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ATTRACTING DOMAINS FOR
SEMI-ATTRACTIVE TRANSFORMATIONS
OF Cr

MONIQUE HAKIM

Abstract

Let F be a germ of analytic transformation of (CP,0). We say
that F' is semi-attractive at the origin, if F(fﬂ) has one eigenvalue
equal to 1 and if the other ones are of modulus strictly less than 1.
The main result is: either there exists a curve of fixed points, or
F — 1d has multiplicity k and there exists a domain of attraction
with k — 1 petals. We study also the case where F is a global
isomorphism of C2 and F — Id has multiplicity k at the origin.
This work has been inspired by two papers: one of P. Fatou (1924)
and the other one of T. Ueda (1986).

1. Introduction

Let F be a germ of analytic transformation from (C?,0) to (C?,0), i.e.,
a holomorphic map defined in a neighborhood of the origin in CP which
leaves the origin 0 = (0, 0) of C? fixed. We are interested in the behavior
of the iterates (z,,yn) = F™(z,y) of points (z,y) near the origin. We
implicitly assume that they are defined. We study the situation where
F{5) has one eigenvalue equal to 1 and the others are {\;}2<;<p, With
0 < [Aj] < 1. We call semi-attractive such trasnformations. We want to
investigate the existence of attracting domains at 0 in a neighbourhood
of 0. As the partial derivative F?:TFI(R) (0) = 1 in some coordinate system,
the family {F(™} cannot converge to 0 in a neighborhood of 0. So by
attracting domains in a neighborhood of 0, we mean open domains D
with 0 € 8D such that z,, = F(™)(z) converge to 0 for z € D.

When p = 1, the dynamics of analytic transformations from (C,0) to
(C,0) with eigenvalue 1, i.e., transformations which can be written with
convergent power series in x as

Fz)=z1 =21+ a1z + a2’ +...)
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have been studied by Fatou and Leau. Their theory is quite complete
(see for instance [B]).

In his paper [F] on transformations of (C?,0) Fatou investigates the
case of transformations with eigenvalues 1 and b, with 0 < |b| < 1. He
proves the existence of a coordinate system (z,y) where F' can be written

L.1) {wr=ﬂmw=aﬂmx+@@h”hn
v = g(z,y) = by + i)z + ba(y)2® + ...

where the a;(y), bj(y) are holomorphic functions in a neighborhood of
0 € C such that a;(0) = 1, b,(0) = 0, the z-coordinate being chosen in
such a way that {z = 0} is the invariant curve of Poincaré. Then Fatou
shows that, if az(0) # 0, there exists an attracting domain at 0. The
projection on the z-plane of the dynamics is of the same type as the one
we get in C with the a;’s constant. This case has been studied again by
Ueda [U] with a better reduced form for F', which allows him to give a
simple and more complete description of the domain of convergence.

When y = 0 is a curve of fixed points, the transformation F is of type

{Il =z +2yf(z,y)
1 =yb+bi(¥)z+b(y)a®+...) "

a case considered by Lattés [L]. Fatou shows that the coordinates can
be chosen in such a way that we get the reduced form

=T

1.2 o
(1:2) y=y|b+ D byz'y’

i+j21

So a neighborhood of 0 is attracted by the curve of fixed points along
the trajectories z = constant. Then Fatou asks if there exis other cases
for which there is no attracting domain at 0. He asks what happens for
instance with a transformation like

- I
(1.3) Pty 9
y = by +2?

In this paper, we will see that there is an attracting domain of 0. We
prove the following result.
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Theorem 1.1. Let F be an analytic germ of transformation from
(CP,0) to (CP,0), with eigenvalues in 0 {1,{A;}2<j<p}, such that 0 <
[Aj| <1, for 2 < j < p, then either there exzists a curve of fixed points or
there exists an attracting domain of 0.

More precisely, let Id be the identity of (CP,0). Either there exists
a curve of fixed points or F' — Id has a finite multiplicity k& > 2. We
show that in the case of multiplicity & > 2, there exists an attracting
domain D of 0 made of k — 1 attracting petals, i.e. kK — 1 disjoint open
sets {D;} positively invariant by F such that 0 € 8D; and that every
z € D; is attracted by 0. Conversely, if a point z is attracted by 0, for
n big enough, z, = F(™(z) is in one of the D;.

