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MULTIPARAMETER POINTWISE
ERGODIC THEOREMS

FOR MARKOV OPERATORS ON Loo

RYOTARO SAT O

Abstract	
Let P1 , . . . , Pd be commuting Markov operators on L 00 (X, .~ ,
where (X, .T, I.r,) is a probability measure space. Assuming that
each Pi is either conservative or invertible, we prove that for ever y
f in Lp (X,

	

with 1 Ç p C oo the average s

.An f = (n + 1 ) —d E Pín1 P2 2 . . .Pd d f (n O)
OÇn i Ç n

converge almost everywhere if and only if there exists an invariant
and equivalent finite measure A for which the Radon-Nikody m
derivativa v = da/dp, is in the dual space Lp ~ (X, ,~, ~c} . Next
we study the case in which there exists p1, with 1 C p1 C_ oo ,
such that for every f in Lp (X, .~, p,) the limit function belongs to
Lp l (X, .~, ~c} . We give necessary and sufficient conditions far this
problem .

1 . Introduction

Let (X, ,F, II) be a probability measure space and let Pi (i = 1, 2, . . . ,d )
be commuting Markov operators defined on Loo(X, II) . In this paper
we assume that each Pi is conservative or invertible, and prove that th e
averages

Anf = (n-}-1) — d E P1 1 P2~ . . .Pd df (n O)
OÇn i Ç n

converge almost everywhere for every f in Lp(X,,F, , .c), 1 < p < oo, i f
and only if there exists an invariant and equivalent finite measure a for
which the Radon-Nikodym derivative v = da/dp, satisfies v E Lp,(pt )
with 1/p + 1/p' = 1 . This is a new result, even if d = 1 . Next we
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consider the question whether there exists a constant p 1 , 1 Ç p 1 ç oa ,

far which the limit functions belong to Lp ~ (X, .f', p,) . We give necessar y

and sufficient conditions for this problem .

Let (X, Y', p,) be a probability measure space . By a Markov operator

P defined on Loo (p,) = Loe (X, F, ~.c} we mean a linear operator from
L,,(p) into itself such tha t

(i) P is positive : P f ~ 0 whenever f E L+,,(p,) ,

(u) P is a contraction : II P lloe ç 1 ,
(iii) limPfn -= o a . e . on X whenever fn E Lt(p) and fn ., 0 a.e . on X.

n

By virtue of (iii) and the Radon-Nikodym theorem we may define an
operator on L1 (11) = L i (X, .~, 11) by the relation

uPdµ = Lu1B(u E L(µ) and B E F),

113 being the indicator function of B . Here we use the same symbol P
for the L i (p,) operator, but we write it to the right of its variable . P
is called invertible if P1 = 1 and P is a one-to-one onto mapping of
L,3 (p,), and conservative if f E L+,,(p) and P f Ç f imply P f = f . It

00

is known (see e. g . [4]) that P is conservative if and only if E uPl == o0
z -o

a .e . oil X whenever u E L1 (p) and u > o a.e . on X. Since P is positive ,
we may extend the domain of P to the space M+(p) = M+ (X, .F', o f
all nonnegative extended real valued measurable functions on X, by the
relations

Pf = 1im Pfn a .e . where f7z E L4- (p) and fn fi f on X
n

uP =1im unP a.e . where un E Lt(t.c) and un fi u on X.
n

It is easily seen that by this process Pf and uP are uniquely determined
a.e . on X. We then have

(uP, f) =
X

(uP)fdji =
x u

(
P.f) du = (u, P.Í )

In this paper we consider several commuting Markov operators Pi (i =
1, 2, . . . , d) defined on Loo(p) . Throughout the paper we will assume that

L

and
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each Pi is conservat ive or invertible . Associated with these operators we
define the averages

An f= (n-}-1) --d E P1i P22 .Pddf (n~O)
o5,n i cn

and the maximal operator

M f = sup An ~ f I
n>0

Also we define the o--field of all invariant subsets of X:

