ON SUBGROUPS OF $Z J$ TYPE OF AN $\mathfrak{z - I N J E C T O R ~ F O R ~ F I T T I N G ~ C L A S S E S ~}$ \mathfrak{F} BETWEEN $\mathfrak{E}_{p^{*} p}$ AND $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$

A. Martínez Pastor ${ }^{(*)}$

Abstract

Let G be a finite group and p a prime. We consider an \mathfrak{F}-injector K of G, being \mathfrak{F} a Fitting class between $\mathfrak{E}_{p^{*} p}$ and $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$, and we study the structure and normality in G of the subgroups $Z J(K)$ and $Z J^{*}(K)$, provided that G verify certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p stable group, Canad. J. Math. 20 (1968), 555-564).

1. Introduction and notation

In this paper we consider a finite group G verifying certain conditions of stability and constraint, and we study the structure and normality in G of the subgroups $Z J(K)$ and $Z J^{*}(K)$, being K and \mathfrak{F}-injector of G and \mathfrak{F} a Fitting class such that $\mathfrak{E}_{p^{*} p} \subseteq \mathfrak{F} \subseteq \mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$, extending some results of Glauberman [6].

All groups in this paper are assumed to be finite. Given a fixed prime p, \mathfrak{S}_{p} will denote the class of all p-groups, $\mathfrak{E}_{p^{*}}$, the class of all p^{*}-groups, $\mathfrak{E}_{p^{*} p}$ the class of all $p^{*} p$-groups and $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$ that of all p^{*}-by- p-groups. The corresponding radicals in a group G are denoted by $O_{p}(G), O_{p^{*}}(G)$, $O_{p^{*} p}(G)$ and $O_{p^{*},}, p(G)$ respectively. For all definitions we refer to Bender [3].

The notation for Fitting classes is taken from [4]. The remainder of the notation is standard and it is taken mainly from [7] and [8]. In particular, $E(G)$ is the semisimple radical of G and $F^{*}(G)=F(G) E(G)$ the quasinilpotent radical of G. If H is a subgroup of $G, C_{G}^{*}(H)$ is the generalized centralizer of H in G (see [3]). Note that $C_{G}^{*}\left(F^{*}(G)\right) \leq$

[^0]$F(G)$, in every group G. A group G is said to be \mathfrak{N}-constrained if $C_{G}(F(G)) \leq F(G)$, that is, if $E(G)=1$.

Moreover, $\pi(G)$ is the set of primes dividing the order of $G, d(G)$ is the maximum of the orders of the abelian subgroups of $G, \mathfrak{A}(G)$ is the set of all abelian subgroups of order $d(G)$ in G and $J(G)$ is the subgroup generated by $\mathfrak{A}(G)$, that is, the Thompson subgroup of G. We set $Z J(G)=Z(J(G))$.

In [6] G. Glauberman proves his well-known $Z J$-Theorem and also introduces the subgroup $Z J^{*}(P)$ proving the following: "Let p be an odd prime and let P be a Sylow p-subgroup of a group G. Suppose that $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$ and that $S A(2, p)$ is not involved in G. Then $Z J^{*}(P)$ is a characteristic subgroup of G and $C_{G}\left(Z J^{*}(P)\right) \leq Z J^{*}(P)$ ".

On the other hand, Arad and Glauberman study in [2] the structure and normality of the subgroup $Z J(H), H$ being a Hall π-subgroup of a π-soluble group G with abelian Sylow 2-subgroups and $O_{\pi^{\prime}}(G)=1$.

Some related results were obtained by Arad in [1], by Ezquerro in [5] and by Pérez Ramos in [11] and [12].

Here we study the structure of the subgroups $Z J(K)$ and $Z J^{*}(K)$ where K is an \mathfrak{F}-injector of G, being \mathfrak{F} a Fitting class such that $\mathfrak{E}_{p^{*} p} \subseteq$ $\mathfrak{F} \subseteq \mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$, and we obtain that it depends only of G. Also, we obtain some analogous to Glauberman's $Z J$ and $Z J^{*}$ Theorems for such Fitting classes. Recall that such a Fitting class \mathfrak{F} is dominant in the class of all finite groups, so every finite group G has a unique conjugacy class of \mathfrak{F}-injectors (see $[\mathbf{1 0}]$). Moreover, for such \mathfrak{F} every finite group is \mathfrak{F} constrained in the sense of [9] (see [3]).

In the following \mathfrak{F} will be a Fitting class such that $\mathfrak{E}_{p^{*} p} \subseteq \mathfrak{F} \subseteq \mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$.

2. Preliminary results

Remark 1.

Let K be an \mathfrak{F}-injector of a group G. By [10] we know that

$$
K=\left(O_{p^{*}}(G) P\right)_{\mathfrak{F}}
$$

where P is a Sylow p-subgroup of G. Moreover, $O_{p^{*}}(K)=O_{p^{*}}(G)$, so $O_{p^{\prime}}(K)=O_{p^{\prime}}(G)$ and $O_{p^{\prime}}(F(K))=O_{p^{\prime}}(F(G))$. On the other hand, since $F^{*}(G) \leq K$, we have $E(K)=E(G)$.

Remark 2.

 a Sylow p-subgroup of K. Since $\left[O_{p^{*}}(K), O_{p}(K)\right]=1$, it is clear that K
acts nilpotently on $O_{p}(K)$, i.e. $K=C_{K}^{*}\left(O_{p}(K)\right)$. In particular, we can deduce that

$$
C_{K}^{*}\left(E(K) O_{p^{\prime}}(F(K))\right)=C_{K}^{*}\left(F^{*}(K)\right) \leq F(K) .
$$

Lemma 2.1.

