MULTIPARAMETER POINTWISE ERGODIC THEOREMS FOR MARKOV OPERATORS ON L_{∞}

RYOTARO SATO

Abstract _

Let P_1, \ldots, P_d be commuting Markov operators on $L_{\infty}(X, \mathcal{F}, \mu)$, where (X, \mathcal{F}, μ) is a probability measure space. Assuming that each P_i is either conservative or invertible, we prove that for every f in $L_p(X, \mathcal{F}, \mu)$ with $1 \leq p < \infty$ the averages

$$A_n f = (n+1)^{-d} \sum_{0 \le n_i \le n} P_1^{n_1} P_2^{n_2} \dots P_d^{n_d} f \quad (n \ge 0)$$

converge almost everywhere if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative $v = d\lambda/d\mu$ is in the dual space $L_{p'}(X, \mathcal{F}, \mu)$. Next we study the case in which there exists p_1 , with $1 \leq p_1 \leq \infty$, such that for every f in $L_p(X, \mathcal{F}, \mu)$ the limit function belongs to $L_{p_1}(X, \mathcal{F}, \mu)$. We give necessary and sufficient conditions for this problem.

1. Introduction

Let (X, \mathcal{F}, μ) be a probability measure space and let P_i (i = 1, 2, ..., d) be commuting Markov operators defined on $L_{\infty}(X, \mathcal{F}, \mu)$. In this paper we assume that each P_i is conservative or invertible, and prove that the averages

$$A_n f = (n+1)^{-d} \sum_{0 \le n_i \le n} P_1^{n_1} P_2^{n_2} \dots P_d^{n_d} f \quad (n \ge 0)$$

converge almost everywhere for every f in $L_p(X, \mathcal{F}, \mu)$, $1 \leq p < \infty$, if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative $v = d\lambda/d\mu$ satisfies $v \in L_{p'}(\mu)$ with 1/p + 1/p' = 1. This is a new result, even if d = 1. Next we consider the question whether there exists a constant p_1 , $1 \leq p_1 \leq \infty$, for which the limit functions belong to $L_{p_1}(X, \mathcal{F}, \mu)$. We give necessary and sufficient conditions for this problem.

Let (X, \mathcal{F}, μ) be a probability measure space. By a Markov operator P defined on $L_{\infty}(\mu) = L_{\infty}(X, \mathcal{F}, \mu)$ we mean a linear operator from $L_{\infty}(\mu)$ into itself such that

- (i) P is positive: $Pf \ge 0$ whenever $f \in L^+_{\infty}(\mu)$,
- (ii) P is a contraction: $||P||_{\infty} \leq 1$,
- (iii) $\lim_{n} Pf_n = 0$ a.e. on X whenever $f_n \in L^+_{\infty}(\mu)$ and $f_n \downarrow 0$ a.e. on X.

By virtue of (iii) and the Radon-Nikodym theorem we may define an operator on $L_1(\mu) = L_1(X, \mathcal{F}, \mu)$ by the relation

$$\int_{B} uP \, d\mu = \int_{X} u(P\mathbf{1}_{B}) \, d\mu \quad (u \in L_{1}(\mu) \text{ and } B \in \mathcal{F}),$$

 $\mathbf{1}_B$ being the indicator function of B. Here we use the same symbol P for the $L_1(\mu)$ operator, but we write it to the right of its variable. P is called *invertible* if $P\mathbf{1} = 1$ and P is a one-to-one onto mapping of $L_{\infty}(\mu)$, and *conservative* if $f \in L_{\infty}^+(\mu)$ and $Pf \leq f$ imply Pf = f. It is known (see e.g. [4]) that P is conservative if and only if $\sum_{i=0}^{\infty} uP^i = \infty$

a.e. on X whenever $u \in L_1^+(\mu)$ and u > 0 a.e. on X. Since P is positive, we may extend the domain of P to the space $M^+(\mu) = M^+(X, \mathcal{F}, \mu)$ of all nonnegative extended real valued measurable functions on X, by the relations

$$Pf = \lim_{n} Pf_n$$
 a.e. where $f_n \in L^+_{\infty}(\mu)$ and $f_n \uparrow f$ on X

and

$$uP = \lim_{n} u_n P$$
 a.e. where $u_n \in L_1^+(\mu)$ and $u_n \uparrow u$ on X.

It is easily seen that by this process Pf and uP are uniquely determined a.e. on X. We then have

$$\langle uP, f \rangle = \int_X (uP)f \, d\mu = \int_X u(Pf) \, d\mu = \langle u, Pf \rangle.$$

In this paper we consider several commuting Markov operators P_i (i = 1, 2, ..., d) defined on $L_{\infty}(\mu)$. Throughout the paper we will assume that

396

each P_i is conservative or invertible. Associated with these operators we define the averages

$$A_n f = (n+1)^{-d} \sum_{0 \le n_i \le n} P_1^{n_1} P_2^{n_2} \dots P_d^{n_d} f \quad (n \ge 0)$$

and the maximal operator

$$Mf = \sup_{n \ge 0} A_n |f|.$$

Also we define the σ -field of all invariant subsets of X:

$$\mathcal{I} = \{ B \in \mathcal{F} : P_i \mathbf{1}_B = \mathbf{1}_B \text{ for all } i = 1, 2, \dots, d \}.$$

We call the system $\{P_1, P_2, \ldots, P_d\}$ ergodic if \mathcal{I} is the trivial σ -field.