1 ={B EF :Pz1B = 1 B foralli =

We call the system {P1 , P2 , . . . , Pd } ergodic if 1 is the trivial cr-field .
It is known that if p, is invariant under the Pi , i .e ., 1Pz = 1 for all

i = 1, 2, . . . , d then the sequence {Af} converges a.e. for every f in
Lp (p)„ 1 Ç p Ç oc . But, if ~ is not assumed to be invariant, we cannot
expect the almost everywhere convergence of {Af} for every f in Lp (ji) ,
1 Ç p := oo . Therefore the author thinks that it would be of interest to
characterize those probability measures ~ for which the sequence {Af}
converges a. e . for every f in Lp4-(p) , 1 Ç p Ç oo . As is easily seen ,
such a characterization for p = oo is the existence of an invariant and
equivalent finite measure . Thus we will concern ourselves with the case
1 Ç p < oo below. It is interesting to note here that this problem for
d-parameter groups of null preserving point transformations was recently
examined by Martín-Reyes [51 . Hence our results may be regarded as
generalizations (and improvements) of those due to Martín-Reyes . We
will give a new characterization which has a connection with the invariant
measure problem . That is, we will prove in Section 3 that the sequence
{Af} converges a . e . for every f in Lp (p,) if and only if there exists an
invariant and equivalent finite measure a for which the Radon-Nikodym
derivative v = da/dp, satisfies

v E LP (X,

	

with 1/p + 1/p ' = 1 .

Next, let us suppose that f* (x) = limA7zf(x) exists a .e . for all f in
n

Lp+(p,), 1 Ç p Ç oo . Do the functions f* belong to Lp (p,)? As is easily
seen, this is not true in general, unless p = oc . So the following question
arises riaturally. Does there exist a constant pi , 1 Ç pi < oc, such that
f* E Lp+i (¡c) for all f E Lp+ (p,) ? We will prove in Section 3 that the limit
f* = 1~m Anf exists a .e . and f* E L~ (p,) for all f in L

p
(~c) if and only
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if for any u E Lpi (II), 1/p i +

	

= 1, the limit uo = lim uAn exist s
n

a.e and in the norm topology of L 1 (and further we have u¿ E Lp►
1/p + 1/p' = 1 .

In Section 2 we study the special case where ~ is invariant under th e

Pi, and consider the measure a = V dp, where V is a positive measurabl e
function on X . Regarding the Pi as commuting Markov operators defined
on L0,0 (X, , V d,u) , we obtain some preliminary results which may be of
independent interest by themselves .

In what follows two functions f and g are nat distinguished provided
that f = g a .e . on X , and if 1 Ç p Ç oo then p' will be its conjugate
exponent, Le . e. 1/p + 1/p' = 1 .

2 . The invariant measure case

In this section we assume that the probability measure is invariant
under the or equivalently that 1Pi = 1 = Pi 1 for all i = 1, 2, . . . , d,
and consider the measure a = V díu, where V is a positive measurable
function on X . It may happen that aX = fX V d p, = oo .

Theorem 2.1 . Let Pi (1 Ç i Ç d) be commutirig Markov operators

on L~ (X, Y', l.c), where (X, F, ~u} is a probability measure space . Assum e
that p, is invariant under the Pi . Let V be a positive measurable functio n
on X, and let 1 Ç p < oo . Then the following are equivalent.

(a) Por every f in Lp+ (V dp,) , limAnf exists and is finite a . e . on X .
n

(b) Por every f in Lp+ (V d p,) , Mf < cc a.e . on X .
(c) There exists a positive measurable function U on X such that

U d,u ÇtTP

	

fPVd~c (t>O,feL(Vd)).J ~vr f~t}

	

x

(d) There exists a positive measurable function U on X such tha t

	

lim inf

	

U d,u t -P

	

fPV dp, (t > o, f E LP (V dtc)} .
n

	

{Anf>t}

	

X

(e) ess sup{W E M+ (X, Z, µ) : W < V } > 0 a.e . on X (if p = 1) ;

E{Vl-P' 11} c oo a.e . on X (if 1 < p < oo) .

