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LINEAR TOPOLOGICAL INVARIANTS
OF SPACES OF HOLOMORPHIC FUNCTIONS

IN INFINITE DIMENSION

Nguyen Minh Ha and Le Mau Hai

Abstract
It is shown that if E is a Frechet space with the strong dual E∗

then Hb(E
∗), the space of holomorphic functions on E∗ which

are bounded on every bounded set in E∗, has the property (DN)
when E ∈ (DN) and that Hb(E

∗) ∈ (Ω) when E ∈ (Ω) and either
E∗ has an absolute basis or E is a Hilbert-Frechet-Montel space.
Moreover the complementness of ideals J(V ) consisting of holo-
morphic functions on E∗ which are equal to 0 on V in H(E∗) for
every nuclear Frechet space E with E ∈ (DN) ∩ (Ω) is stablished
when J(V ) is finitely generated by continuous polynomials on E∗.

1. Introduction

Let E be a Frechet space with a fundamental system of semi-norms
{‖ · ‖k}. For each subset B of E we define a semi-norm ‖ · ‖∗B on E∗, the
strongly dual space of E, with values in [0,+∞] by

‖u‖∗B = sup{|u(x)| : x ∈ B}.

We write

‖ · ‖∗k = ‖ · ‖∗Uk
, where Uk = {x ∈ E : ‖x‖k ≤ 1}.

Using the notation we say that E has the property

∀p∃q ∀k ∃d, C > 0 : ‖ · ‖∗q 1+d ≤ C‖ · ‖∗k‖ · ‖∗p d(Ω)

∃p∀q ∃k, C > 0 : ‖ · ‖2
q ≤ C‖ · ‖k‖ · ‖p.(DN)
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The above properties and many others properties were introduced and
investigated by Vogt (see [9-12]). In [9] Vogt has proved that E ∈ (Ω)
if and only if for every p ≥ 1 there exists q such that for every k we have
C, d > 0 with

Uq ⊆ CrUp +
1
rd
Uk

for all r > 0.
In [3] Meise and Vogt have investigated the structure of spaces of

holomorphic functions in the relation with the above linear topological
invariants in nuclear spaces of infinite dimension.

The aim of the present paper is to continue the study of Meise and
Vogt in the non-nuclear case.

In Section 1 we prove that Hb(E∗), the space of holomorphic functions
on E∗, which are bounded on every bounded set in E∗, has the prop-
erty (DN) if E has also the property (DN). We also prove that when
E∗ has an absolute basis, H(E∗) ∈ (Ω) if E ∈ (Ω). Moreover we prove
also that H(E∗) ∈ (Ω) for every Hilbert-Frechet-Montel space E having
the property (Ω).

Finally in Section 3 we consider completemented ideals of H(E∗), the
space of holomorphic functions on E∗ equipped with the compact-open
topology when E is a nuclear Frechet space. By applying the spliting
Vogt’s theorem we prove that if V is an algebraic hypersurface in E∗

with E ∈ (DN) ∩ (Ω), the space

J(V ) = {f ∈ H(E∗) : f |V = 0}

is complemented in H(E∗). Moreover a more general result is also es-
tablished. That is if V is an algebraic set of finite codimension in E∗

such that J(V ) is generated by finite number of continuous polynomials,
J(V ) is complemented in H(E∗) when E ∈ (DN) ∩ (Ω).

2. Properties (DN) and (Ω)

In this section we prove the following theorem which was proved in [3]
by Meise and Vogt for the nuclear case.

2.1. Theorem. Let E be a Frechet space. Then
(i) Hb(E∗) ∈ (DN) if E ∈ (DN).
(ii) Hb(E∗) ∈ (Ω) if E∗ has an absolute basis.

Proof: (i) Assume that E ∈ (DN). By Vogt [9], E can be considered
as a subspace of a space of the form F ⊗̂πs, where F is some Banach space
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and s is the space of rapidly decreasing sequences. Since every bounded
set in E∗ can be extended to a bounded set in (F ⊗̂πs)∗ ∼= F ∗⊗̂πs

∗, it
follows that Hb(E∗) can be considered as a subspace of Hb(F ∗⊗̂πs

∗).
Since Hb(F ∗ × s∗) ∼= Hb(F ∗, H(s∗)) and Hb(s∗) ∈ (DN) [3], (i) is an
immediate consequence of the following two assertions.

Assertion 1. Hb(F ∗⊗̂πs
∗) is isomorphic to a subspace of Hb(F ∗× s∗).

Assertion 2. Hb(F ∗, H(s∗)) ∈ (DN).