It is known that if μ is invariant under the P_i , i.e., $\mathbf{1}P_i = 1$ for all i = 1, 2, ..., d then the sequence $\{A_n f\}$ converges a.e. for every f in $L_p^+(\mu), 1 \leq p \leq \infty$. But, if μ is not assumed to be invariant, we cannot expect the almost everywhere convergence of $\{A_n f\}$ for every f in $L_n^+(\mu)$, $1 \leq p \leq \infty$. Therefore the author thinks that it would be of interest to characterize those probability measures μ for which the sequence $\{A_n f\}$ converges a.e. for every f in $L_p^+(\mu)$, $1 \le p \le \infty$. As is easily seen, such a characterization for $p = \infty$ is the existence of an invariant and equivalent finite measure. Thus we will concern ourselves with the case $1 \leq p < \infty$ below. It is interesting to note here that this problem for *d*-parameter *groups* of null preserving point transformations was recently examined by Martín-Reyes [5]. Hence our results may be regarded as generalizations (and improvements) of those due to Martín-Reyes. We will give a new characterization which has a connection with the invariant measure problem. That is, we will prove in Section 3 that the sequence $\{A_nf\}$ converges a.e. for every f in $L_p^+(\mu)$ if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative $v = d\lambda/d\mu$ satisfies

$$v \in L^+_{p'}(X, \mathcal{F}, \mu)$$
 with $1/p + 1/p' = 1$.

Next, let us suppose that $f^*(x) = \lim_n A_n f(x)$ exists a.e. for all f in $L_p^+(\mu)$, $1 \le p \le \infty$. Do the functions f^* belong to $L_p^+(\mu)$? As is easily seen, this is not true in general, unless $p = \infty$. So the following question arises naturally. Does there exist a constant p_1 , $1 \le p_1 \le \infty$, such that $f^* \in L_{p_1}^+(\mu)$ for all $f \in L_p^+(\mu)$? We will prove in Section 3 that the limit $f^* = \lim_n A_n f$ exists a.e. and $f^* \in L_{p_1}^+(\mu)$ for all f in $L_p^+(\mu)$ if and only

if for any $u \in L_{p'_1}(\mu)$, $1/p_1 + 1/p'_1 = 1$, the limit $u_0^* = \lim_n uA_n$ exists a.e and in the norm topology of $L_1(\mu)$ and further we have $u_0^* \in L_{p'}(\mu)$, 1/p + 1/p' = 1.

In Section 2 we study the special case where μ is invariant under the P_i , and consider the measure $\lambda = V d\mu$, where V is a positive measurable function on X. Regarding the P_i as commuting Markov operators defined on $L_{\infty}(X, \mathcal{F}, V d\mu)$, we obtain some preliminary results which may be of independent interest by themselves.

In what follows two functions f and g are not distinguished provided that f = g a.e. on X, and if $1 \le p \le \infty$ then p' will be its conjugate exponent, i.e. 1/p + 1/p' = 1.

2. The invariant measure case

In this section we assume that the probability measure μ is invariant under the P_i , or equivalently that $\mathbf{1}P_i = 1 = P_i\mathbf{1}$ for all $i = 1, 2, \ldots, d$, and consider the measure $\lambda = V d\mu$, where V is a positive measurable function on X. It may happen that $\lambda X = \int_X V d\mu = \infty$.

Theorem 2.1. Let P_i $(1 \le i \le d)$ be commuting Markov operators on $L_{\infty}(X, \mathcal{F}, \mu)$, where (X, \mathcal{F}, μ) is a probability measure space. Assume that μ is invariant under the P_i . Let V be a positive measurable function on X, and let $1 \le p < \infty$. Then the following are equivalent.

- (a) For every f in $L_p^+(V d\mu)$, $\lim_{n \to \infty} A_n f$ exists and is finite a.e. on X.
- (b) For every f in $L_p^+(V d\mu)$, $Mf < \infty$ a.e. on X.
- (c) There exists a positive measurable function U on X such that

$$\int_{\{Mf>t\}} U \, d\mu \le t^{-p} \int_X f^p V \, d\mu \quad (t>0, \, f \in L_p^+(V \, d\mu)).$$

(d) There exists a positive measurable function U on X such that

$$\liminf_{n} \int_{\{A_n f > t\}} U \, d\mu \le t^{-p} \int_X f^p V \, d\mu \quad (t > 0, \, f \in L_p^+(V \, d\mu)).$$

(e) $\operatorname{ess\,sup}\{W \in M^+(X, \mathcal{I}, \mu) : W \leq V\} > 0 \ a.e. \ on \ X \ (if \ p = 1); E\{V^{1-p'}|\mathcal{I}\} < \infty \ a.e. \ on \ X \ (if \ 1 < p < \infty).$

Proof: It is clear that (a) \Rightarrow (b) and (c) \Rightarrow (d).

(b) \Rightarrow (c). (b) implies that for each $n \ge 0$ and all $f \in L_p^+(V d\mu)$, $|A_n f| < \infty$ a.e. on X. Thus the operator A_n can be considered to be a

continuous mapping from $L_p(V d\mu)$ to $L_0(\mu)$, where $L_0(\mu)$ denotes the space of all finite valued measurable functions on X, equipped with the topology of the convergence in measure. By this and Banach's principle (cf. e.g. [3, p. 2]) we see that the sublinear operator $f \to M|f|$ is continuous from $L_p(V d\mu)$ to $L_0(\mu)$. Hence (c) follows from Nikishin's theorem (cf. [2, p. 536]).