Proof: It is clear that (a)

	

(b) and (c) ~ (d) .

(b) ~ (c) . (b) implies that far each n ~ 0 and all f E Llv- (V dp,) ,
~ A nf 1 C oo a.e . on X . Thus the operator A,z can be considered to be a
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continuous mapping from Lp(V dp) to Lo (,u), where Lo (p) denotes the
space of all finite valued measurable functions on X, equipped with th e
topology of the convergence in measure . By this and Banach's principi e
(cf. e .g . [3, p. 2] ) we see that the sublinear operator f —> MI f ~ is
continuous from Lp (V d,u) to Lo (p,) . Hence (c) follows from Nikishin ' s
theorem (cf. [2, p . 536]) .

(d) (a). Let f E Lp (V dp,) , and choose fN E Lt(p,) , N = 1, 2, . . . ,

so that fN fi f on X. Since is invariant under the Pi , it foliows that

lI1iI1r = 1 for all 1 ç r Ç oo, and hence the classical pointwise ergodi c
theorem far d-parameter semigroups of Dunford-Schwartz operators can
be applied to infer that

lim An fN = E{ fN II} a. e . on X.
n

Using this we see that the pointwise limit f * (x) = limAnf (x) exists a .e .
n

on X (but may equal to infinity on some subset of X) and that

f* = E{ f lZ} a .e . on X .

To prove that f* < oo a.e . on X, let us write B = {x : f * (x) = oo } .
Then, since B c Hm inf{Anf ~ t} far any t ~ O, we have by Fatou ' s

n
lemma, and (d) ,

B
U dp, ç lim inf

	

U 46 Ç t-p fPV d~c .
n

	

{A n,~~~}

	

~

Letting t fi oo, it follows that fB U dp, = O, and consequently p,B = O .

(a) -~ (e) . As in [S], we use the ergodic decomposition technique . We
first note that for the proof it may be assumed without ioss of generality
that (X, .~, II) is a Lebesgue measure space in the sense of Rokhlin [6] .
Then using Rokhiin's theory we can find a countable family {E} of set s
in 1 such that if denotes the decomposition of X induced by {E}, i .e . ,
C E 1 has the form

C = flE(e )

where Ei = +1, Ei (l) = Ei and Ei ( --1 ) = X\Ei, then :

(i) The factor space (X/,

	

p l ) of (X, p,) with respect to is a
Lebesgue measure space .

(u) To a.e . C E X/e with respect to

	

there corresponds a Lebesgue
measure p,c on C such that if B E .~ then B ~1 C is measurable with
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respect to p,c for a .e . C E X/1, and the function h(C) = p,c ($ n C) i s
measurable with respect to /II and satisfies, for all Z E F of the form
Z = c-1 (ZM, where t : X —> X/1 denotes the canonical mapping ,

(BnZ)=fh(C)d(C) =
JZ/(B

n C ) d ( C) .

(iii) To a.e . C E X/e there correspond commuting Markov oper-
ators P(C) 1 , P(C) 2 , . . . , P(C)d defined on L,,,(C, p,c ) such that the
system {P(C) 1 , P(C)2, . . . , P(C)d} is ergodic, and also such that if
u E L I (X, F, tt) and f E L,,(X, F, p) then, for a .e . C E X/ ,

ucP(C) i = (uP2 )c and P(C)ifc = (Pjf)c for all i = 1, 2, . . . d ,

where uc, (uPi)c , fc and (Pf)c denote, respectively, the restriction
functions of u, uPz 7 f and Pif to the set C .

To prove the implication (a) ~ (e) for p == 1 we define

~ = ess sup {W E M+ (X, Z, ~,c} : W V } ,

and assuming that 11{12- = 0} > 0, we derive a contradiction as follows :
Since {V = 0} E 1, it may be supposed without loss of generality that
02- = 0} = X . Then we use the ergodic decomposition technique . Define
the funciton hn on X/1 by

hn (C) = µc({V < 1/n} n c) (n > 1) .