Let G be a group and let K be an $\mathfrak{E}_{p} \cdot \mathfrak{S}_{p}$-subgroup of G containing $F^{*}(G)$. Then $\pi(Z J(K)) \subseteq \pi(F(G))=\pi(F(K))$. Moreover if the prime p belongs to $\pi(F(G))$ then $p \in \pi(Z J(K))$.

Proof:
Since $\pi(F(K))=\pi\left(Z(F(K))\right.$ and $Z(F(K)) \leq C_{G}\left(F^{*}(G)\right) \leq F(G)$, the first statement can be easily obtained. On the other hand if $p \in$ $\pi(F(G))$ and P is a Sylow p-subgroup of K we have $1 \neq Z(P) \cap O_{p}(K) \leq$ $Z(K) \leq Z J(K)$ since $K=P O_{p^{*}}(K)$, and so the result holds.

Lemma 2.2.

Let G be a group and let K be an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p^{-}}$-subgroup of G containing $O_{p}(G)$. Let B be a nilpotent normal subgroup of G and let A be any nilpotent subgroup of K. Then $A O_{p}(B)$ is nilpotent.

Proof:

By the Remark $2 A$ acts nilpotently on $O_{p}(B) \leq O_{p}(K)$, so the result follows.

Next we will deal with the subgroup $Z J^{*}(K)$ of an arbitrary group K and its properties:

Definition 2.3. [5].
For any group K define two sequences of characteristic subgroups of K as follows. Set $Z J^{0}(K)=1$ and $K_{0}=K$. Given $Z J^{i}(K)$ and K_{i}, $i \geq 0$, let $Z J^{i+1}(K)$ and K_{i+1} the subgroups of K that contain $Z J^{i}(K)$ and satisfy:

$$
\begin{aligned}
Z J^{i+1}(K) / Z J^{i}(K) & =Z J\left(K_{i} / Z J^{i}(K)\right) \\
K_{i+1} / Z J^{i}(K) & =C_{K_{i} / Z J^{i}(K)}\left(Z J^{i+1}(K) / Z J^{i}(K)\right) .
\end{aligned}
$$

Let n be the smallest integer such that $Z J^{n}(K)=Z J^{n+1}(K)$, then $Z J^{n}(K)=Z J^{n+r}(K)$ and $K_{n}=K_{n+r}$ for every $n \geq 0$. Set $Z J^{*}(K)=$ $Z J^{n}(K)$ and $K_{*}=K_{n}$.

Example.

In general, the subgroups $Z J(K)$ and $Z J^{*}(K)$ of a group K are different. To see this, we can consider, as an example, the group $K=$ $\left[Q_{8} \times C_{3}\right] S_{3}$ generated by the elements a, b, c, x, y with the following relations:

$$
\begin{gathered}
a^{4}=1, a^{2}=b^{2}, a^{b}=a^{-1}, c^{3}=1, a^{c}=a, b^{c}=b, x^{3}=y^{2}=1, x^{y}=y^{-1} \\
a^{x}=b a, b^{x}=a^{-1}, c^{x}=c, a^{y}=b, b^{y}=a, c^{y}=c^{-1}
\end{gathered}
$$

Then we can get check that $d(K)=18, Z(K)=Z\left(Q_{8}\right)=\left\langle a^{2}\right\rangle, Z J(K)=$ $Z\left(Q_{8}\right) \times C_{3}, K_{1}=\left[Q_{8} \times C_{3}\right]\langle x\rangle=J(K)$ and $Z J^{*}(K)=Z J^{2}(K)=K_{2}=$ $\left[Q_{8} \times C_{3}\right]$.

Remark 3.

For every group K :
i) $Z J\left(K_{i} / Z J^{i}(K)\right)=Z J\left(K_{i+1} / Z J^{i}(K)\right)=Z\left(K_{i+1} / Z J^{i}(K)\right)$, for every $i \geq 0$.
ii) $Z\left(K_{i}\right) \leq Z\left(K_{i+1}\right)$, for every $i \geq 0$.

Lemma 2.4.

For any group K and for every $i \geq 0$:
i) $Z J^{i}(K)$ is nilpotent.
ii) $F\left(K_{i} / Z J^{i}(K)\right)=F\left(K_{i}\right) / Z J^{i}(K)$.

Proof:

i) By induction on i, assume that $Z J^{i}(G)$ is nilpotent, for every group G. By ([5, Prop. II 3.6]) we have that $Z J^{i+1}(K) / Z J^{1}(K)=$ $Z J^{i}\left(K_{1} / Z J^{1}(K)\right)$, so this is a nilpotent group. Now, by the previous remark, $Z J^{1}(K)=Z J(K) \leq Z\left(K_{1}\right) \leq Z\left(K_{i}\right)$, and $Z J^{i+1}(K) \leq K_{i}$, hence $Z J^{i+1}(K)$ is nilpotent.
ii) By induction on i. The assertion is clear for $i=0$. Assume now that $F\left(K_{i} / Z J^{i}(K)\right)=F\left(K_{i}\right) / Z J^{i}(K)$. We have:

$$
F\left(K_{i+1} / Z J^{i+1}(K)\right) \cong F\left(K_{i+1} / Z J^{i}(K) / Z J^{i+1}(K) / Z J^{i}(K)\right)
$$

and since $Z J^{i+1}(K) / Z J^{i}(K)=Z\left(K_{i+1} / Z J^{i}(K)\right)$, it follows

$$
\begin{aligned}
& F\left(K_{i+1} / Z J^{i}(K) / Z J^{i+1}(K) / Z J^{i}(K)\right)= \\
& F\left(K_{i+1} / Z J^{i}(K)\right) / Z J^{i+1}(K) / Z J^{i}(K) .
\end{aligned}
$$

But applying the inductive hypothesis we have:

$$
\begin{aligned}
& F\left(K_{i+1} / Z J^{i}(K)\right)=F\left(K_{i} / Z J^{i}(K)\right) \cap K_{i+1} / Z J^{i}(K)= \\
& F\left(K_{i}\right) / Z J^{i}(K) \cap K_{i+1} / Z J^{i}(K)=F\left(K_{i+1} / Z J^{i}(K)\right.
\end{aligned}
$$

and so we can conclude that $F\left(K_{i+1} / Z J^{i+1}(K)\right)=F\left(K_{i+1}\right) / Z J^{i+1}(K)$.