(d) \Rightarrow (a). Let $f \in L_p^+(V d\mu)$, and choose $f_N \in L_1^+(\mu)$, $N = 1, 2, \ldots$, so that $f_N \uparrow f$ on X. Since μ is invariant under the P_i , it follows that $||P_i||_r = 1$ for all $1 \leq r \leq \infty$, and hence the classical pointwise ergodic theorem for d-parameter semigroups of Dunford-Schwartz operators can be applied to infer that

$$\lim_{n} A_n f_N = E\{f_N | \mathcal{I}\} \text{ a.e. on } X.$$

Using this we see that the pointwise limit $f^*(x) = \lim_{n \to \infty} A_n f(x)$ exists a.e. on X (but may equal to infinity on some subset of X) and that

$$f^* = E\{f|\mathcal{I}\}$$
 a.e. on X.

To prove that $f^* < \infty$ a.e. on X, let us write $B = \{x : f^*(x) = \infty\}$. Then, since $B \subset \liminf_n \{A_n f > t\}$ for any t > 0, we have by Fatou's lemma and (d),

$$\int_{B} U \, d\mu \leq \liminf_{n} \int_{\{A_n f > t\}} U \, d\mu \leq t^{-p} \int_{X} f^p V \, d\mu.$$

Letting $t \uparrow \infty$, it follows that $\int_B U d\mu = 0$, and consequently $\mu B = 0$.

(a) \Rightarrow (e). As in [8], we use the ergodic decomposition technique. We first note that for the proof it may be assumed without loss of generality that (X, \mathcal{F}, μ) is a Lebesgue measure space in the sense of Rokhlin [6]. Then using Rokhlin's theory we can find a countable family $\{E_i\}$ of sets in \mathcal{I} such that if ξ denotes the decomposition of X induced by $\{E_i\}$, i.e., $C \in \xi$ has the form

$$C = \bigcap_i E_i(\varepsilon_i)$$

where $\varepsilon_i = \pm 1$, $E_i(1) = E_i$ and $E_i(-1) = X \setminus E_i$, then:

(i) The factor space $(X/\xi, \mathcal{F}_{\xi}, \mu_{\xi})$ of (X, \mathcal{F}, μ) with respect to ξ is a Lebesgue measure space.

(ii) To a.e. $C \in X/\xi$ with respect to μ_{ξ} there corresponds a Lebesgue measure μ_C on C such that if $B \in \mathcal{F}$ then $B \cap C$ is measurable with

respect to μ_C for a.e. $C \in X/\xi$, and the function $h(C) = \mu_C(B \cap C)$ is measurable with respect to μ_{ξ} and satisfies, for all $Z \in \mathcal{F}$ of the form $Z = \iota^{-1}(Z/\xi)$, where $\iota: X \to X/\xi$ denotes the canonical mapping,

$$\mu(B\cap Z) = \int_{Z/\xi} h(C) d\mu_{\xi}(C) = \int_{Z/\xi} \mu_C(B\cap C) d\mu_{\xi}(C).$$

(iii) To a.e. $C \in X/\xi$ there correspond commuting Markov operators $P(C)_1$, $P(C)_2, \ldots, P(C)_d$ defined on $L_{\infty}(C, \mu_C)$ such that the system $\{P(C)_1, P(C)_2, \ldots, P(C)_d\}$ is ergodic, and also such that if $u \in L_1(X, \mathcal{F}, \mu)$ and $f \in L_{\infty}(X, \mathcal{F}, \mu)$ then, for a.e. $C \in X/\xi$,

$$u_C P(C)_i = (uP_i)_C$$
 and $P(C)_i f_C = (P_i f)_C$ for all $i = 1, 2, ..., d$,

where u_C , $(uP_i)_C$, f_C and $(P_if)_C$ denote, respectively, the restriction functions of u, uP_i , f and P_if to the set C.

To prove the implication (a) \Rightarrow (e) for p = 1 we define

$$\tilde{V} = \operatorname{ess\,sup}\{W \in M^+(X,\mathcal{I},\mu) : W \le V\},\$$

and assuming that $\mu{\tilde{V} = 0} > 0$, we derive a contradiction as follows. Since ${\tilde{V} = 0} \in \mathcal{I}$, it may be supposed without loss of generality that ${\tilde{V} = 0} = X$. Then we use the ergodic decomposition technique. Define the function h_n on X/ξ by

$$h_n(C) = \mu_C(\{V < 1/n\} \cap C) \quad (n \ge 1).$$

Since $h_n(C) > 0$ for a.e. $C \in X/\xi$ because $\tilde{V} = 0$ on X, if f_n denotes the function on X defined by

$$f_n(x) = n^{-1}(h_n(C))^{-1} \mathbf{1}_{\{V < 1/n\}}(x) \quad (x \in C \in X/\xi),$$

then we have

$$\int_C f_n \, d\mu_C = 1/n \quad (C \in X/\xi)$$

 and

$$\int_X f_n V \, d\mu = \int_{X/\xi} \left(\int_C f_n V \, d\mu C \right) \, d\mu_{\xi}(C)$$
$$\leq \int_{X/\xi} (1/n^2) \, d\mu_{\xi}(C) = 1/n^2.$$

Therefore the function $f = \sum_{n=1}^{\infty} f_n$ satisfies $f \in L_1^+(V d\mu)$. But, since $f_C \notin L_1^+(\mu_C)$ for a.e. $C \in X/\xi$, it follows from (iii) and the classical pointwise ergodic theorem for *d*-parameter semigroups of Dunford-Schwarz operators that for a.e. $C \in X/\xi$,

$$f^*(x) = \lim_{n} A_n f(x) = \infty$$
 a.e. on C

with respect to the measure μ_C . It follows that $f^*(x) = \infty$ a.e. on X with respect to the measure μ . This contradicts (a).

