2r2 + 4r + n + 1)x2+2(2r2 + 5r + 2 + n)x+(r2 + 3r + 2)

(n− r − 1)(n− r − 2)
,

and there holds the recurrence relation:

(n−m− r − 1)Tr,n,m+1(x) = φ2(x)[T (1)
r,n,m(x) + 2mTr,n,m−1(x)]

+ [(m + r + 1)(1 + 2x) − x]Tr,n,m(x), n > m + r + 1.

Consequently for each x ∈ [0,∞), Tr,n,m(x) = 0(n−[(m+1)/2]), [α] de-
notes the integral part of α.

The proof of this lemma easily follows along the lines of [6], [7] using

φ2(x)p′n,k(x) = (k − nx)pn,k(x) and φ2(t)b′n,k(t) = [k − (n + 1)t]bn,k(t).

From the above lemma, we have

(2.2)

Tr,n,2m(x) =
m∑

i=0

qi,m,n(x)
[
φ2(x)

n

]m−i

n−2i

Tr,n,2m+1(x) = (1 + 2x)
m∑

i=0

si,m,n(x)
[
φ2(x)

n

]m−i

n−2i−1,

where qi,m,n(x) and si,m,n(x) are polynomials in x of fixed degree with
coefficients that are bounded uniformly for all n.

Lemma 2.2. If f ∈ Lr
p[0,∞) ∪ Lr

1[0,∞), 1 ≤ p ≤ ∞, n > r(1 + m)
and x ∈ [0,∞), then

(2.3) (Bnf)(r)(x) = α(n, r)
∞∑

k=0

pn+r,k(x)
∫ ∞

0

bn−r,k+r(t)f (r)(t) dt
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where

α(n, r) =
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
=

r−1∏
=0

n +  

n− ( + 1)
.

Proof: By using Leibnitz theorem, we have

(Bnf)(r)(x) =
r∑

i=0

∞∑
k=i

(
r

i

)
(n + k + r − i− 1)!

(n− 1)!(k − i)!

× (−1)r−ixk−i(1 + x)−n−k−r+i

×
∫ ∞

0

bn,k(t)f(t) dt

=
(n + r − 1)!

(n− 1)!

∞∑
k=0

pn+r,k(x)

×
∫ ∞

0

r∑
i=0

(−1)r−i

(
r

i

)
bn,k+i(t)f(t) dt.

Again, by the use of Leibnitz theorem, we have

b
(r)
n−r,k+r(t) =

(n− 1)!
(n− r − 1)!

r∑
i=0

(−1)i

(
r

i

)
bn,k+i(t).

Hence,

(Bnf)(r)(x) =
(n + r − 1)!(n− r − 1)!

((n− 1)!)2
∞∑

k=0

pn+r,k(x)
∫ ∞

0

(−1)rb
(r)
n−r,k+r(t)f(t) dt.

On integrating r times by parts, we get the required result.

We see that the operators defined in (2.3) by B
(r)
n f := (Bnf)(r), f ∈

Lr
p[0,∞)∪L1[0,∞) are not positive. To make the operators positive we

introduce the operator

Bn,rf ≡ DrBnI
rf, f ∈ Lp[0,∞) ∪ L1[0,∞),

where D and I are differentiation and integration operators respectively.
Therefore we define the operator by

(Bn,rf)(x) = α(n, r)
∞∑

k=0

pn+r,k(x)
∫ ∞

0

bn−r,k+r(t)f(t) dt,



Modified Baskakov type operators 267

f ∈ Lp[0,∞) ∪ L1[0,∞), n > r(1 + m).

The operators Bn,r are positive and the estimation ‖(Bnf)(r)−f (r)‖p.
f ∈ Lr

p[0,∞) is equivalent to ‖Bn,rf − f‖p, f ∈ Lp[0,∞).
Using (2.1), we can easily prove that for n > (r + 1), ‖Bn,rf‖1 ≤

C‖f‖1, for f ∈ L1[0,∞) and ‖Bn,rf‖ ≤ C‖f‖∞ for f ∈ L∞[0,∞).
Making use of Riesz-Thorin theorem, we get

(2.4) ‖Bn,rf‖p ≤ C‖f‖p, f ∈ Lp[0,∞), 1 ≤ p ≤ ∞, n > (r + 1).

Corollary 2.3. For every m ∈ N0, n > (r + 2m + 1) and x ∈ [0,∞)
we have

(2.5)
|Bn,r((t− x)2m, x)| ≤ Cn−m(φ2(x) + n−1)m,

|Bn,r((t− x)2m+1, x)| ≤ C(1 + 2x)n−m−1(φ2(x) + n−1)m

where the constant C is independent of n. For fixed x ∈ [0,∞) we obtain

(2.6) |Bn,r((t− x)m, x)| = 0(n−[(m+1)/2]), n → ∞.

Proof: Since Bn,r((t − x)m, x) = α(n, r)Tr,n,m(x) the estimate (2.5)
follows from (2.2) along the lines of [5], (2.6) immediately follows from
(2.5).

Lemma 2.4. Let t ∈ [0,∞) and n > (r + m) then

Bn,r((1 + t)−m, x) ≤ C(1 + x)−m, x ∈ [0,∞)

where the constant C is independent of n.