3. The structure of the $Z J$-subgroup and the $Z J^{*}$-subgroup

In this section we will study the structure of the subgroups $Z J(K)$ and $Z J^{*}(K)$ being K an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p^{-}}$subgroup of a group G containing $O_{p}(G)$ and satisfying that $O_{p^{*}}(K)=O_{p^{*}}(G)$, properties that hold for an \mathfrak{F}-injector of G, as we have seen.

Theorem 3.1.

Let G be an \mathfrak{N}-constrained group and let K be an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$-subgroup of G containing $O_{p}(G)$ and such that $O_{p^{*}}(K)=O_{p^{*}}(G)$. Assume that at least one of the following conditions hold:
i) $O_{p^{\prime}}(F(G)) \leq Z J(K)$,
ii) $F(G)$ is abelian,
iii) $d(K)$ is odd and $O_{2}(G)$ is abelian.

Then:
a) $\left\{O_{p}(A) \mid A \in \mathfrak{A}(K)\right\}=\mathfrak{A}\left(O_{p}(K)\right)$.
b) $O_{p}(Z J(K))=Z J\left(O_{p}(K)\right)$.
c) $\left\{O_{p^{\prime}}(A) \mid A \in \mathfrak{A}(K)\right\}=\mathfrak{A}\left(\Theta_{p^{*}}(G)\right)$.
d) $O_{p^{\prime}}(Z J(K))=Z J\left(O_{p^{*}}(G)\right)$.

In particular, if we assume $O_{p^{\prime}}(F(G)) \leq Z J(K)$ then for every $A \in$ $\mathfrak{A}(K)$

$$
O_{p^{\prime}}(A)=O_{p^{\prime}}(Z J(K))=O_{p^{\prime}}(F(G))
$$

Moreover the prime numbers divisors of $d(K),|Z J(K)|,|F(K)|$ and $|F(G)|$ coincide.

Proof:
Let $A \in \mathfrak{A}(K)$. Since $F^{*}(G) \leq K$ we know that $E(K)=E(G)=1$, so K is an \mathfrak{N}-constrained group. Leading from our assumptions we can obtain that $A F(G)$ is nilpotent (if we assume i) Lemma 2.2 applies; if we assume ii) or iii) Proposition 1 of [2] applies). Moreover, since $O_{p^{*}}(K)=O_{p^{*}}(G)$ we have $O_{p^{\prime}}(F(K))=O_{p^{\prime}}(F(G))$.
a) Let $A \in \mathfrak{A}(K)$. Since $A F(G)$ is nilpotent $O_{p}(A)$ centralizes $O_{p^{\prime}}(F(G))$ and so applying Remark 2 we obtain

$$
O_{p}(A) \leq C_{K}\left(O_{p^{\prime}}(F(K))\right) \leq F(K)
$$

so $O_{p}(A) \leq O_{p}(K)$.
Let $B \in \mathfrak{A}\left(O_{p}(K)\right)$. Since $A O_{p}(K)$ is nilpotent by Lemma 2.2, $O_{p^{\prime}}(A)$ centralizes $O_{p}(K)$, so $O_{p^{\prime}}(A) B$ is an abelian subgroup of K and then

$$
\left|O_{p^{\prime}}(A) B\right| \leq|A|=\left|O_{p^{\prime}}(A) O_{p}(A)\right|
$$

Hence $d\left(O_{p}(K)\right) \leq\left|O_{p}(A)\right|$. Since $O_{p}(A) \leq O_{p}(K)$ the equality $d\left(O_{p}(K)\right)=\left|O_{p}(A)\right|$ holds.

Thus, for every $B \in \mathfrak{A}\left(O_{p}(K)\right), O_{p^{\prime}}(A) \times B \in \mathfrak{A}(K)$. So we have

$$
\left\{O_{p}(A) \mid A \in \mathfrak{A}(K)\right\}=\mathfrak{A}\left(O_{p}(K)\right) .
$$

b) This follows easily from a):

$$
\begin{aligned}
& O_{p}(Z J(K))=O_{p}(\cap\{A \mid A \in \mathfrak{A}(K)\}) \\
&=\cap\left\{O_{p}(A) \mid A \in \mathfrak{A}(K)\right\}=Z J\left(O_{p}(K)\right)
\end{aligned}
$$

c) Let $A \in \mathfrak{A}(K)$. By a) we know that $O_{p}(A) \leq O_{p}(K)$. On the other hand, since K is an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p^{-}}$-group we have $O_{p^{\prime}}(A) \leq O^{p}(K)=O_{p^{*}}(K)=$ $O_{p^{*}}(G)$.

Let $B \in \mathfrak{A}\left(O_{p^{*}}(G)\right)$. Since $\left[O_{p^{*}}(G), O_{p}(K)\right]=1, O_{p}(A)$ centralizes B so $O_{p}(A) B$ is an abelian subgroup of K and then

$$
\left|O_{p^{\prime}}(A) B\right| \leq|A|=\left|O_{p}(A) O_{p^{\prime}}(A)\right|
$$

Hence $d\left(O_{p^{*}}(G)\right) \leq\left|O_{p^{\prime}}(A)\right|$. Since $O_{p^{\prime}}(A) \leq O_{p^{*}}(G)$ it follows $d\left(O_{p^{*}}(G)\right)=\left|O_{p^{\prime}}(A)\right|$. Therefore, for every $B \in \mathfrak{A}\left(O_{p^{*}}(G), O_{p}(A) \times B \in\right.$ $\mathfrak{A}(K)$. This proves c).
d) This follows from c) as in b).