Proof of Assertion 1: We check that the form f → g = f |F∗×s∗ defines
an isomorphic map from Hb(F ∗⊗̂πs

∗) to a subspace of Hb(F ∗ × s∗).
Given B a bounded set in F ∗⊗̂πs

∗. Since F ∗ is a Banach space and s∗

a (DFN)-space we can find a neighbourhood U of 0 ∈ s and r > 0 such
that B ⊆ conv(Dr × U0) where Dr = {x ∈ F ∗ : ‖x∗‖ < r}. For each
f ∈ Hb(F ∗⊗̂πs

∗) consider its Taylor expansion at 0 ∈ F ∗⊗̂πs
∗ : f(ω) =∑

n≥0

Pnf(ω) where Pnf(ω) = 1
2πi

∫
|t|=r

f(tω)
tn+1 dt. Let π : F ∗×s∗ → F ∗⊗̂πs

∗

be the canonical map. We have

‖f‖B ≤ ‖f‖conv(Dr⊗U0)

= sup{|f(ω)| : ω ∈ conv(Dr ⊗ U0)}

≤ sup

∑
n≥0

|Pnf(ω)| : ω ∈ conv(Dr ⊗ U0)


= sup

∑
n≥0

∣∣∣∣∣∣Pnf

∑
j≥1

λj(zj ⊗ uj)

∣∣∣∣∣∣
: zj ∈ Dr, uj ∈ U0, j ≥ 1,

∑
j≥1

|λj | ≤ 1


= sup

∑
n≥0

∑
j1,j2,... ,jn≥1

|λj1 ||λj2 |. . .|λjn |P̂nf(zj1⊗uj1 , . . ., zjn⊗ujn)|

: zj ∈ Dr, uj ∈ U0 ∀j ≥ 1,
∑
n≥1

|λj | ≤ 1


≤

∑
n≥0

sup{|P̂nf(zj1⊗uj1 , . . . , zjn⊗ujn)| : zj ∈Dr, uj ∈U0 ∀j≥1}

sup

 ∑
j1,... ,jn≥1

|λj1 | . . . |λjn | :
∑
j≥1

|λj | ≤ 1


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≤
∑
n≥0

n2n

(n!)2
sup{|Pnf(z ⊗ u)| : z ∈ Dr, u ∈ U0}

sup


∑

j≥1

|λj |

n

:
∑
j≥1

|λj | ≤ 1


=

∑
n≥0

n2n

(n!)2
sup


∣∣∣∣∣∣∣

1
2πi

∫
|λ|=ρ

f(λ(z ⊗ u))
λn+1

dλ

∣∣∣∣∣∣∣ : z ∈ Dr, u ∈ U0


=

∑
n≥0

n2n

(n!)2
sup


∣∣∣∣∣∣∣

1
2πi

∫
|λ|=ρ

g((λz, u))
λn+1

dλ

∣∣∣∣∣∣∣ : z ∈ Dr, u ∈ U0


≤

∑
n≥0

n2n

(n!)2ρn
sup{|g((λz, u))| : |λ| = ρ, z ∈ Dr, u ∈ U0}

=
∑
n≥0

n2n

(n!)2ρn
sup{|g((z, u))| : z ∈ Dρr, u ∈ U0}

= ‖g‖Dρr×U0

∑
n≥0

n2n

(n!)2ρn
< ∞

for ρ sufficiently large, where P̂nf denotes the continuous symetric n-
linear map associated to Pnf . Hence the map f �−→ g = f |F∗×s∗ is
isomorphic fromHb(F ∗⊗̂πs

∗) to a subspace ofHb(F ∗×s∗). The assertion
is proved.

Proof of Assertion 2: It is easy to see that the topology ofHb(F ∗, H(s∗))
can be defined by the system of seminorms given by

‖f‖(r,p) = sup{‖Pnf(x)‖p : ‖x‖ < r}

where {‖ · ‖p} is a fundamental sequence of seminorms on H(s∗). Since
H(s∗) ∈ (DN) [3] there exists p1 such that

∀p∃p2, C > 0 : ‖ · ‖2
p ≤ C‖ · ‖p2‖ · ‖p1

on H(s∗).
Then we have

‖f‖2
(r,p) ≤ sup{C‖Pnf(x)‖p2‖Pnf(x)‖p1 : ‖x‖ < r}

= sup{Cr2n‖Pnf(x)‖p2‖Pnf(x)‖p1 : ‖x‖ < 1}
≤ C‖f‖(r2,p2)‖f‖(1,p1).
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The assertion 2 is proved.