Let us recall (see for instance [C]) the definition of the multiplicity of
a holomorphic transformation ® from (CP,0) to (CP,0) such that 0 is
isolated in the fiber ®=2({0}). Let V be a compact neighborhood of 0
such that the restriction ®y of ® to V is proper from V to W = &(V);
let Br(®) be the branched locus of ®, i.e. the set of 2 € V where

Det(J(®){z)) = 0; here J(®) is the matrix (%)1({ L<icy’ The
7/ 1<isp,1<j<p

multiplicity of @ at 0 is then the number of points in a fiber ®~1({(})
for ¢ a point in W which does not belong to ®(Br(®)). We use then the
lemma

Lemma 1.2 [C, p. 102]. Let ® be a holomorphic transformation ®
from (CP,0) to (CP,0) such that 0 is isolated in its fiber ®~1({0}). Sup-
pose that the matriz (%%) has rank p — 1. Let C be the

7 /2<i<p, 25j<p
curve {z; = @;j(21)}2<j<p defined via the implicit function theorem by
®y =83 =... =&, =0, then the multiplicity of ® at 0 is equal to the
multiplicity at 0 of the function of one variable
‘I’](Z], ‘P?(zl): ree :(Pp(zl))'

Proof of Lemma 1.2: From the relations

8% <~ ,, . 0%;
T + jgzz @5 (21) 72, 0, for2<i<p

on C, we get

8% P 8% %,
Det(J(®)ic) = (52—: + Zgo;(zl)a—z;) Det (82_,—

j=2 )293?, 2<j<p
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As 0 is isolated in its fiber ®~1({0}),

8% £, 00
d®y o = Ell + Z%(zl)é?;,
=2

is not identically zero. Hence C is not in Br(®). So to count the multi-
plicity, we can restrict ¢ to ®(C), and we have just to count the zeros of
$1(21) = P1(21,92(21), ..., ¢p(21)) = (1 for ¢; in a neighborhood of 0 in
C. By Rouché’s theorem, this multiplicity is given by the order in 0 of
o1 '

Let us for instance, compute the multiplicity of ¢ = F — Id in the
example (1.3). According to lemma 1.2, we solve the equation

y=by +z°

and replace y in the first relation. We get

i |l 2% +
I = = == = .
I & 1-b

The multiplicity of F' — Id at 0 is 4. By theorem 1 we see that there
exists an attracting domain at 0 with three petals.

The result is also true if F (’0) is not invertible. For instance the trans-
formation

(1.4)

7

{ zy =z(1 + 2y — %)
y =y* + 2
where F(’O) has for eigenvalues 1 et 0, F' — Id has multiplicity 6 in 0.
Indeed, solve

y =y +a?,
we get
y=z>+z*+...,

replacing y in the first relation
z) —z =22y — z* = 2% + o(2®).

So there is an attracting domain at 0 with 5 petals. B

In [U}, Ueda studies the analytic transformations of (C?,0) with eigen-
values {1,b} at 0, such that 0 < [b] < 1. He calls them transformations
of type (1,b). Then he defines a classification {(1,b)x}, for k integer,
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1 € k £ 400, on these transformations. In fact, the integer k + 1 for
type (1,b)x of Ueda is precisely the multiplicity of F —Id. Ueda concen-
trates his work on the case (1,b4);. This is the case considered by Fatou
when in the expression (1.1), we have a(0) # 0. Ueda introduces trans-
formations of the coordinates which give simple reduced forms to study
the attracting domain, in the case a3(0) # 0. Similar transformations
will be used here.

Ueda studies also the case of a global automorphism F in C2. Let
F be a global automorphism in C? with a fixed point of type (1,b),
he proves that, like in the examples given by Fatou and Bieberbach
with eigenvalues of modulus strictly less than 1, the attracting domain
is isomorphic to C2. This is, for instance, the case for the attraction
domain of the Hénon transformation

{xl = z(1 +b) — by + z2,
Nn=z

il

for 0 < |b| < 1. This statement has the following generalization.