If we assume $O_{p^{\prime}}(F(G)) \leq Z J(K)$ then it is clear that $O_{p^{\prime}}(Z J(K))=$ $O_{p^{\prime}}(F(K))=O_{p^{\prime}}(F(G))$. Let $A \in \mathfrak{A}(K)$. Since $Z J(K)=\cap\{A \mid A \in$ $\mathfrak{A}(K)\}$ and $A F(G)$ is nilpotent we obtain that $O_{p^{\prime}}(A) \leq C_{G}(F(G)) \leq$ $F(G)$ and so the equality $O_{p^{\prime}}(F(G))=O_{p^{\prime}}(Z J(K))=O_{p^{\prime}}(A)$ holds.

Now since $F^{*}(G) \leq K$ we can apply Lemma 2.1 and our assumptions to obtain $\pi(Z J(K))=\pi(F(G))=\pi(F(K))$. Moreover, if $A \in \mathfrak{A}(K)$ it is clear that $\pi(Z J(K)) \subseteq \pi(A)=\pi(d(K))$. On the other hand, if q is a prime number such that $q \neq p$ and $q \in \pi(A)$, then $q \in \pi(F(G))$, by the foregoing assertion. Finally, if we assume that $p \in \pi(A)$, then $p \in \pi(F(K))=\pi(F(G))$ because of a), and so the result follows.

Corollary 3.2.

Let G be an \mathfrak{N}-constrained group, H an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$-injector of G and $K=$ $H_{\mathfrak{F}}$ its associated \mathfrak{F}-injector of G. If one of the following conditions holds:
i) $O_{p^{\prime}}(F(G)) \leq Z J(K)$,
ii) $F(G)$ is abelian,
iii) $d(K)$ is odd and $O_{2}(G)$ is abelian,
then

$$
Z J(K)=Z J\left(O_{p^{*}}(G)\right) \times Z J\left(O_{p}(H)\right)=Z J(H)
$$

So, in particular, $Z J(K)$ does not depend on the Fitting class \mathfrak{F}.

Proof:

Given A in $\mathfrak{A}(H)$, by Remark 2 we see that $O_{p}(A) \leq O_{p}(H)=O_{p}(K)$. On the other hand, due to the structure of the injectors considered here, one has $O_{p^{\prime}}(A) \leq O^{p}(H)=O_{p^{*}}(H)=O_{p^{*}}(G) \leq K$. Therefore $\mathfrak{A}(H)=$ $\mathfrak{A}(K)$. Then apply Theorem 3.1 parts b) and d) to the subgroups H and K.

Corollary 3.3.

If G is an \mathfrak{N}-constrained group and K and \mathfrak{F}-injector of G such that $O_{p^{\prime}}(F(G)) \leq Z(K)$, then

$$
K=O_{p^{\prime}}(F(G)) \times P
$$

where P is a Sylow p-subgroup of G. In particular,

$$
\mathfrak{A}(K)=\left\{O_{p^{\prime}}(F(G)) A \mid A \in \mathfrak{A}(P)\right\} .
$$

Proof:
Since $K=P O_{p^{*}}(G), P$ a Sylow p-subgroup of K and $O_{p^{\prime}}(F(G)) \leq$ $Z(K)$, due to 6.11 in $[\mathbf{3}]$, we can write $\left[P, O_{p^{*}}(G)\right]=1$. Now by \mathfrak{N} constraint, K is nilpotent and hence it is an $\mathfrak{E}_{p^{\prime}} \mathfrak{S}_{p}$-injector of G (see $[10])$; therefore P is a Sylow p-subgroup of G and $K=O_{p^{\prime}}(F(G)) \times P$.

Our next goal is to study the structure of the $Z J^{*}$-subgroup.

Theorem 3.4.

Let G be an \mathfrak{N}-constrained group. Let K be an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$-subgroup of G containing $O_{p}(G)$ and such that $O_{p^{*}}(K)=O_{p^{*}}(G)$. Assume that $O_{p^{\prime}}(F(G)) \leq Z J(K)$. Denote $P=O_{p}(K)$. Then for every $i \geq 1$, $O_{p^{\prime}}\left(Z J^{i}(K)\right)=O_{p^{\prime}}\left(F\left(K_{i}\right)\right)=O_{p^{\prime}}(F(G)), K_{i}$ is a nilpotent group and

$$
O_{p}\left(Z J^{i}(K)\right)=Z J^{i}(P) \quad O_{p}\left(K_{i}\right)=P_{i}
$$

with the notation given in Definition 2.3. In particular $O_{p}\left(Z J^{*}(K)\right)=$ $Z J^{*}(P), O_{p}\left(K_{*}\right)=P_{*}$ and

$$
Z J^{*}(K)=Z J^{*}(P) \times O_{p^{\prime}}(F(G)) .
$$

Proof:
Since $O_{p^{\prime}}(Z J(K)) \leq O_{p^{\prime}}\left(Z J^{i}(K)\right) \leq O_{p^{\prime}}\left(F\left(K_{i}\right)\right) \leq O_{p^{\prime}}(F(K))=$ $O_{p^{\prime}}(F(G))$, the first statement is clear.

Notice that $O_{p^{\prime}}(F(G)) \leq Z J(K) \leq Z\left(K_{1}\right)$, so $O_{p^{*}}\left(K_{1}\right) \leq C_{G}(F(G)) \leq$ $F(G)$. Hence $O_{p^{*}}\left(K_{1}\right)=O_{p^{\prime}}\left(F\left(K_{1}\right)\right) \leq Z\left(K_{1}\right)$ and K_{1} is a nilpotent gorup. Now apply that for every $i \geq 1, K_{i} \leq K_{1}$.