Now we continue the proof of (ii) in Theorem 2.1. Let {e∗j} be an
absolute basis of E∗ and {ej} ∈ E∗∗ be coefficient functionals. For each
p put

Np = {j ∈ N : ‖e∗j‖∗p < ∞}

and

E∗(p) =

x∗ ∈ E∗ : ‖x∗‖p =
∑
j∈Np

|ej(x∗)| ‖e∗j‖∗p < ∞

 .

Obviously Np ⊆ Np+1 for every p ≥ 1. Since E is a Frechet space it
implies that every bounded set in E∗ is contained and bounded in some
E∗(p). Indeed, given K a bounded set in E∗. Take p such that K is
contained and bounded in E∗

p , where by E∗
p we denote the Banach space

associated to p. Since for each bounded set B in E, the seminorm∑
j≥1

|ej(x∗)‖e∗j‖∗B

is continuous on E∗
p , we have

C(B) = sup

∑
j≥1

|ej(x∗)| ‖e∗j‖∗B : x∗ ∈ K

 < ∞.

Assume that for every q ≥ p there exists x∗q ∈ K and xq,j ∈ Uq such that∑
j≥1

|ej(x∗q)| |e∗j (xq,j)| ≥ 2q.

Now for each q we take mq such that∑
1≤j≤mq

|ej(x∗q)| |e∗j (xq,j)| ≥ q.

Then we have C(B) = ∞, where B = {xq,j : 1 ≤ j ≤ mq}. This is
impossible, because B is bounded in E. By the hypothesis E ∈ (Ω) for
every p there exists q such that for every k there exist d, C > 0 for which

‖ · ‖∗q 1+d ≤ C‖ · ‖∗k‖ · ‖∗dp .
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Put aj,p = ‖e∗j‖∗p we have

a1+d
j,q ≤ Caj,ka

d
j,p for all j ≥ 1.

Let

M = {m = (m1, . . . ,mn, 0, . . . )} and
Mp = {m ∈ M : mj = 0 for j /∈ Np}.

Now for each m ∈ M and each f ∈ Hb(E∗) put

bm(f) =
1

(2πi)n

∫
|t1|=1

. . .

∫
|tn|=1

f(t1e∗1 + · · · + tne
∗
n)

tm+1
dt1 . . . dtn

where tm+1 = tm1+1
1 . . . tmn+1

n .

By Ryan [7] the series
∑
m∈M

bm(f)zm is absolutely convergent and

uniformly on every bounded set in E∗ to f . Moreover, since the map

ξ �−→
∑
j∈Np

ξje
∗
j

‖e∗j‖p

is an isomorphism from l1 onto E∗(p), by Ryan [7], the topology of
Hb(E∗) can be defined by the system of seminorms ‖ · ‖(α,p) given by

‖f‖(α,p) = sup
m∈Mp

{αm|bm(f)|mm/am·,p|m||m|}

where α ∈ R+ = {r ∈ R : r > 0} and |m| = m1 + m2 + · · · + mn. We
check that for every (α, p) we can find (β, q) such that for every (γ, k)
there exist d′, C ′ > 0 such that

(∗) W(β,q) ⊆ C ′rd
′
W (γ, k) +

1
r
W(α,p) for all r > 0

where W(α,p) denotes the unit ball in Hb(E∗) defined by the semi-norm
‖ · ‖(α,p).

Given (α, p). Put β = 2α. Take q such that for every k there exist d,
C > 0 for wich

a1+d
j,q ≤ Caj,ka

d
j,p for all j ≥ 1.

Given (γ, k). We check that (∗) holds for C ′ = 1 and

d′ = d1 = d+ log2 γC/β.
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Obviously (∗) holds for every 0 < r ≤ 1 and every d′, C ′ > 0. It remains
to check that (∗) holds for every r > 1 and d′ = d1, C ′ = 1. Let
f ∈ W(β,q). Put

M1
p = {m ∈ Mp : |m| > log2 r}

M2
p =

{
m ∈ Mp : |m| > log2 r and

1
am·,p

≤ 1
ram·,q

}
M3

p = Mp\(M1
p ∪M2

p ).

We have

sup{αm|bm|mm/am·,p|m||m| : m ∈ M1
p}

≤ sup{(1/2)|m|βm|bm|mm/am·,q|m||m| : m ∈ M1
p}

≤ (1/2)log2 r sup{βm|bm|mm/am·,q|m||m| : m ∈ Mq} ≤ 1
r

and

sup{αm|bm|mm/am·,p|m||m| : m ∈ M2
p}

≤ (1/r) sup{βm|bm|mm/am·,q|m||m| : m ∈ M2
p}

≤ (1/r) sup{βm|bm|mm/am·,q|m||m| : m ∈ Mq} ≤ 1
r
.