Theorem 1.3. Let F be a global automorphism in C? with o fized
point p, such that F(’p) has eigenvalues {1,\}, with |A| < 1, and that
F —1d has a multiplicity k+1 in p. The altracting domain of p has then
k components and each component is isomorphic to C2.

Theorem 1.3 applies for instance to Hénon transformations

{:clz:r(1+b)—by+P(:c)

n==x

where P is a polynomial with a zero of order k + 1 at the origin.

2. Reduced forms of semi-attractive transformations

Proposition 2.1. Let F be a semi-attractive germ of transformation
of (CP,0), with eigenvalues {1,{)\;}2<j<p}, 0 < |Aj] <1, for2 <5 <p.
There exist coordinates (z,y), z € C, y € CP~! in which F has the form

(2.1)

3

{ 71 = u(z,y) = a1(y)z + a2(y)z? + ...
v =v(z,y) = 9(y) + zh(z,y)

where {a;(.)}, 7 =1,2,...,9(.) and h(.,.) are respectively germs of holo-
morphic functions from (CP~1,0) to C, from (CP~*,0) to CP~! and



484 M. HAKIM

from (CP,0) to CP~1, with a;(0) = 1, g(0) = 0, h(0,0) =0, and g, is
triangular with eigenvalues {A;}2<j<p-

Proof: Let E1®E> be the Jordan decomposition of CP in characteristic
subspaces. Here E; is associated to the eigenvalue 1 and Ej to the set of
the eigenvalues {);}2<j<p. There exists an analytic stable submanifold
X attracted by 0 and tangent to Eo (see [R] for a sketch of the proof
and a complete bibliography). We then just choose coordinates (z,y),
z € C,y € CP71, in such a way that X is {z = 0} and that matrix Fy,
is triangular. &

Proposition 2.2. Let F be a semi-attractive germ of transformation
of (CP,0). For every integer m there exists coordinates (z,y), z € C,
y € CP~1, in which the transformation has the form

b

(2.2) { 21 =2+ a8’ + ... ama™ + A (Y)2™H + .
' y1 = 9(y) + zh(z,y)

i.e. like in (2.1), but with a; =1 and as,...,am are constants.

Remark. This proposition is in [U] in the case of a semi-attractive
invertible germ of (C?,0). The following proof is just a generalization of
it.

Proof: We start with

{ z1 = a1(y)z + az(y)z® + ...

®1) y1 = g(y) + zh(z,y)

¥

and we proceed inductively on h.

1) Reduction to a;(y) = 1. We use the coordinate transformation

{X:u(y)x or {szf/u(}")
Y=y y= ’

with u(.) a germ of analytic function from (CP~!,0) to C such that
u(0) = 1, to be chosen. We want

X1 = u(y1)z1 = u(g(y) + zh(z,y))a (y)z + az(y)a® +...]
=u(g(Y)+...)[a(¥V)X/u(Y)+...]
_ a@ug(Y))

Xt 0(X?%) = X + 0(X?).
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So we must choose u such that
u(Y) = a1(Y)u(g(Y))
u(9(Y)) = a1(g(Y)u(g®(Y))

u(g™(Y)) = ar (g™ (¥))u(g" D (Y)).
This gives for u the unique solution

u(Y) = [[ a1(¢™ ().
n=0
Since a1(0) = 1 and since there exists a, 0 < a < 1, such that for ||y]|
small enough, one has [|g(y)|| < ellyll, so [lg™ (y)|| < a™|y]|, the infinity
product above is convergent in a neighborhood of 0.

2) Suppose that for m > 2, with some coordinates (z,y), F takes the
form

1

{ Ty =2+a2% +...am-12™" + ap(y)z™ + ...

y1 = 9(y) + zh(z,y)
with the a;’s constant for 1 < j < m — 1. We then use a coordinate
transformation

{X=x+v(y):rm z=X-vy(Y)X™+...
or ,

Y=y y=Y
with v(y) a holomorphic function in a neighborhood of 0 in C?~! such
that v(0) =0, v to be chosen. We get