We will prove that $O_{p}\left(Z J^{i}(K)\right)=Z J^{i}(P)$ and $O_{p}\left(K_{i}\right)=P_{i}$ by induction on i. By Propositiom 3.2 we have $Z J(P)=O_{p}(Z J(K))$. On the other hand $P=O_{p}(K)$ centralizes $O_{p^{\prime}}(Z J(K))$, so $C_{P}(Z J(P)) \leq$ $C_{K}(Z J(K))$ and then we obtain

$$
O_{p}\left(K_{1}\right)=P \cap K_{1}=P \cap C_{K}(Z J(K))=C_{P}(Z J(P))=P_{1} .
$$

Thus, the statement is clear for $i=1$.
Now suppose that $O_{p}\left(Z J^{i}(K)\right)=Z J^{i}(P)$ and $O_{p}\left(K_{i}\right)=P_{i}$. Applying Lemma 2.4 and the fact that $O_{p^{\prime}}\left(F\left(K_{i}\right)\right)=O_{p^{\prime}}\left(Z J^{i}(K)\right)$, we get that $K_{i} / Z J^{i}(K)=F\left(K_{i}\right) / Z J^{i}(K)$ is a p-group. Then it follows that

$$
K_{i} / Z J^{i}(K)=P_{i} Z J^{i}(K) / Z J^{i}(K) \cong P_{i} / Z J^{i}(K) \cap P_{i}=P_{i} / Z J^{i}(P)
$$

by the inductive hypothesis. Thus

$$
\begin{aligned}
Z J^{i+1}(K) / Z J^{i}(K)=Z J\left(K_{i} / Z J^{i}(K)\right) \cong Z J & \left(P_{i} / Z J^{i}(P)\right) \\
& =Z J^{i+1}(P) / Z J^{i}(P) .
\end{aligned}
$$

and since $Z J^{i+1}(K)=Z J^{i}(K)\left(Z J^{i+1}(K) \cap P_{i}\right)$ we can conclude

$$
O_{p}\left(Z J^{i+1}(K)\right)=Z J^{i+1}(K) \cap O_{p}\left(K_{i}\right)=Z J^{i+1}(K) \cap P_{i}=Z J^{i+1}(P) .
$$

Now we will prove that $O_{p}\left(K_{i+1}\right)=P_{i+1}$. It is clear that $O_{p}\left(K_{i+1}\right) \leq$ $O_{p}\left(K_{i}\right)=P_{i}$ and

$$
\begin{aligned}
{\left[O_{p}\left(K_{i+1}\right), Z J^{i+1}(P)\right] \leq\left[O_{p}\left(K_{i+1}\right)\right.} & \left., Z J^{i+1}(K)\right] \\
& \leq O_{p}\left(K_{i+1}\right) \cap Z J^{i}(K)=Z J^{i}(P) .
\end{aligned}
$$

Hence by the definition of P_{i+1} it follows that $O_{P^{\prime}}\left(K_{i+1}\right) \leq P_{i+1}$. On the other hand, $P_{i+1} \leq P_{i} \leq K_{i}$ and since $O_{p^{\prime}}(F(G)) \leq Z J(K) \leq Z\left(K_{i}\right)$, we have

$$
\left[P_{i+1}, Z J^{i+1}(K)\right]=\left[P_{i+1}, Z J^{i+1}(P)\right] \leq Z J^{i}(P) \leq Z J^{i}(K) .
$$

Thus, by the definition of K_{i+1} we obtain $P_{i+1} \leq K_{i+1}$. Now, since $O_{p}\left(K_{i+1}\right)$ is the Sylow p-subgroup of K_{i+1} the result follows.

Corollary 3.5.

Let G be an \mathfrak{N}-constrained group. Let H be an $\mathfrak{E}_{p} \cdot \mathfrak{S}_{p}$-injector of G and assume that $O_{p^{\prime}}(F(G)) \leq Z J(H)$. Let $K=H_{\mathfrak{F}}$ be an \mathfrak{F}-injector of G. Then

$$
Z J^{*}(K)=O_{p^{\prime}}(F(G)) \times Z J^{*}\left(O_{p}(H)\right)=Z J^{*}(H) .
$$

In particular, $Z J^{*}(K)$ does not depend on \mathfrak{F}.

Proof:

Because of Corollary 3.2 we have $Z J(K)=Z J(H)$. Now Theorem 3.4 is applied, keeping in mind that $O_{p}(K)=O_{p}(H)$.

4. The normality of the $Z J$-subgroup and the $Z J^{*}$-subgroup

In this section we prove some results related to the normality of the $Z J$-subgroup and the normality and self-centrality of the $Z J^{*}$-subgroup of an \mathfrak{F}-injector K of a group G, provided that G verifies certain conditions of stability. Concretely, we will use the following version of p stability:

Definition 4.1.

A group G is said to be p-stable if whenever A is a subnormal p subgroup of G and B is a p-subgroup of $N_{G}(A)$ satisfying $[A, B, B]=1$, then

$$
B \leq O_{p}\left(N_{G}(A) \bmod C_{G}(A)\right) .
$$

Proposition 4.2.

Let G be a p-stable group. Let K be an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$-subgroup of G containing the $\mathfrak{E}_{p^{*} p^{-}}$-radical of $G, O_{p^{*} p}(G)$. If N is an abelian normal subgroup of K then $N \unlhd \unlhd G$ and $N \leq F(G)$. In particular $Z J(K) \leq F(G)$.

Proof:
First notice that $O_{p^{*} p}(G) \leq K$ implies $O_{p^{*}}(K)=O_{p^{*}}(G)$ (see [3, 4.22]). Thus, $O_{p^{\prime}}(N) \leq O_{p^{*}}(G) \leq O_{p^{*} p}(G) \leq K$, and so $O_{p^{\prime}}(N) \unlhd$ $O_{p^{*} p}(G)$.