Thus ∑
m∈(M\Mp)∪(M1

p∪M2
p )

bm(f)zm ∈ (1/r)W(α,p) for all r ≥ 1.

It remains to show that∑
m∈M3

p

bm(f)zm ∈ rd1W(γ,k).

First we observe that

1/am·,k ≤ rdC |m|/am·,q for all m ∈ M3
p .

Indeed, in the converse case we have

1/am·,k > rdC |m|/am·,q for some m ∈ M3
p .

On the other hand, since m /∈ M2
p we have

1/am·,p > 1/ram·,q.
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Hence
a
(1+d)m
·,q > C|m|am·,ka

dm
·,p .

This inequality shows that for 1 ≤ j ≤ n we have

(a(1+d)
j,q )mj > Cmj (aj,kadj,p)

mj .

This is impossible, because

a1+d
j,q ≤ Caj,ka

d
j,p.

Thus we have

sup{γm|bm|mm/am·,k|m||m| : m ∈ M3
p}

≤ rd sup{(γC/β)|m|βm|bm|mm/am·,q|m||m| : m ∈ M3
p}

≤ rd(γC/β)log2 r sup{βm|bm|mm/am·,q|m||m| : m ∈ M3
p} ≤ rd1 .

This means that ∑
m∈M3

p

bm(f)zm ∈ rd1Wγ,k)

and, hence,

f ∈ rd1W(γ,k) +
1
r
W(α,p).

The theorem is proved.

2.2 Theorem. Let E be a Hilbert-Frechet-Montel space with E ∈ (Ω).
Then H(E∗), the space of holomorphic functions on E∗ equipped with the
compact-open topology, has the property (Ω).

Proof: Applying the spliting Vogt’s theorem for exact sequences of
Hilbert-Frechet spaces [12], it follows that E is isomorphic to a quotient
space of l2⊗̂πs. This is possible, because for E we have a canonical exact
sequence of the form

O → E →
∏
j

Ej →
∏
j

Ej → 0

where Ej are Hilbert spaces.
Since E is a Frechet-Montel space every bounded set in E is the image

of a compact set in l2⊗̂πs, we infer that E∗ is contained as a subspace
of (l2⊗̂πs)∗ ∼= l2⊗̂πs

∗. On the other hand, since l2⊗̂πs
∗ has a fun-

damental system of Hilbert semi-norms by Colombeau and Mujica [1],
H(E∗) is a quotient space of Hb(l2⊗̂πs

∗). Thus it suffices to check that
Hb(l2⊗̂πs

∗) ∈ (Ω). The following lemma will solve that.
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2.3. Lemma. Hb(l2⊗̂πs
∗) is isomorphic to a quotient space of

Hb(l2)⊗̂πHb(s∗).

Proof: Given
(f, g) ∈ Hb(l2) ×Hb(s∗).

Consider the Taylor expansion of f and g at 0 ∈ l2 and 0 ∈ s∗ respectively

f(u) =
∑
n≥0

Pnf(u) for u ∈ l2

and
g(v) =

∑
n≥0

Png(v) for v ∈ s∗.

For each n ≥ 0 by

χn : (l2⊗̂πs
∗)× · · · ×(l2⊗̂πs

∗)︸ ︷︷ ︸
n

→ (l2⊗̂πs
∗)⊗̂π(l2⊗̂πs

∗)⊗̂π · · · ⊗̂π(l2⊗̂πs
∗)

we denote the canonical n-linear map and by

µn : (l2⊗̂πs
∗)⊗̂π(l2⊗̂πs

∗)⊗̂π · · · ⊗̂π(l2⊗̂πs
∗)

→ (l2⊗̂πl
2⊗̂π · · · ⊗̂πl

2⊗̂πl
2)︸ ︷︷ ︸

n

⊗̂π(s∗⊗̂π · · · ⊗̂πs
∗)

we denote the canonical isomorphism. Putting

P̂n(f, g) = (P̂nf ⊗ P̂ng)µnχn

we obtain a continuous symetric n-linear form on (l2⊗̂πs
∗)×· · ·×(l2⊗̂πs

∗).
Let Pnf⊗Png denote the n-homogeneous polynomial on l2⊗̂πs

∗ induced
by P̂n(f, g). We have

(Pnf) ⊗ (Png)

∑
j≥1

uj ⊗ vj


= P̂n(f, g)