X1 =z + v(y1)zT
=2+ 2% + ... 0m 1™ + am(y)z™ + v(g(y))z™ + O(z™ )
=X —v(V)X" +aX?+...am 1 X" + am(y)X™
+v(9(¥)X™ + O(X™H).
So we need that
v(Y) —v(g(Y)) = am(y) — am(0),
v(g(Y)) = v(g*(Y)) = am(9(y)) — am(0)

v(g"(Y)) = v(g"(Y)) = am(9"(¥)) = am(0).
The unique solution is then

v(y) = Y _{am(9"(¥)) — am(0)}.
n=0
The series converges in a neighborhood of 0 because g is contraction and
because @, (y) — @, (0) =0 for y =0. W
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Proposition 2.3. Let F' be a semi-attractive germ of transformation
of (CP,0), such that F — Id is of multiplicity k + 1 in 0. Then the
transformation can be written in some coordinates (z,y), v € C, y €
cr-1

(2.3)

{ zy =z(1+ zk 4+ Cz?* + 02k+1(y)$2k+1 +...)

y1 = 9(y) + zh(z,y)
with C a constant.

Proof: Assume then that the transformation is written in the
form (2.2) with m > k£ + 1. We want to evaluate the multiplicity of
F —1d at 0. Since (Ip,—; — ¢')(0) is invertible, we can use lemma 1.2.
Using the implicit function theorem, we can solve locally in y = y(z)
the equation y = y;. The multiplicity is then given by the order at the
origin of

T1— T =0ap2% 4 ...0nT™ + ama1 (y)z™ T 4.
Since F' —Id is of multiplicity & + 1 in 0, we have a; = --- = ax = 0 and
ap+1 # 0. If we use proposition (2.2) with m = 2k + 1, we get

z1 = 2(1+ ap18® + - + a2k + agpsa(y) 2+ ).

As in the case of one variable, a polynomial transformation in the single
variable z leads to the required form. The coefficient of z**! can be an
arbitrary constant not equal to 0, the coefficient of 22**1 is then fixed
(see for instance [B, theorem 6.5.7, page 122]. ®

3. Existence of attracting domains
and curve of fixed points

We will now prove the. theorem 1.1 stated in the introduction. Let F
be a semi-attractive germ of transformation of (CP,0), given as before
in the form

H

{ 1 =ul(z,y) =z(l +ax(y)z+...)
v =v(z,y) = g(y) + zh(z,y)
with 2 € C, y € CP~! and g, h like in proposition (2.1). To find the
fixed points of F, one can first solve locally in y = y(z) the relation
y = v(z,y), thus obtaining an analytic curve y = ¢(z). There exists a
curve of fixed points if and only if the relation

z = u(z,p(z))
is also satisfied. If not, F—Id is of finite multiplicity, and the multiplicity
is given by the order at 0 of z — u(x, p(z)).
The following corollary is an answer to a question of Fatou [F, pa-

ge 131]) who asked if for such F', there could exist a curve of fixed points
through 0 for some iterate F(™) but not for F.
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Corollary. Let F be a semi-attractive germ of transformation of
(CP,0). There exists a curve of fized points through 0 for an iterate
F™) of F if and only if there is one for F.

Proof: 1t is an immediate consequence of proposition (2.3), for if F is
in the form (2.3), we have

zn =z(l+nz®+...),

so F(™ —Id has the same multiplicity as F — Id. ®

The proof of theorem 1.1 is then a consequence of the following propo-
sition.

Proposition 3.1. Let F' be a semi-attractive germ of transformation
of (C?,0), of multiplicity k + 1 in 0, then there exists an attracting
domain with k petals.

Proof: We can suppose that F' is in the form given by proposition (2.3)

{ 21 = z(1 + axz® + aok2®* + agpsr (y)2?* 1 +..))
v1 = g(y) + zh(z,y)

]

with ax # 0. Changing z in some Az one can assume aj = —%. We can
then imitate a Fatou’s method simplified here by using the reduced form
for I which gives easily the Abel-Fatou invariant functions.

Let R and p be positive constants to be adjusted later. The half
complex-plane Pg and the subset Vg, of C x CP~! are defined by

PR:{XGC;R,CXZ R},

3.1)
( Vi, = {(X,) € C x C*1; X € Pa, Jyll < o).