Proof: It is easily verified that

(1 + t)−mbn−r,k+r(t) =
m−1∏
=0

n− r +  

n +  + k + 1
bn−r+m,k+r(t)

and

pn+r,k(x) = (1 + x)−m
m∏

=1

n + r −  + k

n + r −  
pn+r−m,k(x).
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Making use of these two identities and (2.1) we get

Bn,r((1 + t)−m, x) = α(n, r)
∞∑

k=0

pn+r,k(x)
∫ ∞

0

bn−r,k+r(t)(1 + t)−m dt

= α(n, r)
∞∑

k=0

pn+r,k(x)
m−1∏
=0

n− r +  

n +  + k + 1

×
∫ ∞

0

bn−r+m,k+r(t) dt

= α(n, r)
∞∑

k=0

(1+x)−mpn+r−m,k(x)
m∏

=1

(n + r −  + k)
(n + r −  )

×
m−1∏
=0

n + r −  

n +  + k + 1

≤ C(1 + x)−m
∞∑

k=0

pn+r−m,k(x)

= C(1 + x)−m.

For the two monomials e0, e1 and x ∈ [0,∞), n → ∞ we obtain by direct
computation

Bn,r(e0, x) = 1 + 0(n−1)(2.7)

Bn,r(e1, x) = x(1 + 0(n−1)).(2.8)

Lemma 2.5. For Hn(u) given by

Hn(u) =
{∫ ∞

0

∫ u

0

−
∫ u

0

∫ ∞

0

} ∞∑
k=0

pn+r,k(x)bn−r,k+r(t)(u− t) dt dx

we have Hn(u) ≤ Cn−1φ2(u), where C is independent of n and u.

The proof of the above lemma easily follows by using (2.1) along the
lines of [1, Lemma 5.2].

3. Direct result

Theorem 3.1. Suppose f ∈ Lp[0,∞), 1 ≤ p < ∞, n > (r + 5) then
we have

‖Bn,rf − f‖p ≤ C{ω2
φ(f, n−1/2) + n−1‖f‖p}
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where the constant C is independent of n.

Proof: By Taylor’s expansion of g, we have

(3.1) g(t) = g(x) + (t− x)g′(x) +
∫ t

x

(t− u)g′′(u) du.

Next, since Bn,r(f, x) are uniformly bounded operators so for every g ∈
W̄ 2

p (φ, [0,∞)), we have

(3.2) ‖Bn,rf − f‖p ≤ C‖f − g‖p + ‖Bn,rg − g‖p.

Using (2.5), (2.8) and (3.1) and following [2], we obtain

‖Bn,rg − g‖p ≤ C{‖g‖p + ‖g′‖Lp[0,1]} + ‖(1 + 2x)g′‖Lp[1,∞)

+ ‖Bn,r(R(g, t, x), x)‖p

≤ Cn−1[‖g‖p + ‖φ2g′′‖p] + ‖Bn,r(R(g, t, x), x)‖p(3.3)

where R(g, t, x) =
∫ t

x
(t− u)g′′(u) du.

Now, we shall prove that

(3.4) ‖Bn,r(R(g, t, x), x)‖p ≤ Cn−1‖(φ2 + n−1)g′′‖p.

We prove this for p = 1 and p = ∞. The cases 1 < p < ∞ follows again
by Riesz-Thorin theorem.

Using (2.5) for the case m = 1 and Lemma 2.4, the case p = ∞ easily
follows (see e.g. [5]).

For p = 1, we derive (3.4) by applying Fubini’s theorem twice, the
definition of Hn(u) and Lemma 2.5 as
∫ ∞

0

|Bn,r(R(g, t, x), x)| dx

≤ α(n, r)
∫ ∞

0

∞∑
k=0

pn+r,k(x)
∫ ∞

0

bn−r,k+r(t)|
∫ t

x

(t− u)g′′(u)| dt dx

= α(n, r)
∫ ∞

0

|g′′(u)|
{∫ ∞

0

∫ u

0

−
∫ u

0

∫ ∞

0

}
(u− t)

×
∞∑

k=0

pn+r,k(x)bn−r,k+r(t) dt dx du

= α(n, r)
∫ ∞

0

|g′′(u)|Hn(u) du

≤ Cn−1‖φ2g′′‖1

≤ Cn−1‖(φ2 + n−1)g′′‖1,
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where C is independent of n. Hence (3.4) holds by Riesz-Thorin theorem
for 1 ≤ p ≤ ∞. Combining the estimates of (3.2), (3.3) and (3.4) we get

‖Bn,rf − f‖p = C‖f − g‖p + Cn−1{‖f − g‖p + ‖f‖p + ‖φ2g′′‖p

+ ‖(φ2 + n−1)g′′‖p}
≤ C{‖f − g‖p + n−1‖φ2g′′‖p + n−2‖g′′‖p + n−1‖f‖p}.

Next taking the infimum over all g ∈ W̄ 2
p (φ, [0,∞)) on the right hand

side, we get

‖Bn,rf − f‖p ≤ C{K̄2
φ(f, n−1) + n−1‖f‖p},

this completes the proof of Theorem 3.1.

Remark. The conclusion of Theorem 3.1 is true on the space
Lp[0,∞), 1 ≤ p < ∞ (i.e. lim

n→∞
‖Bn,rf−f‖p = 0 for every f ∈ Lp[0,∞)),

since the most basic fact about ω2
φ(f, n−1) is that

lim
n→∞

ω2
φ(f, n−1) = 0 for all f ∈ Lp[0,∞), 1 ≤ p < ∞,

or for all bounded functions f ∈ C[0,∞) which satisfy

lim
x→∞

f(x) = L∞ < ∞, if p = ∞ (cf. [2, p. 36]).
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