On the other hand, it holds $\left[O_{p}(G), O_{p}(N), O_{p}(N)\right]=1$ and so applying the p-stability of G we have:

$$
\begin{aligned}
& O_{p}(N) C_{G}\left(O_{p}(G)\right) / C_{G}\left(O_{p}(G)\right) \leq O_{p}\left(G / C_{G}\left(O_{p}(G)\right)\right) \\
&=C_{G}^{*}\left(O_{p}(G)\right) / C_{G}\left(O_{p}(G)\right)
\end{aligned}
$$

(see [3, 3.8]). Then we obtain

$$
O_{p}(N) \leq C_{G}^{*}\left(O_{p}(G)\right) \cap C_{G}\left(E(G) O_{p^{\prime}}(F(G))\right) \leq C_{G}^{*}\left(F^{*}(G)\right) \leq F(G)
$$

so $O_{p}(N) \unlhd O_{p^{*} p}(G)$ and the result follows.

Theorem 4.3.

Let G be a p-stable group, p and odd prime and assume that $O_{p}(G) \neq 1$. If K is an \mathfrak{F}-injector of G then

$$
1 \neq O_{p}(Z J(K)) \unlhd G .
$$

Moreover, if $O_{p^{\prime}}(F(G)) \leq Z J(K)$, then $1 \neq Z J(K) \unlhd G$.

Proof:

First note that $O_{p}(Z J(K)) \unlhd G$ implies $O_{p}(Z J(K))$ char G, because of the conjugacy of the \mathfrak{F}-injectors.

By Proposition 4.2, we know that $O_{p}(Z J(K)) \leq O_{p}(G)$, and by Lemma 2.1 $O_{p}(Z J(K)) \neq 1$. Now, to obtain the theorem it is enough to prove that if B is a normal p-subgroup of G, then $B \cap O_{p}(Z J(K))$ is normal in G.

Assume the result false and suppose that G is a minimal counterexample. Suppose that B is a normal p-subgroup of G of least order such that $B \cap O_{p}(Z J(K))$ is not normal in G.

Set $Z=O_{p}(Z J(K))$ and let B^{*} be the normal closure of $B \cap Z$ in G, then $B \cap Z=B^{*} \cap Z$ and by our minimal choice of B we obtain $B=B^{*}$.

Moreover, since $B^{\prime}<B$ we have that $B^{\prime} \cap Z$ is a normal subgroup of G. Thus, for any g in G we have $\left[(B \cap Z)^{g}, B\right]=[B \cap Z, B]^{g} \leq B^{\prime} \cap Z$. Since B is generated by all such $(B \cap Z)^{g}$, it follows that $B^{\prime} \leq Z$. In particular $B \cap Z$ centralizes B^{\prime}, and applying the foregoing argument we get $[B, B, B]=1$.

Let $A \in \mathfrak{A}(K)$. By Lemma 2.2 we know that $A B$ is nilpotent, so there exists some positive integer n such that $[B, A ; n]=1$. Moreover, since p is an odd prime $[A, B]^{\prime} \leq B^{\prime}$ has odd order.

Now by Glauberman's replacement Theorem ([1, Corollary 2.8]) we can conclude that there exists an element A in $\mathfrak{A}(K)$ such that $B \leq$ $N_{G}(A)$, and therefore $[B, A, A]=1$.

In particular, $\left[B, O_{p}(A), O_{p}(A)\right]=1$. Since G is p-stable we have:

$$
O_{p}(A) C / C \leq O_{p}(G / C)=T / C \unlhd G / C
$$

where $C=C_{G}(B)$ and $T=C_{G}^{*}(B)$. Moreover, since $O_{p^{\prime}}(A) \leq C_{G}(B)$ we get

$$
A \leq T .
$$

If $T=G$, then G / C is a p-group, so $K C$ is a subnormal subgroup of G. Since $K C$ normalizes $B \cap Z, K C<G$. Let M be a normal proper subgroup of G such that $K C \leq M$. Clearly M verifies the hypothesis of the theorem, K being an \mathfrak{F}-injector of M, so by our minimal choice of G, we get $Z \unlhd M$, and then Z char M. Therefore, $Z \unlhd G$, contrary to our choice of G.

Thus, we have $T<G$. Since $A \leq K \cap T$, it follows that $\mathfrak{A}(K \cap T) \subseteq$ $\mathfrak{A}(K), J(K \cap T) \leq J(K)$ and $Z J(K) \leq Z J(K \cap T)$. It is clear that T verifies the hypothesis of the theorem, being $K \cap T$ an \mathfrak{F}-injector of T. Thus, by the minimal choice of $G, O_{p}(Z J(K \cap T))$ char T and then $O_{p}(Z J(K \cap T)) \unlhd G$. Since B is the normal closure of $B \cap Z$ in G we obtain $B \leq O_{p}(Z J(K \cap T))$. In particular, B is abelian.
If $J(K)=J(K \cap T)$ then $O_{p}(Z J(K))=O_{p}(Z J(K \cap T)) \unlhd G$, contrary to the choice of G. Thus, there exists an element $A_{1} \in \mathfrak{A}(K)$ such that A_{1} is not a subgroup of T. Then we must have $\left[B, A_{1}, A_{1}\right] \neq 1$. Among all such A_{1}, choose A_{1} such that $\left|A_{1} \cap B\right|$ is maximal. As B does not normalize A_{1}, by Thompson's replacement Theorem ([1, Theorem 2.5], there exists an element A_{2} in $\mathfrak{A}(K)$ such that $A_{1} \cap B<A_{2} \cap B$ and A_{2} normalizes A_{1}. The maximal choice of A_{1} implies that $\left[B, A_{2}, A_{2}\right]=1$ and $A_{2} \leq T$. Hence, $B \leq Z J(K \cap T) \leq A_{2} \leq N_{G}\left(A_{1}\right)$ and this is the last contradiction.