Since hn (C) > 0 for a .e . C E X/1' because ~ = 0 on X, if fn denote s
the function oil X defined by

then we have

.fn(x ) = n—1 (hn(c)Í -11{V<1/n}(x) (x E C E X/0 ,

dp,c = 1/n (C E X/ )fc

1 f nVdµ
=

	

(
f nV dµc) dµl (c)L

	

L ,e c

fX ~~( 1/n2 ) dµ~(C ) = 1/n 2 .

and
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Therefore the function f = E fn satisfies f E L1 (V 4) . But, sinc e
n=x

fc Li) for a . e . C E X/1, it follows from (iii) and the classi-
cal pointwise ergodic theorem for d-parameter semigroups of Dunford -
Schwarz operators that for a.e . C E X/e ,

f * (x) = lim Anf (x) = oc a.e . on C
n

with respect to the measure pc. It follows that f* (x) = oo a .e . on X
with respect to the measure ~c. This contradicts (a) .

Next, let us consider the case 1 C p < oo, and suppose that the set

B = {x : E{V 1—P' 1 Z} (x) = oa}
is not a null set . Since B E 1, we then suppose without loss of generalit y
that B = X, and from this we derive a contradiction as follows. First
we note that if E{V 1

^
p' jz} = oo a. e. on X then

fc V 1 —P dµc = oo for a.e . C E X/1 .

Using this and doing as in the proof of the implication (a) ~ (b) of
Theorem 1 in [8] (see especially p . 75 in [81) it is possible to construct a
function f in L-pF (V dp,) so that for a .e . C E F/1, where F is a set in 1
and satisfies p,F ~ o, we have fc f dp,c = oo . Then it follows from (iii)
that for a .e . C E F7 ,

f * (x) = lim AJ(x) = co a .e . on C
n

with respect to the measure pe . Hence f* (x) = oo a.e . on F with
respect to the measure ~ . This contradicts (a), because f E Lp (V dp,) .

(e) (a) . (e) implies the existence of a sequence {XN } of sets in 1 ,
with XN fi X, such that if VN denotes the restriction function of V to
XN then

VIç7 1 E LP (XN , V dp,) .

Here, since XN E 1, for the proof of (a) it may be supposed without
loss of generality that X N = X . Then for any f E Lp (V d~c} the Holder
inequality yields

V
(L

f
V dµ)

L~ (X,V dµ}
C oc

1

Lf=Lf~

CL fpV dµ/

	

,x
( vi )P'vdp)l'P'

<00

(1 < p < oo),
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so that f E Li Cu), and hence (a) follows from the classical pointwise
ergodic theorem for d-parameter semigroups of Dunford-Schwartz oper-
ators . The proof is complete . ■

The following corollary is immediate from the equivalente of (a) and
(e) in Theorem 2 .1 .

Corollary 2.2 . Let Pi (i = 1, 2, . . . , d) be as in Theorem 2.1 . Suppose
in addition that the system {P1 , P2 , . . . , Pd } is ergodic . Then 1imAnf

n
exists and is finite a. e . on X for every f in Lp (V dp,) , 1 Ç p < oo, if

and only if V —1 E Lp, {X, .1 , V d,u} .

3. The general case

Theorem 3.1 . Let (X, .IT , l.c) be a probability measure space and le t
Pi (i = 1, 2, . . . , d) be commuting Markov operators on Lco(X, Y", p,) .
Assume that each Pi is conservative or invertible . If 1 Ç p < oo, then
the following are equivalent.

(a) Por every f in Lp(p,), 1
ñ
mAnf exists and is finite a . e . on X .