Let Dg and Ug,, be the images of Pr and Vg, by the inversion z = %,
so we have

1 1
DR_{ZGC)Z_E <TR},

Ur, ={(2,y) € Cx C*"!; 2 € Dg, |lyll < p}-

There are k branches of z'/* in Dg. Let {Ag. }o<j<k—1 be the images of
<] =1

Dpg by these determinations. We will show that, for R big enough and
p small enough, the domains

(32) Wg,j={(z,y) eCxCP Lz ¢ Agrj lyll <p}, 0<j<k-1,
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are attracting domains.
Raising the relation

1
T =1 (1— E:rk +a2ka:2k +)
to the power k, we get
k

= xk(l —zF + ez + Czk+1(y)-'~"2k+1 +...)

v = g(y) + zh(z,y).

k
1
xf=z" (1——Ik+a2k:r2k+...)

We then restrict (z,y) to a Wg, ; for fixed R, p, j, and we make the
transformations

(2 = 2%,y =1) from Wg, ; to Ug,,,

1
(X =-,y= y) from Ug,, to Vg,.

z b
For R big enough and p small enough, the transformation F' is defined
in Vg p, where we get

X

T 1 7F + ke + o (y)2F T+

1 1 T
=X(1+3(—+C—X—2+a(y)ﬁ+...).

X1

So F becomes

1 1
X1=X+1+cf+0y (W)

(3.3) 1 .
y1 = g(y) +zh(z,y) = g(y) + Oy (W)

Here the notation O, (]YlF) represents a holomorphic function of (X, y)
in VR, which is bounded by 7z for some constant K.
Let K be a constant such that

X=X 1% 5 <
(3'4) K K ]

v — gl < X% < RUE

i
R
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in Vg,,. Since g is a contraction, there exists b, 0 < b < 1, such that for
p small enough we get in ||yl < p

lg@)ll < bllyll-

The condition % < % implies Re X; > Re X + % and the condition
K
W < {1 o b)p
implies ||ly1]| < |ly|l < p. So for R big enough, Vg , is mapped to itself.

Then to prove that Wg , ; is attracted by 0, we have to show that Vg ,
is attracted by (oo,0). We see inductively that

R.eXn>R+§

Let C be a constant big enough to have C > 2% and p < rﬁ')%;, we

prove by induction that, if R is big enough, we have

C
lynl < Tk
(R+3)

Indeed, since

K < bC+ K

"yn+l " _<_ b"yn" +

The inequality

Nnll < m

will be satisfied if we have

1/k

R+3 C
(3:5) ( R ) SbCJrK'

But from C > 25 we see that bC+K > lib > 1. So that (3.5) is true
if R is big enough

We have now k disjoint domains attracted by 0. Each of them is
positively invariant by F since Vg , is positively invariant, and, since
Tpi1 ~ Tp When n — 00, we have always the same branch of z'/*. Let
D be the attracting domain of 0, we want to prove that if { € D, for n
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big enough, ¢, = (zn,yn) is in one of the Wg , ;’s, or equivalently that
(zF,y,) is in Ug,,, or that (%, yn) is in Vg ,. But y, — 0 and we have
=L + 1+ cak 4+ Oy (zF)
xk v ’

o

so Re & — oo when z,, — 0. So ¢ belongs to the union of the increasing
n
sequence of open sets

o0

Dj = |J F " (Wrp,)-
n=0

When F is an isomorphism of C?, each D; is connected. In general, we
can only say that the D;’s are disjoint and contain the Wg,, ;’s. B
4. Abel-Fatou’s functions

Let F be a semi-attractive germ of (C?,0) such that F' — Id has mul-
tiplicity k& + 1 in 0, the coordinates and the notations used here are
those introduced in the proof of proposition 3.1. In each attractive petal
Whr,p,j, We can define an Abel-Fatou function ¢, more precisely, a holo-
morphic function ¢ : Wg,, ; — C verifying the functional equation

(4.1) @(F(p)) =o(p) +1,

in the following way.

