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MULTIPLIER EXTENSION AND SAMPLING
THEOREM ON HARDY SPACES

QIvu SunN

Abstract

Extension by integer translates of compactly supported function
for multiplier spaces on periodic Hardy spaces to multiplier spaces
on Hardy spaces is given. Shannon sampling theorem is extended
to Hardy spaces.

1. Introduction and statement of results

The purpose of this paper is to establish a natural extension from
multiplier spaces M (p) on periodic Hardy spaces H?(T) to multiplier
spaces M(p) on Hardy spaces HP(R) by integer translates of a function
¢ and to extend Shannon sampling theorem to Hardy spaces. It is the
continuation of [13] on stability of integer translates of a function but
with different interest. In [13], the following stability problem of integer
translates of ¢

1) C U larz < ||D f(n)d(z —n)

nel

< C|fllae(z)
H?(R)

was considered which arises in the interpolation of sequences by functions
and plays an important role in multiresolution analysis, where 0 < p <
00, f = {f(n)}nez is a tempered sequence, H?(Z) and H?(R) denotes
Hardy spaces on Z and R respectively, and Z is the set of integers.
A natural replacement of the norm in (1) when p = oo is the norm
as multiplier operator on HP(T) and HP(R) respectively, which is an
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original inspiration to consider multiplier extension here. To this end,
we introduce some notations.

Let ® be a smooth function such that supp® C {1 <|z| < %},
|&(z)] > Coon { L <|z| <3} and 3, c, $(2™z) = 1 for = # 0, where
Cy is a positive constant and the Fourier transform is defined by &(z) =
[ €2"2¥®(y) dy. Denote ®,,(z) = 2™ ®(2™z) for m € Z. Now we define
Hardy spaces H?(R) by

meZ

HP(R) =< fe S’(R), "f"Hp(R) = (Z |¢'-m. * flz) < +o0
Lp(R)
and define Hardy spaces HP(T') (c.f. [3]) by

HP(T) = { flz) = fre®™** € S'(R);
kezZ .

fol +|[| D 1®m* fI7 < +00

m=-—1

L2

LP(T)

= 4 f(@) =) fue®™* € S'(R);

keZ
1
2, & »
1 s
oy =1al+ | [ | S| 5 feetrie| | | <ot
' 0 m2(} 2m£|k|
<gm+l

where we denote the space of tempered distributions by S’(R), the norm
of p-integrable functions on R and T by || - ||ze(r) and by || - [|ze(7),
respectively and T = R/Z denotes the torus. For a measurable function
m on R, we say that m is a multiplier on HP(R) if

(2) |Fllere(r)y £ Conll flle ()

holds for any Schwartz function f, where F = mf. We denote the
infinum Cy, in (2) by |m|lp (). For a sequence m = {m(n)}, we say
that 7 is a multiplier on H?(T) if

(3) IGlla>(ry < Callgllee ()
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holds for every trigonometric polynomial g(z) = Y, gxe®™***, where
G(z) = X yez ™(k)gre*™*=. Also we denote 772l 57y the infinum Cy,
in (3).

The classical result of de Leeuw [7] on multiplier said the restriction to
the integer lattice of a continuous multiplier on LP(R) is a multiplier on
LP(T) when 1 < p < oo. In 1992, Liu [8] extended the above conclusion
to Hardy spaces. The multiplier extension was considered by Jodeit [6],
Berkson and Gillespie [2]. Let ¢ be a continuous function with compact
support. Denote the space of sequences by S and the linear span of
integer translates of ¢ by S(¢) = {3, C(n)d(z — n); {C(n)} € S}.
Define a natural map ¢+’ from S to S(¢) by

¢ :§5{C(n)} — > C(n)d(z —n) € S(¢).

nez

We say that the integer translates of ¢ are globally linearly independent
if ¢+’ is one-to-one. Denote the restriction of ¢+ on M (p) by I. Berkson
and Gillespie [2] proved that I maps M(p) to M(p) boundedly under
the hypotheses 1 < p < co and ¢ = X[-3,3]* Ag, where X[-3.3] is the
characteristic function of [—3, %], * denotes the convolution operator
and A is a bounded variation function supported in [—%, %] In this
paper, we will prove

".l:"heorem 1. Let 0 < p < o© and ¢ have compact support. If
I 1(z)|™i(1P) d < 400, then I maps M(p) to M(p) boundedly.