Next, let us consider the case 1 , and suppose that the set

$$B = \{ x : E\{V^{1-p'} | \mathcal{I}\}(x) = \infty \}$$

is not a null set. Since $B \in \mathcal{I}$, we then suppose without loss of generality that B = X, and from this we derive a contradiction as follows. First we note that if $E\{V^{1-p'}|\mathcal{I}\} = \infty$ a.e. on X then

$$\int_C V^{1-p'} d\mu_C = \infty \text{ for a.e. } C \in X/\xi.$$

Using this and doing as in the proof of the implication (a) \Rightarrow (b) of Theorem 1 in [8] (see especially p. 75 in [8]) it is possible to construct a function f in $L_p^+(V d\mu)$ so that for a.e. $C \in F/\xi$, where F is a set in \mathcal{I} and satisfies $\mu F > 0$, we have $\int_C f d\mu_C = \infty$. Then it follows from (iii) that for a.e. $C \in F/\xi$,

$$f^*(x) = \lim_n A_n f(x) = \infty$$
 a.e. on C

with respect to the measure μ_C . Hence $f^*(x) = \infty$ a.e. on F with respect to the measure μ . This contradicts (a), because $f \in L_p^+(V d\mu)$.

(e) \Rightarrow (a). (e) implies the existence of a sequence $\{X_N\}$ of sets in \mathcal{I} , with $X_N \uparrow X$, such that if V_N denotes the restriction function of V to X_N then

$$V_N^{-1} \in L^+_{p'}(X_N, V\,d\mu).$$

Here, since $X_N \in \mathcal{I}$, for the proof of (a) it may be supposed without loss of generality that $X_N = X$. Then for any $f \in L_p^+(V d\mu)$ the Hölder inequality yields

$$\int_X f \, d\mu = \int_X f \frac{1}{V} V \, d\mu \leq \begin{cases} \left(\int_X f V \, d\mu \right) \left\| \frac{1}{V} \right\|_{L_{\infty}(X, V \, d\mu)} < \infty \\ (p = 1) \\ \left(\int_X f^p V \, d\mu \right)^{1/p} \left(\int_X \left(\frac{1}{V} \right)^{p'} V \, d\mu \right)^{1/p'} < \infty \\ (1 < p < \infty), \end{cases}$$

so that $f \in L_1^+(\mu)$, and hence (a) follows from the classical pointwise ergodic theorem for *d*-parameter semigroups of Dunford-Schwartz operators. The proof is complete.

The following corollary is immediate from the equivalence of (a) and (e) in Theorem 2.1.

Corollary 2.2. Let P_i (i = 1, 2, ..., d) be as in Theorem 2.1. Suppose in addition that the system $\{P_1, P_2, ..., P_d\}$ is ergodic. Then $\lim_n A_n f$ exists and is finite a.e. on X for every f in $L_p^+(V d\mu)$, $1 \le p < \infty$, if and only if $V^{-1} \in L_{p'}(X, \mathcal{F}, V d\mu)$.

3. The general case

Theorem 3.1. Let (X, \mathcal{F}, μ) be a probability measure space and let P_i (i = 1, 2, ..., d) be commuting Markov operators on $L_{\infty}(X, \mathcal{F}, \mu)$. Assume that each P_i is conservative or invertible. If $1 \leq p < \infty$, then the following are equivalent.

- (a) For every f in $L_p^+(\mu)$, $\lim A_n f$ exists and is finite a.e. on X.
- (b) For every f in $L_p^+(\mu)$, $Mf < \infty$ a.e. on X.
- (c) There exists a positive measurable function U on X such that

$$\int_{\{Mf>t\}} U \, d\mu \le t^{-p} \int_X f^p \, d\mu \quad (t>0, f \in L_p^+(\mu)).$$

(d) There exist a positive measurable function U on X, a positive constant r and a subsequence $\{n(k)\}$ of the sequence $\{n\}$ such that

$$\int_{\{A_{n(k)}f>t\}} U \, d\mu \le t^{-r} \left(\int_X f^p \, d\mu\right)^{r/p} \quad (t>0, \, f \in L_p^+(\mu)).$$

- (e) For every u in L₁(μ), the sequence {uA_n} converges in the norm topology of L₁(μ) and also a.e. on X; further to each v ∈ L₁⁺(μ) with vP_i = v for all i = 1, 2, ..., d there corresponds a sequence {X_N} of sets in I such that X_N ↑ X and the restriction function v_N of v to X_N is in L_{p'}(X_N, μ) for each N ≥ 1.
- (f) There exists $v \in L_{p'}^+(\mu)$ with v > 0 a.e. on X and $vP_i = v$ for all i = 1, 2, ..., d.

In order to prove Theorem 3.1 we begin by proving the following

Lemma 3.2. Let P_i (i = 1, 2, ..., d) be commuting Markov operators on $L_{\infty}(X, \mathcal{F}, \mu)$, where (X, \mathcal{F}, μ) is a probability measure space. Assume that each P_i is conservative or invertible. Then the sequence $\{A_n f\}$ converges a.e. on X for every f in $L_{\infty}(X, \mathcal{F}, \mu)$ if and only if there exists a function v in $L_1^+(X, \mathcal{F}, \mu)$ such that v > 0 a.e. on X and $vP_i = v$ for all i = 1, 2, ..., d.