To construct ¢ we first observe that in Vg, = {(X,y) € C x CP~1;
Re X > R, |ly| < p}, F is given (see (3.3)) by

1 1

v = 9y) +zh(z,y) = 9(y) + Oy (lxﬁ)
Following Fatou, define
U,=X,—n—-cLogX,.
We get

K
= pl+l/k’

X
X“_|_1 s Xn —-1- CLDg ntl

n -U, =
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o0 .
So the series Z(U"“ —U,) is uniformly convergent and has a holomor-
n=0
phic bounded sum in Vg ,. Hence

n—1
Un(X,y) =Uo+ > _ (Uks1 — Ux)
k=0
has a limit
u(X,y) = X —cLog X + v(z,y)
with v(,) a holomorphic bounded function. The functional equation
w(Xy,y1) =u(X,y) +1
is an immediate consequence of

u(X1, 1) = Jim (X,1y —n — cLog Xn1).

In each attractive petal Wy, ;, the function ¢ : Wg,; — C is then
defined by

(4.2) e(z,y) =u (:—ky)

and verifies ¢(f(p)) = ¢(p) + 1. Remark that in W , ;, the function ¢
has the asymptotic expansion

1
' e(@,y) = = (1 - o Logz* + a*uy(2¥,1)
(4.3) - o
= Eg(l + O(|z" Log z*)).

5. Global isomorphism of C?

We now consider the case where F is an isomorphism of C?, with fixed
point 0. We assume that F{o) is semi-attractive (with eigenvalues 1 and
A s.t. [A] < 1) and that F — Id has multiplicity k£ + 1 in 0. In this
case the attracting domain has k components given with the notations
of proposition (3.1) by

D;j = ] F™"(Wr,;)
n=0
for j =0,1,...,k — 1. For a fixed j, the Abel-Fatou’s function defined
in Wgp,; can be extended to D; in the following way: Let p € D,
for n big enough, we have F"(p) € Wg, ;. So we can define ¢(p) by
e(p) = o(F™(p) — n and the definition of ¢(p) does not depend on the
choice of the integer n such that F"(p) € Wg, ;.
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Proposition 5.1. The Abel-Fatou’s function ¢ : D; — C is surjec-
tive.

Proof: We have to show (if R has been chosen big enough) that, for all
z € C, there exists n € N and p € Wg,, ; such that ¢(p) = z+n. Using
the definition of ¢, and the notations in the proof of proposition (3.1),
we have to show that there exists (X,y) € Vg, such that

(5.1) u(X,y) = X —cLog X +ui(z,y) =z +n.

But for every fixed y such that ||yf| < p, and for n big enough, one can
solve (5.1) in z in Pr. This is a consequence of Rouché’s theorem, for
the equation (5.1) can be written

X (1 - %(cLogX + u1 (X, y))) =z+n,

and on the boundary Re X = R, we have |%(cL0gX + uy (z, y))] <1 (if
R is big enough). So the equation (5.1) has the same number of solutions
as X =z+n. N

We will now give a proof of the theorem 1.2 stated in the introduction.

Theorem 1.2. Let F be a global automorphism in C? with a fized
point p, such that F(’p) has eigenvalues {1,\}, with |\ < 1, and that
F —1d has a multiplicity k+ 1 in p. The attracting domain of p has then
k components and each component is isomorphic to C2.

Proof: We first choose coordinates (z,y) such that F' takes the form
(5 2) =2 (l . %Ik + agkzzk + 02k+1(y)$2k+1 +.. )
y1 = by + bryz + - + bryz® + b (y)zF T+ ..

In fact, it is proved in [U] that for all integer m, coordinates (z,y) can
be chosen so that y; is expressed as

Y1 =by+b1yz + - + bnyz™ + b1 ()™ 4+

with b; constant for 0 < 5 < m.

Let us fix W = Wg,, j a component of D = D; in a neighborhood of
0 chosen as section 3 in these coordinates. We want to prove that the
open set

(5.3) D= G F™(W)

n=0
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is isomorphic to C2.
We first choose new coordinates in W. Let ¢ be the Abel-Fatou func-
tion. We have seen in (4.3) that

1
#(@,y) = 5 - cLoga* +v(z,v),

with v(, ) a holomorphic bounded function in W. We define new coordi-
nates in W (s,y) where

1
(54)  5=—(1-cz"Loga" +2*v(z,y))"/* = (p(z,y))"".

So 1
§= 5(1 + Oy(|x" Log z*|)

1 | Log s|
.'B=§+Oy (W .

and

In these coordinates F' takes the form

1 1/k
slzs(l—l-—k) (or s¥ =sF+1)
(5.5) $ .