∑
j≥1

uj ⊗ vj , . . . ,
∑
j≥1

uj ⊗ vj


=

∑
j1,j2,... ,jn≥1

P̂n(f, g)((uj1 ⊗ vj1 , . . . , ujn ⊗ vjn)

=
∑

j1,j2,... ,jn≥1

P̂nf(uj1 , . . . , ujn)P̂ng(vj1 , . . . , vjn)
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Hence for every r > 0 and every neighbourhood V of 0 ∈ s we have∥∥∥∥∥∥
∑
n≥0

Pnf ⊗ Png

∥∥∥∥∥∥
B

≤
∑
n≥0

‖Pnf⊗Png‖B≤
∑
n≥0

‖Pnf⊗Png‖conv(rD×V )

=
∑
n≥0

sup{|Pnf ⊗ Png(ω)| : ω ∈ conv(rD × V 0)}

=
∑
n≥0

sup


∣∣∣∣∣∣Pnf ⊗ Png

∑
j≥1

λjuj ⊗ vj

∣∣∣∣∣∣
: uj ∈ rD, vj ∈ V o,

∑
j≥1

|λj | ≤ 1


≤

∑
n≥0

sup

 ∑
j1,j2,... ,jn≥1

|λj1 |. . .|λjn
| |(Pnf⊗Png)((uj1⊗vj1 , . . ., ujn

⊗vjn
)|

: uj ∈ rD, vj ∈ V 0,
∑
j≥1

|λj | ≤ 1


=

∑
n≥0

sup

 ∑
j1,j2,... ,jn≥1

|λj1 |. . .|λjn | |(P̂nf(uj1 , . . ., ujn)| |P̂ng(vj1 , . . ., vjn)|

: uj ∈ rD, vj ∈ V 0,
∑
j≥1

|λj | ≤ 1


≤

∑
n≥0

nn

n!
‖f‖ρrD
ρn

nn

n!
‖g‖ρV 0

ρn

 ∑
j1,j2,... ,jn≥1

|λj1 | . . . |λjn
|


= ‖f‖ρrD‖g‖ρV 0

∑
n≥0

(
nn

n!ρn

)2
∑

j≥1

|λj |

n

≤ Cρ‖f‖ρrD‖g‖ρV 0

for ρ sufficiently large. Thus the form

θ(f, g) =
∑
n≥0

Pnf ⊗ Png

define a continuous bilinear map from Hb(l2) × Hb(s∗) to Hb(l2⊗̂πs
∗)

which induces a continuous linear map

θ̂ : Hb(l2)⊗̂πHb(s∗) → Hb(l2⊗̂πs
∗).



Linear topological invariants 81

It remains to check that θ̂ is surjective. Given f ∈ Hb(l2⊗̂πs
∗). Let {ej}

and {e∗j} be the canonical bases of s and s∗ respectively. Formally we

have, for every
∑
k≥1

uk ⊗ vk ∈ l2⊗̂πs
∗, the following equalities

f

∑
k≥1

uk ⊗ vk


=

∑
n≥0

Pnf

∑
k≥1

uk ⊗ vk


=

∑
n≥0

Pnf

∑
k≥1

uk ⊗
∑
j≥1

ej(vk)e∗j


=

∑
n≥0

Pnf

∑
j≥1

∑
k≥1

ej(vk)uk

 ⊗ e∗j


=

∑
n≥0

∑
j1,... ,jn≥1

P̂nf

∑
k≥1

ej1(vk)uk ⊗ e∗j1

, . . . ,

∑
k≥1

ejn
(vk)uk ⊗ e∗jn


=

∑
n≥0

∑
j1,... ,jn≥1

∑
k1,... ,kn≥1̂

Pnf(uk1⊗e∗j1 , . . ., ukn⊗e∗jn
)ej1(vk1) . . . ejn(vkn)

=
∑
n≥0

∑
j1,... ,jn≥1

∑
k1,... ,kn≥1

Pnf(· ⊗ e∗j1 , . . . , · ⊗ e∗jn
)(uk1 , . . . , ukn

)

(ej1(·) . . . ejn
(·)(vk1 , . . . , vkn

)

=
∑
n≥0

∑
j1,...,jn≥1

([Pnf(· ⊗ e∗j1 , . . .,⊗e
∗
jn

)⊗(ej1(·) . . . ejn(·))]

∑
k≥1

uk ⊗vk


On the other hand if for r > 0 and V as above, choose a neighbourhood Ṽ
of 0 ∈ s such that