Proof: Suppose the first assertion of the lemma holds. Then for any $u \in L_1(\mu)$ and $f \in L_{\infty}(\mu)$ the sequence

$$\langle uA_n, f \rangle = \int_X (uA_n) f \, d\mu = \int_X u(A_n f) \, d\mu = \langle u, A_n f \rangle$$

converges to a finite limit as $n \to \infty$. It follows from the Vitali-Hahn-Saks theorem that $\{uA_n\}$ converges weakly in $L_1(\mu)$. Hence by a mean ergodic theorem (c.f. e.g. [4, Theorem 2.1.5]), $\{uA_n\}$ converges strongly in $L_1(\mu)$. Let $v \in L_1^+(\mu)$ be the limit function of the sequence $\{\mathbf{1}A_n\}$ in $L_1(\mu)$. Since $vP_i = v$ for each *i*, it follows that the set $B = \{x : v(x) = 0\}$ satisfies $P_i \mathbf{1}_B \leq \mathbf{1}_B$ for each *i*. Here if P_i is conservative, then we have $P_i \mathbf{1}_B = \mathbf{1}_B$. On the other hand, if P_i is invertible then, since $vP_i = v = vP_i^{-1}$, we have $P_i \mathbf{1}_B = \mathbf{1}_B$, too. Consequently $B \in \mathcal{I}$, and thus

$$\mu B = \langle \mathbf{1}, A_n \mathbf{1}_B \rangle = \langle \mathbf{1}A_n, \mathbf{1}_B \rangle \to \int_B v \, d\mu = 0.$$

Conversely, if the second assertion holds, then the P_i may be regarded as commuting Markov operators defined on $L_{\infty}(X, \mathcal{F}, v d\mu)$ such that

$$|P_i||_{L_1(X,\mathcal{F},v\,d\mu)} = 1 \quad (1 \le i \le d).$$

Thus we may apply the classical pointwise ergodic theorem for *d*-parameter semigroups of Dunford-Schwartz operators to infer that the first assertion of the lemma holds. \blacksquare

Proof of Theorem 3.1: (a) \Rightarrow (b) and (c) \Rightarrow (d) are immediate. The proof of (b) \Rightarrow (c) is the same as that of the corresponding part of Theorem 2.1. (f) \Rightarrow (a) follows from the classical *d*-parameter pointwise ergodic theorem, since $L_p(\mu) \subset L_1(v \, d\mu)$.

(d) \Rightarrow (a). We may suppose that $0 < U \leq 1$ on X. Given an $\varepsilon > 0$, choose $\delta > 0$ so that $\mu\{U < \delta\} < \varepsilon$. Then, since $A_n \mathbf{1}_B \leq \mathbf{1}$ on X for any $B \in \mathcal{F}$, (d) implies

$$\begin{split} \int_X (A_{n(k)} \mathbf{1}_B) \, d\mu &\leq \delta^{-1} \int (A_{n(k)} \mathbf{1}_B) U \, d\mu + \mu \{ U < \delta \} \\ &\leq \delta^{-1} \left(\int_{\{A_{n(k)} \mathbf{1}_B > t\}} U \, d\mu + t \int_X U \, d\mu \right) + \varepsilon \\ &\leq \delta^{-1} t^{-r} (\mu B)^{r/p} + \delta^{-1} t + \varepsilon \quad (t > 0). \end{split}$$

Letting $t \downarrow 0$ and then $\mu B \downarrow 0$, we see that

$$\lim_{\mu \to 0} \sup_{k \ge 1} \int_B \mathbf{1} A_{n(k)} \, d\mu = 0.$$

Since μ is a probability measure, it follows that the set $\{\mathbf{1}A_{n(k)} : k \geq 1\}$ is weakly sequentially compact in $L_1(\mu)$. Hence, by a mean ergodic theorem, the averages $\mathbf{1}A_n$ converge in the norm topology of $L_1(\mu)$ to some $v \in L_1^+(\mu)$. Then, as in the proof of Lemma 3.2, we see that v > 0 a.e. on X. Therefore, regarding the P_i as commuting Markov operators defined on $L_{\infty}(x, \mathcal{F}, v d\mu)$ such that $\|P_i\|_{L_1(X, \mathcal{F}, v d\mu)} = 1$ for all $i = 1, 2, \ldots, d$, we can apply the classical d-parameter pointwise ergodic theorem to infer that for every f in $L_p^+(\mu) = L_p^+(v^{-1}v d\mu)$ the limit $f^*(x) = \lim_n A_n f(x)$ exists a.e. on X (but may equal to infinity on some subset of X) and that

$$f^* = E\{f|X, \mathcal{I}, v d\mu\}$$
 a.e. on X.

To see that $f^* < \infty$ a.e. on X, let us write $B = \{x : f^*(x) = \infty\}$. Since $B \subset \liminf_k \{A_{n(k)}f > t\}$ for each t > 0, it follows from (d) together with Fatou's lemma that

$$\int_{B} U \, d\mu \leq \liminf_{k} \int_{\{A_{n(k)}f > t\}} U \, d\mu \leq t^{-r} \left(\int_{X} f^{p} \, d\mu \right)^{r/p}$$

Letting $t \uparrow \infty$, we have $\int_B U d\mu = 0$ and hence $\mu B = 0$.