1 1 | Log s|
ylzbg;+bly;+"‘+bkys—k+oy (W

We now follow the same method as Ueda. We will give a sketch of his
proof adding the necessary modifications.

Let D/{F} be the quotient manifold of D by the transformation group
{F"}nez (this group acts discretely on D, because F™ tends to 0 ¢ D
when n goes to +00).

Let w# : D — D/(F') be the projection and E : C — C*, the function
E(z) = exp(2imz). Since the Abel-Fatou function satisfies

e(F(p)) = »(p) + 1,

one can define ¢ : D/(F) — C* such that the following diagram is
commutative

(56) ‘| )|
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Define B = ¢(W). Let us consider the diagram obtained by restriction
of the preceeding one to ¢~ *(B), that is

¢~} (B) —=— D/(F)

(5.7) | s

B Es , ¢+

As follows from proposition (5.1), we know that C = U (B —n), so that
n=0
the restriction
Ep:B—C*

is surjective. For s € B, Ueda defines a holomorphic family of holo-
morphic functions % : ¢~ 1(s) — C on the fibers of ¢ which gives to
D/{F) — C* a fiber bundle structure with fibers isomorphic to C and
with transition group the additive group of holomorphic functions on C*.
This fiber bundle structure is necessarily trivial because H'(C*, 0) = 0.
Lifting this structure to ¢ : D — C by E, we get a trivial fiber bundle
structure on D and this gives an isomorphism from D to C2.

The definition of the 1)s’s is obtained by integrating on the fibers
s = Constant a holomorphic differential 1-form satisfying a functional
equation, that we have now to define. B

Definition of a holomorphic family of 1-forms on W.

We will define on W a family of holomorphic differential 1-forms {w;}
on the fiber of the Abel Fatou function depending holomorphically on s,
of the form

ws(p) = (s, y) dy = n(p) dy,
with 1 a holomorphic function in B = (W) satisfying the functional
equation

(5.9) n(F(pn%(p) — n(p).
‘We notice that
(5.9 Wt ) = 2 (P 0) S )

So that if the sequence {%yyi} were uniformly converging, its limit would
be a good candidate for . But this is not the case since
Oyn _ O0y10y2  Oyn

dy By By By

n b 1 | Log sp|
‘*’H(”“+ o (pn))
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So we will replace the sequence {%%} by a sequence {hn%?} where
{hn} is a sequence of holomorphic functions such that

(5.10) ha(F(p)) = hnta(p),

and {hn%&} is uniformly convergent.

We can take h,(p) to be of the form

ha(p) = g(s)u(s)u(s1) ... u(sn)

with g and u depending only on s, holomorphic in W such that

(5.11) 9(s)u(s) = g(s1)

and

- by 1 b 1 ! 1
uls) = b1t e T Al -
(5.12) (s)=0b (1+ b S+ + b s*") +O(is|" 1).

The condition (5.11) implies indeed (5.10) and the condition (5.12) im-
plies that

Yn n_l( (|L0gsh|)) e ( (Logh))
hn(p)—7— = 140, | ——— | | = 140 —=—+) -
n(p) dy J_;_[} YA Jsp|k+1 g Rl+1/k

So that n will be defined by a uniformly convergent infinite product.
‘We have then to show that there exists a function g holomorphic in B
such that u(s) = g(s1)/9(s) satisfies (5.12). We define g as a product of
three functions
g=61"92"93

where g1(s) = b=*" (for any choice of logb). In fact, this gives

91(81) _ ;o
(5.13) =

We then choose a function g, satisfying

ga(s1) by 1 be—r 1\ 1

The existence of g is proved by the following lemma
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Lemma 5.3. For any (c1,¢a,...,ck—1) € CF™1, there exists a poly-
nomial in i
1 a; as ak—1
Pl=)1=224+24...
(s) s T2 Tt ga

Proof: From
ss=s"+1,

1_1 11 (1
s s ke TY\ gmEm

so for a polynomial P

r(3)-r() it () o ()