∑
‖e∗j‖∗Ṽ ‖ej‖V < 1/2 we get the following estimations

∑
n≥0

∑
j1,... ,jn≥1

sup

 ∑
k1,... ,kn≥1

|λk1 | . . . |λkn
| |P̂nf(uk1⊗e∗j1 ,. . ., ukn

⊗e∗jn
)|

×|ej1(vk1)| . . . |ejn(vkn)| : uk ∈ rD, vk ∈ V 0,
∑
k≥1

|λk| ≤ 1





82 N. Minh Ha, L. M. Hai

≤
∑
n≥0

∑
j1,... ,jn≥1

sup

 ∑
k1,... ,kn≥1

|λk1 | . . . |λkn
|

∣∣∣∣∣P̂nf

(
uk1 ⊗

e∗j1
‖e∗j1‖∗V̄

, . . . , ukn
⊗

e∗jn

‖e∗jn
‖∗
V̄

)∣∣∣∣∣
‖e∗j1‖

∗
V̄ . . . ‖e∗jn

‖∗V̄ |ej1(vk1)| . . . |ejn(vkn)| : uk∈rD, vk∈V 0,
∑
k≥1

|λk|≤1


≤

∑
n≥0

∑
j1,... ,jn≥1

sup

 ∑
k1,... ,kn≥1

|λk1 | . . . |λkn
| n

n

n!ρn
‖f‖ρrD⊗V 0

‖e∗j1‖
∗
V̄ ‖ej1‖V . . . ‖e∗jn

‖∗V̄ ‖ejn‖V : uk ∈ rD, vk ∈ V 0,
∑
k≥1

|λk| ≤ 1


= ‖f‖ρrD⊗V 0

∑
n≥0

nn

n!ρn

∑
j≥1

‖e∗j‖∗V̄ ‖ej‖V

n ∑
k≥1

|λk|

n

≤ ‖f‖ρrD⊗V 0

∑
n≥0

nn

n!2nρn
≤ Cρ,V ‖f‖ρrD⊗V 0

for ρ sufficiently large.
Now for each n ≥ 0 we define χn(f) ∈ Hb(l2)⊗̂πHb(s∗) ∼= (l2 × s∗)

given by

χn(f)(u, v) =
∑

j1,... ,jn≥1

Pnf(u⊗ e∗j1 , . . . , u⊗ e∗jn
)ej1(v) . . . ejn

(v).

It follows that

θ̂(χn(f))(u1 ⊗ v1, . . . , un ⊗ vn)

=
∑

j1,... ,jn≥1

Pnf(u1 ⊗ e∗j1 , . . . , un ⊗ e∗jn
)ej1(v1) . . . ejn(vn)

= Pnf(u1 ⊗ v1, . . . , un ⊗ vn).

Thus for g =
∑
n≥0

χn(f) ∈ Hb(l2)⊗̂πHb(s∗) we get θ̂g = f .

To complete the proof of the theorem 2.2 it suffices prove the following.
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2.4. Proposition. Let B be a Banach space and E be a Frechet-
Montel space such that E∗ has an absolute basis. Then Hb(B×E∗) ∈ (Ω)
if E ∈ (Ω).

Proof: Since E is Frechet-Montel, we haveHb(B×E∗)∼=H(E∗, Hb(B)).
By the hypothesis E∗ has an absolute basis {e∗j} as in Theorem 2.1 (ii)
the topology of Hb(E∗, Hb(B)) can be defined by the system of semi-
norms given by

‖f‖(α,ρ,r) = sup{αmρn‖Pnbm(f)‖mm/am·,p|m||m|}

where
aj,p = ‖e∗j‖∗p for j, p ≥ 1.

As in the proof of Theorem 2.1 (ii) for each (α, ρ, p) take β = 2α, η = 2ρ,
and d1 = d+ log2 γθC/β we have

W(β,η,q) ⊆ rd1W(γ,θ,k) +
1
r
W(α,ρ,p)

for all r > 0, where for each p take q such that for each k there exist C,
d > 0 for which

a1+d
j,q ≤ Caj,ka

d
j,p for all j ≥ 1

and (γ, θ, k) is given.
Consequently H(E∗, Hb(B)) and, hence, Hb(B × E∗) has the prop-

erty (Ω).
The proposition is proved.

3. Complemented ideals in Hb(E∗)

Let V be an analytic set in a locally convex space E and let

Jb(V ) = {f ∈ Hb(E) : f |V = 0}.

It is known [2] that Jb(V ) is a complemented subspace of Hb(E) when
dimE < ∞ and V is an algebraic set in E. In this section we shall prove
the above result for algebraic hypersurfaces in the space E∗, where E is
a nuclear Frechet space with E ∈ (DN) ∩ (Ω).