We improve Berkson and Gillespie’s result since under their hypotheses
|p(z)| < C(1+ |z|)~2 and f |¢(2)| dz < co. Applying to Bochner-Riesz
summation operator Bs, we reproved that Bs maps HP(R™) to HP(R"™)
when § > 22t and 0 < p < 1[11], [12] when we let ¢(z) = (1—[z[?)5..

To consider the inverse of Theorem 1, we introduce the paraproduct
P, and show that P, maps HP(T) to H?(R).

Theorem 2. Let ¢ be a continuous function with compact support. If
o' : S — S(¢) is one-to-one, then I has bounded inverse I™' : M(p) N

S(¢) — M(p).
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In the proof of Theorem 1 and Theorem 2, Lemma 2 plays an impor-
tant role. If we assume Lemma 2 is true, orm(z) = ) ., C(n)¢(z—n) €
L* implies {C(n)} € [*°, then it suffices to assume I is one-to-one
in Theorem 2. In particular Theorem 2 can be written as that I has
bounded inverse I~ : M(p) N S(¢) — M(p) provided I has bounded
inverse I~ : M(2) N S(¢) — M(2) and ¢ is a continuous function with
compact support, where 0 < p < co. The continuity condition on ¢
can be dropped in one spatial dimension since for any distribution ¢ on
R such that ¢+ is one-to-one there exists a univariate spline B; such
that ¢ = By * ¢ is continuous and %’ is one-to-one. But I do not
know how to construct this modifier By, in high spatial dimensions. By
Fourier transform characterization of global linear independence in [9],
the box spline and Daubechies’ scaling function satisfy the condition on
¢ in Theorem 2.

Shannon sampling theorem [10] plays an important role in signal
analysis. It says a function with its Fourier transform supported in
(-3 +¢&3—¢] for some 0 < & < 1 has its LP(R) norm comparable
to its IP(Z) norm of its restriction to integer lattices Z where 1 <
p < oo. In 1990, R. Torres [14] extended the above conclusion to

Besov spaces. Let {‘i‘m}mgg be a family of sequences such that &,
is smooth, supp&‘m(ﬁ) c {27m2 < ¢ < 27™), |$m(§}| > Cp on
Trm, Where &)m(f) =3 ez ®,,(n)e2 ¢ Ty = {2<l¢|<1}and T, =
{32-™ < |¢] < &27™}. Define (c.f. [13] or [14))

H?(Z) = { {f(n)}nez; Z(Z I‘i’m*f(n)lg) <400,

neZ \mz20

where f = {f(n)} is a tempered sequence and ®,,* f(n) = Skez Pm(n—
k) f (k).

Theorem 3. Let 0 < p < +o0o. If f € S'(R) with suppf C
[—% +¢, % - e] for some 0 <e < %, then the inequality

CTH{F Y 2y < Iflamery < CILF ()} mm (29

holds for some constant C' dependent of € and p only.
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For simplicity in the exposition we restrict ourselves to one spatial
dimension, all results can be extended to high spatial dimensions. The
results of Theorem 1 and 3 can be extended to spaces of Triebel-Lizorkin
type trivially. The big letter C will denote different constant at different
occurance.

2. Some lemmas
To prove our theorems, we will use the following fundamental lemmas.

Lemma 1. c.f. [15]. Let f € S’(R) have its Fourier transform con-
tained in a compact set. Therefore

(4) v * f(z)] < CM(|f]")*(z)

holds for every Schwartz function ¥ and 0 < r < 1, where M denotes
Hardy-Littlewood mazimal operator and the constant C depends on the
seminorm of ¥, v and the radius R for which f is supported in the ball
with radius R and center zero.

Proof of Lemma 1: Without loss of generality we assume z = 0,
M(]f]")(0) < +oco and supp f C [—3, 3| by dilation invariance. Write

(5) fl@)=">" f(n)p(z —n),

nezZ

for some Schwartz function ¢ such that supp@ C [—%, %] Hence |f *
PO)" £ T,ezlf@)" (1 + |n))~®.  To prove (4), we first prove
Y ez [F(m)|"(1 + |n|)™* < 4o00. Recall that f € S'(R) and supp f C
[—1,1]. Therefore |f(n)] < C(1+ |n|)" for some constants C and N.
On the other hand we have