(a) \Rightarrow (e). Since $L_{\infty}(\mu) \subset L_p(\mu)$, it follows from Lemma 3.2 that there exists a function v_0 in $L_1^+(\mu)$ such that $v_0 > 0$ a.e. on X and $v_0P_i = v_0$ for each *i*. As before, let us regard the P_i as commuting Markov operators on $L_{\infty}(X, \mathcal{F}, v_0 d\mu)$. Then, considering the invertible mapping $u \to u/v_0$ from $L_1(X, \mathcal{F}, \mu)$ onto $L_1(X, \mathcal{F}, v_0 d\mu)$, we see that for any *u* in $L_1(\mu)$ the sequence $\{(uA_n)/v_0\}$ converges a.e. on X and also in the norm topology of $L_1(v_0 d\mu)$. This proves the first assertion of (e). To prove the second assertion, let $v \in L_1^+(\mu)$ be such that $vP_i = v$ for each *i*. Then the set $D = \{x : v(x) > 0\}$ is in \mathcal{I} , and as before regarding the P_i as commuting Markov operators on $L_{\infty}(D, v d\mu)$ and noticing that $L_p^+(D, \mu) = L_p^+(D, \frac{1}{v}v d\mu)$, we may apply the equivalence of (a) and (e) in Theorem 2.1 to infer the existence of a sequence $\{D_N\}$ of sets in \mathcal{I} , with $D_N \uparrow D$, such that if v_N denotes the restriction function of *v* to D_N then

$$v_N = \left(\frac{1}{v_N}\right)^{-1} \in L_{p'}\left(D_N, \frac{1}{v}v\,d\mu\right) = L_{p'}(D_N, \mu).$$

404

(e) \Rightarrow (f) Letting $w = \lim_{n} \mathbf{1}A_n$ in $L_1(\mu)$, it follows that $wP_i = w$ and w > 0 a.e. on X. Choose $\{X_N\}$ in \mathcal{I} so that the functions $w_N = w\mathbf{1}_{X_N}$ are in $L_{p'}(\mu)$. It then suffices to define $v = \sum_{N=1}^{\infty} 2^{-N} ||w_N||_{p'}^{-1} w_N$. The proof is complete.

Theorem 3.3. Let (X, \mathcal{F}, μ) be a probability measure space and let P_i (i = 1, 2, ..., d) be commuting Markov operators on $L_{\infty}(X, \mathcal{F}, \mu)$. Assume that each P_i is conservative or invertible. If $1 \leq p, p_1 \leq \infty$, then the following are equivalent.

- (a) The limit $f^*(x) = \lim_n A_n f(x)$ exists a.e. on X and $f^* \in L_{p_1}(\mu)$ for all f in $L_n^+(\mu)$.
- (b) For every u in $L_{p'_1}(\mu)$ the limit $u_0^*(x) = \lim_n uA_n(x)$ exists a.e. on X and in the norm topology of $L_1(\mu)$; further u_0^* is in $L_{p'}(\mu)$.
- (c) For every u in $L_{p'_1}^+(\mu)$ with $||u||_{p'_1} > 0$ we have

$$0 < \|\liminf_n uA_n\|_{p'} < \infty.$$

(d) To each u in $L_{p'_1}^+(\mu)$ there corresponds a functional F_u defined on $L_{\infty}^+(\mu)$ such that

(1)
$$\begin{cases} F_u(f_n) \to 0 & \text{whenever } f_n \downarrow 0 \\ & a.e. \text{ on } X(if \ p = \infty), \\ F_u(f) \le K_u \|f\|_p, & K_u \text{ being a constant depending} \\ & \text{ only on } u(if \ 1 \le p < \infty), \end{cases}$$

(2)
$$\begin{cases} F_u(tf) = tF_u(f) & \text{for constants } t \ge 0, \text{ and} \\ F_u(f+g) \le F_u(f) + F_u(g), \end{cases}$$

(3) $0 \le F_u(f) \le F_u(f+g),$

(4)
$$F_u(P_i f) \le F_u(f), and$$

(5)
$$F_u(f) = \int_X uf \, d\mu$$
 whenever $f = P_i f$ for all $i = 1, 2, \dots, d$.

R. Sato

Proof: (a) \Rightarrow (b). Since $L_{\infty}(\mu) \subset L_p(\mu)$, it follows from the proof of Lemma 3.2 that the sequence $\{\mathbf{1}A_n\}$ converges in the norm topology of $L_1(\mu)$ to some v in $L_1^+(\mu)$ with $vP_i = v$ for each P_i . Since P_i is conservative or invertible by hypothesis, it follows that v > 0 a.e. on X. Hence, by the classical *d*-parameter pointwise ergodic theorem, we see that if $u \in L_{p_1'}^+(\mu) (\subset L_1^+(\mu))$ then the limit $u_0^*(x) = \lim_n uA_n(x)$ exists a.e. on X and also in the norm topology of $L_1(\mu)$. In order to prove that u_0^* is a function in $L_{p'}^+(\mu)$, let f be any function in $L_p^+(\mu)$ and put $f_N = f \wedge N$. Then we have

$$\int_X u_0^* f \, d\mu = \lim_N \int_X u_0^* f_N \, d\mu = \lim_N \lim_n \langle u A_n, f_N \rangle$$
$$= \lim_N \lim_n \langle u, A_n f_N \rangle = \lim_N \langle u, f_N^* \rangle$$
$$\leq \int_X u f^* \, d\mu \leq ||u||_{p_1'} ||f^*||_{p_1} < \infty.$$

It follows that $u_0^* \in L_{p'}^+(\mu)$.

(b) \Rightarrow (c). Obvious.