3.1. Theorem. Let E be a nuclear Frechet space such that E ∈
(DN) ∩ (Ω) and let V an algebraic hypersurface in E∗. Then J(V ) is a
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complemented subspace of H(E∗), where H(E∗) is the space of holomor-
phic functions on E∗ and

J(V ) = {f ∈ H(E∗) : f |V = 0}.

Proof: Considering the exact sequence of nuclear Frechet spaces

O → J(V ) → H(E∗) → H(E∗)/J(V ) → O

by the spliting Vogt’s theorem [9] it suffices to check that J(V ) ∈ (Ω)
and H(E∗)/J(V ) ∈ (DN).

3.2. Proposition. Let E be a Frechet space with the property (Ω)
and let V be an algebraic hypersurface in E∗. Then Jb(V ) ∈ (Ω) if one
of the following two conditions holds

(i) E∗ has an absolute basis
(ii) E is a Hilbert-Frechet-Montel space.

Proof: By Theorem 2.1 and 2.2, Hb(E∗) ∈ (Ω). Let P1, . . . , Pm be
irreducible polynomials on E∗ such that

V = Z(P1, . . . , Pm)

where by Z(P1, . . . , Pm) we denote the zero-set of P1, . . . , Pm. Such
polynomials exist by the factoriality of the ring C[E∗] of continuous
polynomials on E∗ (this can be proved as in [6] for the case where E is
a Banach space). Take a decomposition of E∗, E∗ = F1 ⊕Ce1 such that

P1(x∗1 + z1e1) =
∑

0≤j≤p1

a1
j (x

∗
1)z

j
1 ∈ C[F1][z1].

Let D1 ∈ C[F1] be the discriminant of P1. Since P1 is irreducible so
D1 �= 0 and, hence,

G1 = F1\Z(D1) = {x∗1 ∈ F1 : P1(x∗1) has different p1 solutions}

is dense in F1.
As in [6] the map θ from C[E∗] ⊕ C[F1][z1]p1 to C[E∗] given by

(g, r) → Pg + r

is an isomorphism, where

C[F1][z1]p1 = {r ∈ C[F1][z1] : degree (for z1) < p1}
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Since C[E∗] and C[F1] are dense in Hb(E∗) and Hb(F1) respectively, the
map θ is extended to an isomorphism θ̂ from Hb(E∗) ⊕ Hb(F1)[z1]p1.
Thus every f ∈ Hb(E∗) is written uniquely in the form

(∗) f = Pg(f) + r(f)

where g(f) ∈ Hb(E∗) and r(f) ∈ Hb(F1)[z1]p1. Now given f ∈ Jb(V ).
Write f in the form (∗). Then

r(f)(x∗1, ·) = 0 for x∗1 ∈ G1.

Since G1 is dense in F1, we have r(f) = 0 and, hence, f = P1g1 with
g1 = r(f).

It follows that g1|Z(P2, . . . , Pm) = 0, because Z(P1), . . . , Z(Pm) are
irreducible branchs of V . Applying the above argument to g1 and P2 we
can write g1 = P2g2 with g2|Z(P3,... ,Pm) = 0. Continuing this progress
we get

f = P1 · P2 . . . Pmgm for some gm ∈ Hb(E∗).

Consequently

Jb(V ) = P1 . . . PmHb(E∗) ∼= Hb(E∗) ∈ (Ω).

3.3. Proposition. Let E be a Frechet space with the property (DN)
and V an algebraic set in E∗ with codimV < ∞. Then

Hb(E∗)/Jb(V ) ∈ (DN).

Proof: Let P1, P2, . . . , Pm be polynomials such that V =Z(P1,. . ., Pm)
where by Z(P1,. . ., Pm) we denote the common zero-set of P1, P2,. . ., Pm.

To simplify our reasoning we consider only the case m = 2. Take a
decomposition of E∗, E∗ = F ⊕ Ce1 ⊕ Ce2 such that

P = P1 = apz
p
1 +

∑
0≤j≤p−1

ajz
j
1

Q = P2 = bqz
q
2 +

∑
0≤k≤q−1

bkz
k
2

where ap, bq ∈ C\{0} and aj and bk are continuous polynomials on F
and

f = Pg +
∑

0≤j≤p−1

aj(f)zj1

= Pg +
∑

0≤j≤p−1

zj1

Qhj +
∑

0≤k≤q−1

bjkz
k
2


= Pg +Q

∑
0≤j≤p−1

hjz
j
1 +

∑
0≤j≤p−1

∑
0≤k≤q−1

bjkz
j
1z

k
2
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where g ∈ C[E∗], aj , hj ∈ C(F ⊕ Ce2) and bjk ∈ C[F ]. Then as in
Proposition 3.2 every f ∈ Hb(E∗) is written uniquely in the form (∗)
with g ∈ Hb(E∗), aj , hj ∈ Hb(F ⊕ Ce1) and bjk ∈ Hb(F ). Let θ be
the canonical map from Hb(F ) to W = Hb(E∗)/Jb(V ). Obviously, θ is
injective and defines W as a finitely generated Hb(F )-module. Hence
there exists monic polynomials R and S ∈ Hb(F )[X] such that

R(z1) = S(z2) = 0.