(b) Por every f in Lp (11), 11r1 f < oo a . e . on X .
(c) There exists a positive measurable function U on X such that

f

	

Udµ < t -p J fP dµ (t>0,fEL()) .
Mf>t}

	

X

(d) There exist a positive measurable function U on X, a positive

constant r and a subsequence {n(k)} of the sequence {n} such
that

r/p

U d áu Ç t-r

	

f P olc

	

(t ~ o, f E L-1;(p)) .fAn ( k ) f>t} X

(e) Por every u in L 1 (p,), the sequence {uAn } converges in the norm

topology of L 1 (p,) and also a.e . on X; further to each v E Lt(11 )
with vPz = v for all i = 1, 2, . . . , d there corresponds a sequenc e
{XN } of sets in 1 such that XN fi X and the restriction function
vN of v to XN is in Lp,(XN, ¡~} for each N > 1 .

(f) There exists v E L -F,(p) with v ~ 0 a . e . on X and vPi = v for al lp
1 ,2 , . . . ,d .

In order to prove Theorem 3 .1 we begin by proving the following
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Lernma 3.2 . Let Pi (i = 1, 2, . . . , d) be commuting Markov operators
on Loc (X, Y', p,), where (X, p,) is a probability measure space . Assum e
that each Pi is conservative or invertible . Then the sequence {Af}
converges a . e . on X for every f in L eo (X, Y', ,u) if and only if there exists
a function v in LRX, p,} such that v > 0 a . e . on X and vPz = v for
all i =- 1,2, . . .,d .

Proof: Suppose the first assertion of the lemma holds . Then far any
u E L 1 (,u) and f E L,,(p,) the sequence

(uA na f) =

	

(uAn)f d~c =

	

u(An f) d~c = (u, Anf i

	

x

	

x
converges to a finite limit as n —} oo. It follows from the Vitali-Hahn-
Saks theorem that {uA} converges weakly in L 1 (,u) . Hence by a mean
ergodic theorem (c.f. e .g . [4, Theorem 2 .1 .5]), {uA} converges strongly
in L1 () . Let v E LRp,} be the limit function of the sequence {1A} in
L 1 (p,) . Since vPi = v for each i, it follows that the set B = {x : v(x) = 0}
satisfies Pi1B Ç 1B for each i . Here if Pi is conservative, then we
have PaB = 113 . On the other hand, if Pi is invertible then, since
vPz = v= vPti— 1 , we have Pz 1 B = 1B , too. Consequently B E 1, and
thus

p,B = (1,An1B) = (1A n ,1B ) —>

	

v d~u = o .
B

Conversely, if the second assertion holds, then the Pi may be regarded
as commuting Markov operators defined on Loo (X, .~, v dp,) such that

= 1 ( 1 Ç i d) .
Thus we may apply the classical pointwise ergodic theorem far d-para-
meter semigroups of Dunford-Schwartz operators to infer that the firs t
assertion of the lemma holds . ■

Proof of Theorern. 3 .1 : (a) ~ (b) and (c) ~ (d) are immediate. The
proof of (b)

	

(c) is the same as that of the corresponding part of
Theorem 2 .1 . (f)

	

(a) follows from the classical d-parameter pointwise
ergodic theorem, since LP(14 c L1 (v dp,) .

(d) ~ (a) . We may suppose that 0 < U < 1 on X. Given an e > 0 ,
choose (5 > 0 so that 1.1{U < 6} C E . Then, since An1 B Ç 1 on X for
any B

	

(d) implies

(Ari (/e)l B ) 41, < 6—1 J (A (k) 1B)Ud + {U < 6}

eS~l

	

Udp+ t Udp, + e
{A,(k)a.B>t}

	

x

< 6-1t—r (p,B) r/P + 8 —1t + E (t 0) .

L
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Letting t ~ 0 and then ~B 1 4, we see that

lim sup

	

lAn(k) d p, = 0 .
AcB--}0 k>1 B

Since p, is a probability measure, it follows that the set {1A (k) : k > 1}
is weakly sequentially compact in L 1 (p,) . Hence, by a mean ergodic

theorem, the averages 1An converge in the norm topology of L 1 (p) to
some v E L1 (p,) . Then, as in the proof of Lemma 3 .2, we see that
v > 0 a . e . on X. Therefore, regarding the Pi as commuting Markov
operators defined on L~ (x, , v dp) such that 1 IL1(X,,v dm) = 1 for all
i = 1, 2 . . . , d, we can apply the classical d-parameter pointwise ergodi c

theorem to infer that for every f in Lp Cu} = Lp+ (v -1 v dp,) the limit
f * (x ) = limAn f (x) exists a . e . on X (but may equal to infinity on some

n
subset of X) and that

f* = B{ f IX, Z, v dp}} a.e . on X .