From that we deduce

19(2)-2r() =+ (1(2)-() (2

we get

We can then compute the a;’s by identifying the expression above with
the polynomial part of degree < k — 1 in the Taylor expansion of

c Ck—
—Log(1+—1+—0%+--'+%)
s s s

at infinity. B

Choice of g3. It is a consequence of the choice of g, and g, that it
exists ¢ such that

91(s1) g2(s1) bl o 1) !
0 6) gg(s)b(lerer +bs’=)_1 +O(k+1)
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So we need a function g3 such that

g3(s1) c 1
=1—-— —_— ).
93(5) sk +0 (sk+1)
We can take gs defined by gs(s) = s % = exp(—cLogs*) (with the
branch of logarithm which is real on positive numbers). Indeed, we get

g3(s1) _ 1IN e 1
) _(l+sk) =1-5+0( 5 )

Once w; is defined in W, we just follow the construction of Ueda to
define the 1,. We recall this construction for reader’s convenience.

Construction of ¢ : ¢~ !(s) — C.

We have seen that if p € D, for n big enough, s = F"(p) is in B and
the fiber D N p~1(s) contains a disk A, = {y € C; ||yl < p}. So we
can fist suppose that W is a set of the form W = B x A, and that we

o0
still have D = U F~™(W). We first define 95(p) when p is in W and
n=0
©(p) = s by integrating the form n(p) dy on the fiber s = constant, along
a path joining po = (s,0) to p = (s,y(p)) in {s} x A,

(p)
bap) = [0 ™ n(s,v) dy.

From the functional equation (5.8) verified by n we get

y(F(p))
e (F(p)) = fo n(s1, 1)) dy

y(F(p)) y(F(po))
Z/ "?(Slsyl)dyl+[ n(s1,y) dy
y(F(po)) 0

=1s (P) + h(S)

where h(s) = oy(F(m)) n(s1,y) dy is a holomorphic function of s in B.

We get in this way a holomorphic function ¢ : W — C defined by
¥(p) = ¥s(p) for s = (p(p))*/* such that

(5.15) P(p) = ¥s(p) = ¥s, (f(p)) — h(s).

The relation (5.15) allows the extension of the definition of 9 to ¢~!(B)
in the following way: let p € ¢~1(B). For n big enough, we have F"(p) €
W and we define ¥(p) by the formula

(5.16) P(p) = Y(F"(p)) — (h(s) + h(s1) + - - + h(sn))

where s; = (¢(f7(p)))}/* for j = 0,1,...,n. Itis clear that the definition
doesn’t depend on n and that the function % is holomorphic in ¢~*(B).
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Proposition 5.4 (Ueda). For all s € B, s : ¢~ }(s) — C is an
isomorphism.

Proof: Let us prove first the injectivity of 1,: Let p and p’ € ¢~ (s)
such that v¢s(p) = 1s(p). According to property (5.16), one can assume
that p and p’ are in W and that we have with s big and y(p) and y(p’)

small
y(p) y(p')
/0 n(s,y)dy = /0 n(s,y) dy.

The results is just a consequence of the fact that the function
y(p)

o 7m(s,y)dy is holomorphic in y(p) and has a derivative 7(s,0) # 0.

To prove the surjectivity, we remark that (s, 0).b=**s~*¢ when s —

oo and as
y(F(po))
h(s) = / n(s1,y) dy
0

with y(F(po)) = y1(s,0) = E}i;l,,-r(—lm +... (see the form of F in coordinates
(s,9)). We have

h(s)~n(s,0) b;;;:(l{)) .

We deduce from this that the image 15(W) contains a disk centered at
0 with radius e,o|b_“*‘e s~*¢| for some constant ¢ > 0. The relation (5.16)
then implies that the image of F~™(W)Ny~!(s) contains a disk centered
in ¢n = h(s) + h(s1) +--- + h(s,) and with radius R, = ep|b %% s,—kc|.
An elementary calculation proves that R, et |(,| tend to +oo while
—}%‘f — 0, so the union of the disks D((,, R,,) contained in the image of
¢~ 1(s) is equal to C.

1t is then easy using the ¥’s to define a structure of locally trivial fiber
bundle on D/(F) — C*, with fibers isomorphic to C and with structure
group, the group of translations by holomorphic functions in s. This
ends the proof of the existence of an isomorphism from D to C2. B
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