Finally, if in addition we assume $O_{p^{\prime}}(F(G)) \leq Z J(K)$, then $O_{p^{\prime}}(F(G))=$ $Z J(K)$ and the result follows.

Corollary 4.4 (compare with Glauberman's $Z J$-Theorem [6]).
Let G be a p-stable group such that $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G), p$ and odd prime. If P is a Sylow p-subgroup of G then $Z J(P) \unlhd G$.

Proof:
Leading from our assumptions we have $O_{p^{*}}(G)=O_{p^{\prime}}(G)=1$, so P is actually an $\mathfrak{E}_{p} \cdot \mathfrak{S}_{p}$-injector of G and Theorem 4.3 applies.

Theorem 4.5.

Let p be an odd prime and K an \mathfrak{F}-injector of a group G, being \mathfrak{F} a Z-extensible and Q_{Z}-closed Fitting class. Assume that $S A(2, p)$ is not involved in G and that $O_{p^{\prime}}(F(G)) \leq Z J(K)$. Then $Z J^{i}(K)$ is a characteristic subgroup of G for every $i \geq 0$.

Proof:

Assume the result to be false and let G be a minimal counterexample. Since $S A(2, p)$ is not involved in G, we know that G is p-stable (using Definition 4.1 above, proceed as in [6]). Therefore applying Theorem 4.3
we have $Z J(K)$ char G. Because of the choice of G we can assume $1 \neq Z J(K)$.

Set $C=C_{G}(Z J(K))$. Assume that $C<G$. Then for every $i \geq 0$ we have $Z J^{i}(K \cap C)$ char C, and so $Z J^{i}(K \cap C) \unlhd G$. Now since $J(K) \leq$ $K \cap C$, it follows that $J(K)=J(K \cap C)$ and $Z J(K)=Z J(K \cap C)$. Also $K_{1}=C_{K}(Z J(K))=C_{K \cap C}(Z J(K \cap C))$ and applying induction on i we can obtain $Z J^{i}(K)=Z J^{i}(K \cap C) \unlhd G$, contrary to the choice of G.

Therefore $C=G$ and then $Z J(K)=Z(G)$. Since $|G / Z(G)|<G$ and $K / Z(G)$ is an \mathfrak{F}-injector of $G / Z(G)$ we obtain $Z J^{i}(K / Z(G))$ char $G / Z(G)$, for every $i \geq 0$. Now since $K_{1}=C_{K}(Z J(K))=K$, using ($[\mathbf{5}$, Prop. II.3.6]) we can deduce $Z J^{i}(K / Z(G))=Z J^{i+1}(K) / Z(G)$, and so $Z J^{i+1}(K)$ char G for every $i \geq 0$, which is the last contradiction.

Remark 4.

Recall that for any group $K, C_{K}\left(Z J^{*}(K)\right) \leq K_{*}$ and $K_{*} / C_{K}\left(Z J^{*}(K)\right)$ is nilpotent (by [5, Prop. II 3.7]). Using this facts it is easy to see that for any group K the following statements are equivalent:

$$
\begin{array}{ll}
\text { i) } C_{K}\left(Z J^{*}(K)\right) \leq Z J^{*}(K) & \text { ii) } K_{*}=Z J^{*}(K)
\end{array}
$$

Also, we know that $C_{K}\left(K_{*}\right) \leq C_{K}\left(Z J^{*}(K)\right) \leq K_{*}$, using ([5, Prop. II 3.7]).

Remark 5.

Let K be an \mathfrak{F}-injector of a group G. Then K is also an \mathfrak{F}-injector of any subgroup of G containing K (see [10]). In particular, K is an \mathfrak{F} injector of $N_{G}\left(K_{*}\right)$, and so by the previous remark $Z\left(K_{*}\right)=C_{K}\left(K_{*}\right)=$ $C_{G}\left(K_{*}\right) \cap K$ is an \mathfrak{F}-injector of $C_{G}\left(K_{*}\right)$. Thus if $x \in C_{G}\left(K_{*}\right)$, since $\left\langle x, Z\left(K_{*}\right)\right\rangle$ is an abelian subgroup of $N_{G}\left(K_{*}\right)$ with $Z\left(K_{*}\right) \leq\left\langle x, Z\left(K_{*}\right)\right\rangle \leq$ $C_{G}\left(K_{*}\right)$, we can conclude that $Z\left(K_{*}\right)=\left\langle x, Z\left(K_{*}\right)\right\rangle$. Therefore, we have proved that $C_{G}\left(K_{*}\right) \leq K_{*}$.

Proposition 4.6.

Let K be an \mathfrak{F}-injector of a group G and assume $O_{p^{\prime}}(F(G)) \leq Z J(K)$. Then the following are equivalent:
i) G is an \mathfrak{N}-constrained group.
ii) $K_{*}=Z J^{*}(K)$.
iii) $C_{G}\left(Z J^{*}(K) \leq Z J^{*}(K)\right.$.

Proof:
First notice that, applying Lemma 2.1 , since $K_{*} / Z J^{*}(K)$ is an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p^{-}}$ group, $Z J\left(K_{*} / Z J^{*}(K)\right)=1$ implies $O_{p}\left(K_{*} / Z J^{*}(K)\right)=1$. Now applying Lemma 2.4 and the fact that $O_{p^{\prime}}(F(G)) \leq Z J(K)$ we obtain that $F\left(K_{*} / Z J^{*}(K)\right)=F\left(K_{*}\right) / Z J^{*}(K)$ is a p-group and so we conclude $Z J^{*}(K)=F\left(K_{*}\right)$.
i) \Rightarrow ii) Since $F(G) \leq K$ it follows that $C_{K}(F(K)) \leq F(K)$, and so on $C_{K_{*}}\left(F\left(K_{*}\right)\right) \leq F\left(K_{*}\right)$. Bearing in mind that $Z J^{*}(K)=F\left(K_{*}\right)$ and $C_{K}\left(Z J^{*}(K)\right)=C_{K_{*}}\left(Z J^{*}(K)\right)$, ii) follows from Remark 4.
ii) \Rightarrow iii) By the Remark 5 .
iii) \Rightarrow i) Since $Z J^{*}(K)$ is nilpotent we have $E(G) \leq C_{G}\left(Z J^{*}(K)\right) \leq$ $Z J^{*}(K)$, and then $E(G)=1$, that is, G is an \mathfrak{N}-constrained group.