To see that f* C oc a.e . on X, let us write B = {x : f* (x) = oo} . Since

B c lim inf {An (k)f ~ t} for each t > 0, it follows from (d) together with
k

Fatou's lemma that

r/p

U4cÇliminf .

	

U d,ut-r

	

fp d,u

	

.
B

	

k

	

{Ar,,tka ,t>t}

	

x

Letting t fi oa, we have fB U d,u = 0 and hence p,B = 0 .

(a) ~ (e) . Since Loo (p,) c Lp (p,), it follows from Lemma 3.2 that
there exists a function vo in L1 (p,) such that vo > 0 a.e . on X and

vq Pz = vo for each i . As before, let us regard the Pi as commutin g
Markov operators on Loo (X, ,F•, vo d iu) . Then, considering the invertible
mapping u —> u/vo from L1 (X, F, p,) onto L1 (X, ,F•, vo dp,), we see that
far any u in L1 (ji) the sequence {(uA)/v0} converges a . e . on X and

also in the norm topology of L 1 (vo dp,) . This proves the first assertion o f
(e) . To prove the second assertion, let v E Lt(p,) be such that vPz = v
for each i . Then the set D = {x : v(x) > 0} is in 1, and as before
regarding the Pi as commuting Markov operators on L0,0 (D, v dp,) an d
noticing that L p+ (D, p,) = Lp (D, v v dp,) , we may apply the equivalenc e
of (a) and (e) in Theorem 2.1 to infer the existence of a sequence {DN } of
sets in 1, with DN D, such that if VN denotes the restriction functio n
of v to DN then

1
-1

	

1
vN =

	

E Lp, (DN , -v dp, = Lp,(DN , p,) .
vN

	

v
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(e) ~ (f) Letting w = lim 1An in L 1 (p), it follows that wPz = w and
n

w > 0 a.e . on X . Choose {XN} in 1 so that the functions w N = w1xN
00

are in Lp ► (p) . It then suffices to define v =

	

2—N ii wN ii P , 1w N . The

proof is complete . ■

Theorem 3.3 . Let (X, F, p,) be a probability measure space and le t
Pi (i = 1,2, . . . , d) be commuting Markov operators on Loo (X,,F , tc) .
Assume that each Pi is conservative or invertible . If 1 Ç p, p1 ç oo ,
then the following are equivalent.

(a) The limit f*(x) = 1imAnf(x) exists a.e . on X and f* E Lpx (p, )
n

for all f in Lp (µ) .
(b) For every u in Lp í (µ) the limit u¿ (x) = lim uAn(x) exists a .e . on

X and in the norm topology of L 1 (µ) ; further wó is in LP , (µ) .
(c) For every u in L p+í (si) with liuii Pí > 0 we hav e

0 C Illim inf uAn
I Í p► C oo .

n

(d) To each u in L;I,, ; (si) there corresponds a functional Fu defined on

L+.(µ) such that

Fu (fn ) —> 0

	

whenever fn J. 0

a .e . on X(ifp = oo) ,

Fu (f) Ku Ilf Il p , Ku being a constant dependin g

only on u(if 1 p < oo) ,

(2)
Fam, (t f) = tFu (f)

	

for constants t > 0, and

Fu(.Í+9) Fu(f)+Fu(9),

	

—

(3) 0 < Fu (f) Fu (f + g) ,

(4) F(Pf) < Fam, (f ), and

(5)

	