IF )" < |f(n+8)" +Clo" Y |f(m)["(1 + |m — n[)= "+

meZ

by (5) and

ST f@IT A +Inl) 7 < Cs + Cnlbol” Y 1 ()71 +[n)7°

In|<2% [n|<2k+2
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by summing over |n| < 2F and integrating over |6] < & < 1,
where 8y is chosen later and Cp is independent of §3. Denote
Ak = Tpeorgmcos [f@)[7(A + nf)=3. Therefore 35_; 4; < 2C5, +
2Cn|8o|" Ag+1. Conversely if we assume 2?11 A; > 4Cs, for some ko,
then Z;“’;s Aj > (1 + m)s Cs,, which contradicts Z:"’:l |4;] <

zkn +a

Cyio (1+ [n)N < C2°V provided &y is chosen small enough. This
proved 3¢z Lf(m)["(1 + [n)=® < +oc.
Furthermore by (5) we have

lf@)" < If(n+8)" +CloI" Y 1F(m)[" (1 + In—m|)~3

meZ

for some constant C independent of f and by integrating over |6] < o
for some sufficiently small §y > 0 we get

D@ A+in) < C/R If@)I"(1 + |z)~* dz < CM(|£]")(0).

Therefore Lemma 1 is proved. B

Lemma 2. Let the integer translates of the continuous function ¢ be
globally linearly independent. If m(zx) = ), ., C(n)¢(z —n) € M(p),
then {C(n)} € 1% and [{C(n)}Hlie(z) < Cllm|m)-

Proof of Lemma 2: First we prove

(6) lml| Lo (ry < Climllas(p)-

Obviously (6) is true when 1 < p < oo since Marcinkiewicz real in-
terpolation, [m|lm@) = |mliLe(r) and ||mlaye) = lImllag) where
p = ;iLl. Hence the matter reduces to proving (6) for 0 < p < 1. For
f € HP(R), we have the atomic decomposition f(z) = Y po o Akax(z)
. — i
with C7 || fllar(ry < (%20 1A[P)? < Cllfl|2(r), where aj are (p,2,s)
atoms and s > % —1. We call that a is an (p, 2, s) atom if there exists an
interval I such that suppa C I, |lal|z2(r) < |I|%"% and [z%a(z)de =
0 for 0 < a < s. It is easy to show a(z) is continuous, |a(z)| <
C|II*# and |a(z)| < Clz|**|[I|**?"%. Hence |a(z)| < Clz|? ! and
; ~ 11’
@] < 5o Pl lax@)] < C(E320 A3 ol . Denote fi(a) =
t™# f (£). Therefore fi(z) = Y peg M (ar)e(z) and C~1 (302, [AxlP)? <
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I fellzery < C(ZE"ZDMEIP)%. Recall that m € M(p) for 0 < p < 1.
Hence

I(mf)Yllas(ry < Cllfellrecry < ClIf | ocry

and o .
Im(2)t" %) f(tz)| < Cl|fll s ry >~

for all ¢ > 0. Therefore |m(z)f (Ii—]) | < C|fllgr(r) for every z # 0
when we let ¢ = |z|™' and (6) is proved for 0 < p < 1 by choosing
f € HP(R) such that f = 1 on the unit sphere.

Second we prove

(7) {C(n)}Hlieo(z) < Clim| Lo ().

By [1, Theorem 1.3], there exists a local algebraic dual {A,} of {¢(z —

n)}, which says A,@(z — k) = 6,r and there exists a bounded set K

such that A, f =0 when f € S(¢) and supp f N (K + n) = 0, where we

define the Kronekker symbol §,x by 6., = 1 and 6,5 = 0 when n # k.

Recall that ¢ is continuous. Hence there exist finite points z; € K and

weights C(z;) such that A, f = 3, C(z;)f(z; + n) for every f € S(¢).
This shows [C(n)| = |[Axm| < C|lm||L= for every n € Z. Therefore (7)

holds and Lemma 2 is proved by combining (6) and (7). m

Lemma 3. ([4] or [5, Theorem A.1]). Let1 < p < 400 and 1 <
g < +o0. Therefore the following Fefferman-Stein vector-valued mazimal

inequality
1
q
()
kez

holds where M denotes the Hardy-Littlewood mazimal operator on R as
usual.

<C
L2(R)

(Z uww)é

kez

LP(R)

Let h and 7 be two Schwartz functions such that supp# C {|z| < &}
and 9(z) = 1 on {|z| < z5}. Let ®,, be as in the definition of H?(R).
For f € HP(T) we introduce a new type of paraproduct operator P,
defined by

®) Paf(2) = ) (nm * h)(@)(®m * f)(z),

m=0

where 7, (z) = 2™n(2™z).
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Lemma 4. Let P, be defined by (8) and h be a Schwartz function.
Then Py, maps HP(T) to H?(R),

| Pnfllaery < Cllf e (r)-

Proof: Observe that |1, xh(z)| < Cn(1+|z|)~" for every N > 0 and
some Cy independent of m. Also observe that supp((nm*h)(®m*f))" C