Corollary 4.7.

Let p be an odd prime and K an \mathfrak{F}-injector of an \mathfrak{N}-constrained group G, being \mathfrak{F} a Z-extensible and Q_{Z}-closed Fitting class. Assume that $S A(2, p)$ is not involved in G and that $O_{p^{\prime}}(F(G)) \leq Z J(K)$. Then $Z J^{*}(K)$ is a characteristic subgroup of G and $C_{G}\left(Z J^{*}(K)\right) \leq Z J^{*}(K)$.

Recall that both the classes $\mathfrak{E}_{p^{*} p}$ and $\mathfrak{E}_{p^{*} p} \mathfrak{S}_{p}$ are Z-extensible and $Q_{Z^{-}}$ closed Fitting classes (see [3] and [10]), so the previous result applies for such classes. Moreover, as in the case of the $Z J$-theorem we can also recover the Glauberman's $Z J^{*}$-Theorem quoted at the beginning as a consequence of the above corollary.

5. Final remarks

Remark 6.

There exist \mathfrak{N}-constrained groups G such that $O_{p^{\prime}}(F(G)) \leq Z J(K)$, being K an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p}$-injector of G, verifying that $S A(2, p)$ is not involved in G, p odd, and however with $O_{p^{\prime}}(G) \neq 1$.

Proof:

It is enough to take the group $G=S A(3,3)=[N] H$, with $N \cong$ $C_{3} \times C_{3} \times C_{3}$ and $H \cong S L(3,3)$ and the prime $p=13$. Really, G is an \mathfrak{N}-constrained group with $O_{p^{\prime}}(F(G))=N$, an $\mathfrak{E}_{p^{*}} \mathfrak{S}_{p^{\prime}}$-injector of G is $K=O_{p^{*}}(G) P=N P$ where $P \cong C_{13}$, and $Z J(K)=N$. Moreover, it is clear that $S A(2,13)$ is not involved in G, bearing the orders in mind.

Remark 7.

In [2] and [12], the authors consider a π-soluble group G with abelian Sylow 2-subgroups and $O_{\pi^{\prime}}(G)=1$, and they study the structure of the subgroup $Z J(H)$, where H is a Hall π-subgroup of G, or H is an \mathfrak{F} injector of G for certain Fitting classes \mathfrak{F}, respectively. Recall that such a group is an \mathfrak{N}-constrained group (see [2]), and moreover it is a p-stable group for any prime number p (see [12]).

Moreover, since the p-nilpotent groups are $\mathfrak{E}_{p} \cdot \mathfrak{S}_{p}$-groups, we can easily generalizes Lemma 4 of [2], as follows:
"Let G be a group and let P be a p-subgroup of $K=O_{p^{*},}, p(G)$. Assume that P centralizes $E(G) O_{p^{\prime}}(F(G))$. Then $P \leq O_{p}(G)^{\prime \prime}$.

For the proof, let $K=O_{p^{*}},{ }_{p}(G)$; since $F^{*}(K)=F^{*}(G)$, applying Remark 2 it follows that $P \leq C_{K}\left(E(K) O_{p^{\prime}}(F(K))\right) \leq F(K)$, and hence $P \leq O_{p}(K)=O_{p}(G)$.

References

1. Z. Arad, A characteristic subgroup of π-stable groups, Canad. J. Math. 26 (1974), 1509-1514.
2. Z. Arad and G. Glauberman, A characteristic subgroup of a group of odd order, Pacific J. Math. 56(2) (1975), 305-319.
3. H. Bender, On the normal p-structure of a finite group and related topics I, Hokkaido Math. J. 7 (1978), 271-288.
4. K. Doerk and T. Hawkes, "Finite soluble groups," De Gruyter, Expositions in Mathematics, Berlin, 1992.
5. L. M. Ezquerro, \mathfrak{F}-estabilidad, constricción y factorización de grupos finitos, Tesis doctoral, Univ. de Valencia, 1983.
6. G.Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math. 20 (1968), 1101-1135.
7. D. Gorenstein, "Finite groups," Harper \& Row, New York, 1968.
8. B. Huppert and N. Blackburn, "Finite groups," Springer-Verlag, Berlin, 1982.
9. M. J. Iranzo and F. Pérez Monasor, \mathfrak{F}-constraint with respect to a Fitting class, Arch. Math. 46 (1986), 205-210.
10. M. J. Iranzo and M. Torres, The $p^{*} p$-injectors of a finite group, Rend. Sem. Mat. Univ. Padova 82 (1989), 233-237.
11. M. D. Pérez Ramos, A self-centralizing characteristic subgroup, J. Austral Math. Soc. (serie A) 46 (1989), 302-307.
12. M. D. Pérez Ramos, Stability with respect to a Fitting class, J. Algebra 128(2) (1990), 276-286.

Departamento de Matemática Aplicada E. U. Informática

Universidad Politécnica de Valencia Camino de Vera s/n Valencia SPAIN

Primera versió rebuda el 15 de Març de 1994, darrera versió rebuda el 10 de Maig de 1994

[^0]: ${ }^{(*)}$ Work supported by the CICYT of the Spanish Ministry of Education and Science, project PB90-0414-C03-01.