This implies that (B × (Ce1 ⊕Ce2)) ∩ V is bounded for every bounded
set in F . Then it is easy to see that θ is an embedding. Let us note that

W ∼= Z = Hb(F )[z1, z2]p, q/Jb(V ) ∩Hb(F )[z1, z2]p, q.

Thus bjk induces for each 0 ≤ j ≤ p− 1 and 0 ≤ k ≤ q − 1 a continuous
linear map on Z and hence every f ∈ Z can be written in the form

f =
∑

0≤r≤s

Cr(f)gr

where Cr are continuous linear for 0 ≤ r ≤ s and {gr} is some finite
system in Z. This yields that we can find u such that for every f ∈ Z
there exists a monic polynomial Q ∈ Hb(F )[X]

Q = Xu + du−1(f)Xu−1 + · · · + d0(f)

where Q(f) = 0 and dj are continuous polynomials on Z with values in
Hb(F ).

To prove that Z ∈ (DN) by Vogt [11] it suffices to shown that every
continuous linear map from Λ1(α) to Z is bounded on a neighbourhood
of 0 ∈ Λ1(α) for every exponent sequence α = {αn} where

Λ1(α) =

{ξ} ∈ CN :
∑
j≥1

|ξj |rαj < ∞ for 0 < r < 1

 .

Given such a map T . Since djT are continuous polynomials on Λ1(α)
and Hb(F ) ∈ (DN) (Theorem 2.1) again by Vogt [11] these polynomials
are bounded on some neighbourhood of U of 0 ∈ Λ1(α). Then from the
relation

(Tf)u + du−1(Tf)u−1 + · · · + d0(Tf) = 0, for f ∈ U

it follows that T is bounded on U . The proposition is proved.

Since IHb(E∗) ∈ (Ω) for every finitely generated ideal I in C[E∗] such
that IHb(E∗) is closed using Proposition 3.3 we have
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3.4. Theorem. Let E be a nuclear Frechet space with E ∈ (DN)∩(Ω)
and let V be an algebraic set in E∗ such that J(V ) is finitely generated
by finite number of polynomials. Then (JV ) is complemented in Hb(E∗).

Proof: Let P1, . . . , Pm ∈ C[E∗] generate J(V ) and let I denote the
ideal in C[E∗] generated by P1, . . . , Pm. We consider onlym = 2 because
the other cases are similar. Given f ∈ J(V ). As in Proposition 3.3 we
can write f as follows

f = Pg +Qh+
∑

0≤j≤p−1

∑
0≤k≤q−1

bjk(x)zj1z
k
2

for some decomposition of E∗, E∗ = F ⊕ Ce1 ⊕ Ce2. Then r|V :=∑
0≤j≤p−1

∑
0≤k≤q−1

bjk(x)zj1z
k
2 |V = 0. Considering the Taylor expansion of

each bjk at 0 ∈ F we have

r =
∑
n≥0

∑
0≤j≤p−1

∑
0≤k≤q−1

Pnb
j
k(x)zj1z

k
2 .

Let π : V → F be the restriction of the canonical projection from E∗

onto F to V . As in Proposition 3.3, π is a branched cover. By S we
denote the branched locus of π. Let x ∈ F\S. Then we can find a
neighbourhood V of x in F\S such that

π−1(V ) = �
s
Us and π : Us

∼= V × us for every s,

where π−1(X) = {us}.
Since ∑

n≥0

∑
0≤j≤p−1

∑
0≤k≤q−1

Pnb
j
k(x)zj1z

k
2 |Us

= 0

for every s we infer that∑
0≤j≤p−1

∑
0≤k≤q−1

Pnb
j
k(x)zj1z

k
2 |π−1(V ) = 0.

This implies that this function is equal to 0 on V because V \π−1(S) is
dense in V . Thus r can be approximated by elements of I. Consequently
IH(E∗) = Cl(IH(E∗)) = J(V ) and the theorem is proved.
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