Bom < |z| < 32™) and O * f(z + k) = B * f(2) for all k € Z.
Therefore

B
2

1Pu 12y < C fR (Zl(ﬂm*h)(x)(‘l’m*f)(x)lz) dz

m=0
E
Z

SCZ/D (Z(1+Ikl)‘m““’%)l@m*f(m)]z) dx

kez m=>0
< Clif s ry

and Lemma, 4 is proved. &

3. Proof of theorems

Proof of Theorem 1: Let {C(n)} be a multiplier on HP(T) and

supp ¢ C [—3M, ;1 M] for some M > 1. Denote m(z) = 3 C(n)¢(z—n).
Let ®; be as in the definition of HP(R). Write f = fo + f1 + f2, where
fD = ZkS2M1 Qk * f and fi = 2k2M1 q)2k+;’ * f for i = 1,2, where Ml

is a positive integer such that 2™ > 20M. Observe that

m(@)( @ )Na)= Y, C)d(x —1)(®x * )" (z)

|t]<22M1 +M

for k < 2M;. Write ¢V(z) = 3 ,cz 9" (&) ¥ (z — &) for some ¢ €
S(R) with supp®) C {|z| < 2}, where ¢ denotes inverse Fourier trans-
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form. Therefore

g
fR ( $ |(m(<1>k*f}"‘)"‘(z)|2) de

k<2M,
¢ (31)

<c iC(f)l”(z

[t]<22M1 4 M
]R ( > w*u@m)l(z)P) dz

k<2M,

min(p,l}) max(p,1)

£
< CHCW = 2) fR( > (M(wf)’(:s))%) d

k<2M,

< Cllmll%y 1 2oy

where 0 < 7 < min(p, 1). The first inequality follows Holder inequality

and Y o lanl £ (3 ,ez |an|?’)% for 0 < p < 1, the second inequality
follows from Lemma 1 and

sup 3 [6¥(y + o) < € [ [g(a)mne) da

lyl<2 nez

(see [13, Lemma 6]), and the third inequality follows from
Lemma 2 and Lemma 3. For k > 2M,, write ¢(z)(®x * f) (z +n) =
Yoiez Crn(De2™*/Mp(z /M) for some Schwartz function 7 with
suppA C {|z| < 3}. Therefore we get

(m(®x x /)N (z) = Z Z C(n)Cxn(l)e~ 2= n(Mz — 1)

I€Z 2k-2<|n| <2k

since 2M1 > 20M and

Z Ck,n (3)8—2173‘71:!:

2k—2<|n|<2k

= /_1 o(y) (Z(f * tI);,_ (y +n)e Qarina:) o—2mily dy

nezZ
=Y (f*®i)(z+n)d (3:+n— %)

nez



450 Q. Sun

by Poisson summation formula. Hence

I(mf)¥ Wogo gy < € f (Z| m( @i + f)N) (2 )1) dx

k> M,
2\ &
< CZ/ Z C(H)C;ak+irn(f)e_2ﬂnz
ez k2> M, g2kti=2<
In| <22+
x (14 |Mz —1|)~2dz
2, &
<oy / > C(n)Caryinl)e e dz
leZ k> M,y g2k+i-2¢
|n|<22fe+|

wis

( ’
< CHCEN i 3 ] S| Y e | da

k> M, 92k+i=2 &

|n| <22k
[
< CIHCEZ S [ 2 (Z]fwm,-mnn
1ez’ "% \k>M;, \nez

x

é(mm;{))?)%dm

- . max(p,1)
< CHCW M, ([ 1B@Imne dz)

B

Z/__(Z |f*‘;’2k+;($+n)|) dz

nez k=M,
< CI{CEH T o M o ey

and Theorem 1 is proved. B

Proof of Theorem 2: Let m(z) = 3 ., C(n)¢(x — n) be a multiplier
of HP(R) and f(z) = Y ez f(l)e? = is a trigonometric polynomial.
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Observe that |f(k)| < Cillfllae(ry. Therefore we assume f(0) = 0
without loss of generality. Write"

(9) (m(')(th)('}“)"{x) |
Z Z C(n+k (2_mk) '211':'!:::/ﬁm(g)&(é)(ﬁ(gun)e—iﬁizgd&

n,k€Z m=>0
1

=3 X tnr(ah)(@) [ Y k) s h =)~y k) dy

1
n€Z m>0 ] kez

1

+ L mh)e) [ ™S o+ Dbtz -y~ K)dy,
nez -3 k€2

where (7,f)(z) = Y iz C(n + k)f(k)e*™*= and the second equality

follows from Poission summation formula }°, ., f(n) =3, ., f(n) and

2 om>0 &,, = 1 on {|¢| > 1}. Let ko be a smooth function with compact
support such that