Fu(f ) =

	

uf d~ whenever f = Pif for all i = 1, 2, . . . , d .
x

(1)
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Proof: (a) ~ (b) . Since Loo (p,) C Lp (p,), it follows from the proo f
of Lemma 3 .2 that the sequence {1A} converges in the norm topology
of L 1 (p) to some v in L-R,u} with vPi = v for each Pi . Since Pi i s
conservative or invertible by hypothesis, it follows that v > 0 a.e . on X .
Hence, by the classical d-parameter pointwise ergodic theorem, we se e
that if u E LPi (p) (C L(a)) then the limit u¿(x) = lim uAn (x) exist s

a.e . on X and also in the norm topology of L 1 (p,) . In order to prove
that u4 is a function in Lp (p), let f be any function in Lpip,} and put

fN = f A N. Then we have

uóf d,u, =l~m ufNdpc=l~ml~m(uAn,fN )
X

= limlim(u, An fN ) = l
N
m iu , fjir i

Ç f* d~

	

C oo .f
It follows that uó E L~,+, (p) .

(b) ~ (c) . Obvious .

(c) ~ (b) . There exists vo E Lt(, .c) such that vOPi = vo for all
z = 1, 2, . . . , d and also such that if v E Li (p) satisfies vPi = v for all
i = 1 , 2, . . . , d then {v ~ 0} C {vo ~ 0} . By virtue of (c) it is sufficient
to show that vo > 0 a . e . on X . But, since {v0 = 0} is a set in 1 and the
function ñ0 = lim inf uAn (u E Lt (,u)) satisfies úoPi = úo E L1 ~~} for

n
all i = 1, 2, . . . , d, this follows immediately from (c) .

(b)

	

(d) . For u E Li ( let Pu be the functional on LI,(p,) defined

by

Fu( .Í) = f u .f dµ (f E Lt(µ)) ,
x

where uó ~x} = lim uA n (x) a .e . on X. Since the sequence {uA} con-
n

verges to uo in the norm topology of L I (p,), Pu satisfies all the require-
ments from (1) to (5) .

(d) (a) . Let u E Li Oc} with u > o a.e . on X. We define a

functional q on li ceo (pc) by putting

q(f) _ ,F'u(f+) (f E L)) .

Clearly we have q(f + g) Ç q(f) + q(g), q(tf) = tq(f) for each constant
t ~ 0, and q(Pf) Ç q(f) for each Pi . On the other hand, since Pi i s
conservative or invertible by hypothesis, it follows tha t

{f E Loo (p,) : Pi f = f for all i = 1, 2, . . . , d} = Loo (X, Z, p) .

L
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Thus, by a variant of the Hahn-Banach theorem (cf. e .g . [7, Propo-
sition 10 .5], the linear functional f —} Fu(f) = fx u f d~c defined on
L,,(X, Z, pd) can be extended to a linear functional Fu on L,,(p,) =
L,,(X, F, p,) so that

(0)

	

FzC(f) q( f) and Fú~Pi .f} = Pú(f )

for all f E Lco (p,) and Pi (1 Ç i Ç d) . Fu is positive, because f E L-0F.01}
implies –Fu* (f ) = Fu (–f) Ç q(– f ) = O .

Now, let us set A(B) = F~ (1B) for B E F. By (1) and (0), a is a finite
measure absolutely continuous with respect to p, and invariant under th e
P . Therefore the function uó = da/dp, E Lt(p,) satisfies u~Pz = uó for
all Pi , and hence t he set B = {x : u(x) = 0} is in 1 . This and (5 )
imply Fu* (1B) = Fu (1B) = fB u 41, = 0 and ~cB = 0 . Thus the Pi can b e
regarded as commuting Markov operators defined on L~ (X, .7~, uó d/4
such that

IIPzf~L1(X, .~,uó d~c} _ 1 (1i~d) .

We then apply the classical d-parameter pointwise ergodic theorem to
infer that far any f > 0 on X the pointwise limit

f*(x) = limAnf (x )
n

exists a .e . on X (but may equal to infinity on some subset of X) ; further
we see that if 0 < fn fi f a.e . on X then f~ fi f* a .e . on X .