(c) \Rightarrow (b). There exists $v_0 \in L_1^+(\mu)$ such that $v_0P_i = v_0$ for all $i = 1, 2, \ldots, d$ and also such that if $v \in L_1^+(\mu)$ satisfies $vP_i = v$ for all $i = 1, 2, \ldots, d$ then $\{v > 0\} \subset \{v_0 > 0\}$. By virtue of (c) it is sufficient to show that $v_0 > 0$ a.e. on X. But, since $\{v_0 = 0\}$ is a set in \mathcal{I} and the function $\tilde{u}_0 = \liminf_n uA_n$ ($u \in L_{p'_1}^+(\mu)$) satisfies $\tilde{u}_0P_i = \tilde{u}_0 \in L_1^+(\mu)$ for all $i = 1, 2, \ldots, d$, this follows immediately from (c).

(b) \Rightarrow (d). For $u \in L^+_{p'_1}(\mu)$, let F_u be the functional on $L^+_{\infty}(\mu)$ defined by

$$F_u(f) = \int_X u_0^* f \, d\mu \quad (f \in L_\infty^+(\mu)),$$

where $u_0^*(x) = \lim_n uA_n(x)$ a.e. on X. Since the sequence $\{uA_n\}$ converges to u_0^* in the norm topology of $L_1(\mu)$, F_u satisfies all the requirements from (1) to (5).

(d) \Rightarrow (a). Let $u \in L^+_{p'_1}(\mu)$ with u > 0 a.e. on X. We define a functional q on $L_{\infty}(\mu)$ by putting

$$q(f) = F_u(f^+) \quad (f \in L_\infty(\mu)).$$

Clearly we have $q(f+g) \leq q(f) + q(g)$, q(tf) = tq(f) for each constant $t \geq 0$, and $q(P_if) \leq q(f)$ for each P_i . On the other hand, since P_i is conservative or invertible by hypothesis, it follows that

$$\{f \in L_{\infty}(\mu) : P_i f = f \text{ for all } i = 1, 2, \dots, d\} = L_{\infty}(X, \mathcal{I}, \mu).$$

Thus, by a variant of the Hahn-Banach theorem (cf. e.g. [7, Proposition 10.5], the linear functional $f \to \tilde{F}_u(f) = \int_X uf \, d\mu$ defined on $L_{\infty}(X, \mathcal{I}, \mu)$ can be extended to a linear functional F_u^* on $L_{\infty}(\mu) = L_{\infty}(X, \mathcal{F}, \mu)$ so that

(6)
$$F_u^*(f) \le q(f) \text{ and } F_u^*(P_i f) = P_u^*(f)$$

for all $f \in L_{\infty}(\mu)$ and P_i $(1 \le i \le d)$. F_u^* is positive, because $f \in L_{\infty}^+(\mu)$ implies $-F_u^*(f) = F_u^*(-f) \le q(-f) = 0$.

Now, let us set $\lambda(B) = F_u^*(\mathbf{1}_B)$ for $B \in \mathcal{F}$. By (1) and (6), λ is a finite measure absolutely continuous with respect to μ and invariant under the P_i . Therefore the function $u_0^* = d\lambda/d\mu \in L_1^+(\mu)$ satisfies $u_0^*P_i = u_0^*$ for all P_i , and hence the set $B = \{x : u_o^*(x) = 0\}$ is in \mathcal{I} . This and (5) imply $F_u^*(\mathbf{1}_B) = F_u(\mathbf{1}_B) = \int_B u \, d\mu = 0$ and $\mu B = 0$. Thus the P_i can be regarded as commuting Markov operators defined on $L_\infty(X, \mathcal{F}, u_0^* \, d\mu)$ such that

$$\|P_i\|_{L_1(X,\mathcal{F},u_0^*\,d\mu)} = 1 \quad (1 \le i \le d).$$

We then apply the classical *d*-parameter pointwise ergodic theorem to infer that for any $f \ge 0$ on X the pointwise limit

$$f^*(x) = \lim_n A_n f(x)$$

exists a.e. on X (but may equal to infinity on some subset of X); further we see that if $0 \leq f_n \uparrow f$ a.e. on X then $f_n^* \uparrow f^*$ a.e. on X.

Next, let $f \in L_p^+(\mu)$ be fixed arbitrarily, and put $f_N = f \wedge N$. Since $f_N^* \uparrow f^*$ a.e. on X and $f_N^* \in L_{\infty}^+(X, \mathcal{I}, \mu)$, we see by (5), (6) and an approximation argument that

$$\begin{split} \int_{X} uf^{*} d\mu &= \lim_{N} \int_{X} uf_{N}^{*} d\mu = \lim_{N} \int_{X} u_{0}^{*} f_{N}^{*} d\mu \\ &= \lim_{N} \left(\lim_{n} \int_{X} u_{0}^{*} (A_{n} f_{N}) d\mu \right) = \lim_{N} \left(\lim_{n} \int_{X} (u_{0}^{*} A_{n}) f_{N} d\mu \right) \\ &= \lim_{N} \int_{X} u_{0}^{*} f_{N} d\mu \leq \lim_{N} F_{u}(f_{N}) \leq \lim_{N} K_{u} \| f_{N} \|_{p} \\ &\leq K_{u} \| f \|_{p} < \infty \quad (u \in L_{p_{1}}^{+}(\mu) \text{ with } u > 0 \text{ a.e. on } X). \end{split}$$

This proves that $f^* \in L^+_{p_1}(\mu)$, completing the proof.

Remark. Using the duality relation between Lorenz spaces L(p,q) and L(p',q'), where $1 < p, q < \infty$, it is possible to generalize Theorem 3.3 to L(p,q) spaces. For this see [9], in which one-parameter semigroups of null preserving point transformations are studied.