S é(y+ Bho(—y =B =1on |53,
kez

since for every y € [—1, 1] there exists k € Z for which ¢(y + k) # 0
by the Fourier transform characterization of global linear independence
of integer translates of ¢ [R]. Denote h;(z) = ho(x — 27V4) and the
characteristic function on [27Vi,27V (i + 1)) by x;, where N is chosen
later and —2V~1 <§ < 2N=1 — 1. Therefore multiplying x;, on the two
sides of (9), we get

Ixi(2)] I f ()] < |xi(@)(m(Pr, £)")Y ()]
+CZ><» )| T f(2)|27 % (1 + |n|) 2/ min(e.1)

nez
+ CAmolxs(®)| D (1 + n]) =2/ minte:D) (Z | D ('rnf)(:v)lz) ,
nez m=0

k
where Ap,(h) = sup_sv- <i<2N -1 E|k15§+2(2m2m0 (|7 * (585) h; —

(%)ic hi||2)? and f(k) = 0 for |k| < 2™°. It is easy to prove Amy(h) <
C27™°. Recall that (8), m € M(p) and |f(k)| < Cil|f||zs(r) for |k| <
2™o, Hence

"TUf”Ln(f) <Cn o ||m]| M(p) "f”Hp(T)

+ OV +27m0) N |17 f |2y gy (L + )2,
nez
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holds for some constant C independent of N and mg by Lemma 4. Define
the Hilbert transform H by

Hf(z) = Z fke2'.rrikx _ Z fFre?mike

k>0 k<0

for f(z) = Y ez fre®™*®. Therefore H maps H?(T') to H?(T) and

I flaery < CIH fllery + CllfllLe()-

In high spatial dimensions, we can use Riesz transforms to replace Hilbert
transform [8]. Hence we have

"T(lf“Hp(T) < Cn,mollmilI} (p)"f"Hp(T]
+C@ N2 427 Y T f gy (1 + ) ™2

nez

Observe that sup,cz [|Tn f|| ge (1) < +00 when f is a trigonometric poly-
nomial and {C(n)} € I*° by Lemma 2. Therefore by choosing N and my
large enough we get

up [0 < CllmB Il

for every trigonometric polynomial f. Theorem 2 is proved. &

Proof of Theorem 3: First the right inequality. Since supp f -
[~3+¢,5 —¢| for some 0 < & < 3. Writekf(:r) =Yonez f(n}n’;(:s —n)
where 9 is a Schwartz function such that (z) =1on [—3 + 5,5 — §]
and supp® C [—5 + 5 5 - ] Observe that

ot f@) =3 f(n) / B(2mE)D(E)e 2= mE g

nezZ

- / (0" N2 d,

where we denote (ex, INE) = ‘i’(sz}@(tf)f(&) for m € Z and f(€) =
> nez f(n)e*™ ™. Observe that

=Y @' n(f)(n)g(z —n)

nez
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where g is a Schwartz function with supp§ C [—% + T%’% - T%} when

m <0, &, * f =0 when m > 1 and @ is chosen approciately. Therefore
by Lemma 1 we get

(Z |®rm * f(:v)lz) <t > (Z %(f)(n)g(x—n))

€Z >0 €z
m L?(R) TSR LP(R)

<C (Z |3 () ()2

m=0
L?(2Z)

< CI{f ()} zr(2)-

Now the left inequality. By the procedure used as in the proof of
Lemma 1, it suffices to show ), (3", <o |®, % f(k)[2)% < +00. Since f €
S'(R), we get |®,,, * f (k)| < CNlm(Q_":Hkt)N for some NV and all m > 0.
As in the proof of Lemma 1, we get ), . » |®m % F(R) (14 [K])™™M < 400
and Yyez | Pmxf (R)|(1+[k]) ™™ < C Tyez |Pmxf (k+8)|(1+]k+6)~M

for some C independent of f and m, where N; are chosen later. Therefore

m=0 m=0

5 H
(Zl‘f’m*f(k)ﬁ) <c| (Z]ém*mP) da(1+ k)™

for some N; < % + 2. Still by the procedure used as in the proof
of Lemma 2, we get > ,c,(3 .50 |®m * f(K)?)2 < 400 and

Sokez(Emso [®m * F(K)2)E < C|l £y Hence the left inequality
and Theorem 3 is proved. W
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