Next, let f E Lp (p) be fixed arbitrarily, and put fN = f A N . Since
fl¡T T f* a .e . on X and f~ E L+.(X,X, p,), we see by (5), (0) and an
approximation argument that

uf* = ljm u d~c = l~ uó flv dl~
X

	

X

	

x

= l
Nm (iirn uo(AnfN ) d~c = li~m lim (uA)fN dl,

	

X

	

X

= ljm
x

.fuoN d~c < l
N
mFu(fN) < l

NmKu 11 fN

< Ku II fIlp Coo (u E Li(p,) withu> 0 a.e . oil X) .

	

This proves that f* E Lp

	

completing the proof. ■

Remark. Using the duality relation between Lorenz spaces L(p, q )
and L(p ' , q'), where 1 C p, q < oo, it is possible to generalize Theorem 3 . 3
to L (p, q) spaces . For this see [9], in which one-parameter semigroups of
null preserving point transformations are studied .

As a direct corollary to Theorems 3 .1 and 3 .3 we have
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Theorem 3 .4. Let (X, .F, p) be a probability measure space and le t
Pi (i = 1,2, . . . , d) be commuting Markov operators on Loo(X,,F, p) .
Assume that each Pi is conservative or invertible, and that the syste m
{P1 , P2 , . . . , Pd } is ergodic. If 1 Ç p < oo, then the following are equiva-
lent .

(a) For every f in Lp+ (p,), limAnf exists and is finite a . e . on X .

(b) There exists a function v in Lp (p) such that v > 0 a . e . on X
and vPz = v for all i = 1, 2, . . . , d .

(c) For every u E Lt(t.c) with lulli > 0, the limit u¿(x) = 1~m uA n (x )

exists a .e . on X, uo E LP (µ) and IuI' > 0 .

(d) For every u E Li(p) with llull,, > 0, the limit uó(x )
limuAn(x) exists a .e . on X, ua E LP (µ) and Huojip, > 0 .

n
(e) There exists a functional F defined on Li(p) such that

(7)

	

F(1) = 1 and F(f) KlI f IIp~ K being a constant,

(8) F(t f) = tF(f) for constants t > 0, and F(f + g) < F(f) + F(g) ,

(9) 0 < F(f) ~ FU + 9) ,

F (PZ .f) ~ F(.f) •

Final remark . If we don't assume that the Pi commute, then the
equivalence of (a) and (b) in Theorem 3.4 does not hold at least far
p = 1, under the notatio n

Anf = (n+l) -d E Pr i P2~ . . .Pdd f
oÇni Ç n

We prove this by constructing a counterexample with d = 2 . Let
p} be a nonatomic probability measure space and let T be an

invertible, ergodic and measure preserving transformation on (X, .F, p) .
Let h be a function on X, with h ~ 1 on X, such that h E L1 (p) and
h(log h) L1 (p) . As is well-known (see e . g . [4, p . 54], we then have

sup(n + 1) - 1
n7o

n
E h ° Tz L1(p) .
i=o
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n
on the other hand, since lim(n + 1) –1 E h o T i =

	

h dp, a.e . on X and
n

	

xi= o
in the norm topology of L1 (p,), there exists a sub -u-field such that th e
sequence

n

E (n+l) -1 E hoT 2 l13

	

(n>0)

i= o

is a .e . nonconvergent (cf. Theorem 4.3 in [1]) . Here if we define

P1 f=E{fIB}andP2f=foT (fELoo (µ) )

then F1 and P2 are conservative Markov operators on Loo(11) such that
1 P1 = 1P2 = 1 . Thus (b) in Theorem 3 .4 holds with v = 1 on X . But
(a) in Theorem 3 .4 does not hoid far p = 1, because the averages

`9nh
n+lE (n+l) -1 EhoTi l.t3 +(n+l) -Z EhoT i

i=0

	

i= 0

are a .e . nonconvergent .
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