As a direct corollary to Theorems 3.1 and 3.3 we have

R. SATO

Theorem 3.4. Let (X, \mathcal{F}, μ) be a probability measure space and let P_i (i = 1, 2, ..., d) be commuting Markov operators on $L_{\infty}(X, \mathcal{F}, \mu)$. Assume that each P_i is conservative or invertible, and that the system $\{P_1, P_2, ..., P_d\}$ is ergodic. If $1 \leq p < \infty$, then the following are equivalent.

- (a) For every f in $L_p^+(\mu)$, $\lim_{n \to \infty} A_n f$ exists and is finite a.e. on X.
- (b) There exists a function v in $L_{p'}^+(\mu)$ such that v > 0 a.e. on X and $vP_i = v$ for all i = 1, 2, ..., d.
- (c) For every $u \in L_1^+(\mu)$ with $||u||_1 > 0$, the limit $u_0^*(x) = \lim_n uA_n(x)$ exists a.e. on X, $u_0^* \in L_{p'}^+(\mu)$ and $||u_0^*||_{p'} > 0$.
- (d) For every $u \in L^+_{\infty}(\mu)$ with $||u||_{\infty} > 0$, the limit $u^*_0(x) = \lim_{n \to \infty} uA_n(x)$ exists a.e. on X, $u^*_0 \in L^+_{p'}(\mu)$ and $||u^*_0||_{p'} > 0$.
- (e) There exists a functional F defined on $L^+_{\infty}(\mu)$ such that

(7)
$$F(1) = 1 \text{ and } F(f) \leq K ||f||_p, K \text{ being a constant},$$

(8) F(tf) = tF(f) for constants $t \ge 0$, and $F(f+g) \le F(f) + F(g)$,

(9)
$$0 \le F(f) \le F(f+g),$$

(10)
$$F(P_i f) \le F(f).$$

Final remark. If we don't assume that the P_i commute, then the equivalence of (a) and (b) in Theorem 3.4 does not hold at least for p = 1, under the notation

$$A_n f = (n+1)^{-d} \sum_{0 \le n_i \le n} P_1^{n_1} P_2^{n_2} \dots P_d^{n_d} f$$

We prove this by constructing a counterexample with d = 2. Let (X, \mathcal{F}, μ) be a nonatomic probability measure space and let τ be an invertible, ergodic and measure preserving transformation on (X, \mathcal{F}, μ) . Let h be a function on X, with $h \ge 1$ on X, such that $h \in L_1(\mu)$ and $h(\log h) \notin L_1(\mu)$. As is well-known (see e.g. [4, p. 54], we then have

$$\sup_{n \ge 0} (n+1)^{-1} \sum_{i=0}^n h \circ \tau^i \notin L_1(\mu).$$

On the other hand, since $\lim_{n} (n+1)^{-1} \sum_{i=0}^{n} h \circ \tau^{i} = \int_{X} h \, d\mu$ a.e. on X and in the norm topology of $L_{1}(\mu)$, there exists a sub- σ -field \mathcal{B} such that the sequence

$$E\left\{(n+1)^{-1}\sum_{i=0}^{n}h\circ\tau^{i}|\mathcal{B}\right\} \quad (n\geq 0)$$

is a.e. nonconvergent (cf. Theorem 4.3 in [1]). Here if we define

$$P_1f = E\{f|B\}$$
 and $P_2f = f \circ \tau$ $(f \in L_{\infty}(\mu))$

then P_1 and P_2 are conservative Markov operators on $L_{\infty}(\mu)$ such that $\mathbf{1}P_1 = \mathbf{1}P_2 = 1$. Thus (b) in Theorem 3.4 holds with v = 1 on X. But (a) in Theorem 3.4 does not hold for p = 1, because the averages

$$A_n h = \frac{n}{n+1} E\left\{ (n+1)^{-1} \sum_{i=0}^n h \circ \tau^i | \mathcal{B} \right\} + (n+1)^{-2} \sum_{i=0}^n h \circ \tau^i$$

are a.e. nonconvergent.

References

- DERRIENNIC Y. AND LIN M., On invariant measures and ergodic theorems for positive operators, J. Functional Analysis 13 (1973), 252-267.
- GARCÍA-CUERVA J. AND RUBIO DE FRANCIA J. L., "Weighted Norm Inequalities and Related Topics," North-Holland, Amsterdam, 1985.
- GARSIA A. M., "Topics in Almost Everywhere Convergence," Markham, Chicago, 1970.
- 4. KRENGEL U., "Ergodic Theorems," Walter de Gruyter, Berlin, 1985.
- MARTÍN-REYES F. J., On a pointwise ergodic theorem for multiparameter groups, in "Almost Everywhere Convergence," G. A. Edgar and L. Sucheston, editors, Academic Press, Boston, 1989, pp. 267-279.
- ROKHLIN V. A., On the fundamental ideas of measure theory, Mat. Sb. (N.S.) 25 (1949), 107–150; Amer. Math. Soc. Translat. Series 1 10 (1962), 1–54.
- 7. ROYDEN H. L., "Real Analysis," Macmillan, New York, 1988.

R. Sato

- 8. SATO R., On pointwise ergodic theorems for positive operators, *Studia Math.* 97 (1990), 71–84.
- 9. SATO R., Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations, submitted for publication.

Department of Mathematics School of Science Okayama University Okayama 700 JAPAN

Rebut el 4 de Març de 1994.

410