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MULTIPARAMETER POINTWISE
ERGODIC THEOREMS
FOR MARKOV OPERATORS ON L

RYOTARO SATO

Abstract

Let Py, ..., P; be commuting Markov operators on Lo (X, F, p),
where (X,F,u) is a probability measure space. Assuming that
each P; is either conservative or invertible, we prove that for every
fin Lp(X,F,p) with 1 < p < oo the averages

Anf=(n+1)"9 Z PMPP? . PMf (n>0)
0<n;<n

converge almost everywhere if and only if there exists an invariant
and equivalent finite measure A for which the Radon-Nikodym
derivative v = dA/dp is in the dual space L,/ (X,F,p). Next
we study the case in which there exists p1, with 1 < p; < oo,
such that for every f in Lp(X,F, u) the limit function belongs to
Ly, (X, F,pn). We give necessary and sufficient conditions for this
problem.

1. Introduction

Let (X, F, u) be a probability measure space and let P; (i = 1,2,...,d)
be commuting Markov operators defined on L.,(X,F, ). In this paper
we assume that each P; is conservative or invertible, and prove that the
averages

Anf=(m+1)"* Y PPPP...PMf (n>0)

0<n;<n

converge almost everywhere for every f in L,(X,F,pu), 1 < p < oo, if
and only if there exists an invariant and equivalent finite measure \ for
which the Radon-Nikodym derivative v = dA/dyu satisfies v € Ly (u)
with 1/p + 1/p’ = 1. This is a new result, even if d = 1. Next we
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consider the question whether there exists a constant p;, 1 < p; < o0,
for which the limit functions belong to Ly, (X, F, u). We give necessary
and sufficient conditions for this problem.

Let (X, F,u) be a probability measure space. By a Markov operator
P defined on Loo(p) = Loo(X,F,p) we mean a linear operator from
Loo(p) into itself such that

(i) P is positive: Pf > 0 whenever f € L} (1),
(i) P is a contraction: ||Pl[o < 1,
(iii) lignan:o a.e. on X whenever f,€ L% (1) and f, | 0 a.e. on X.

By virtue of (iii) and the Radon-Nikodym theorem we may define an
operator on L;(p) = Ly (X, F, 1) by the relation

/uPd,u:/ w(Plg)dp (u € Li(p) and B € F),
B p's

15 being the indicator function of B. Here we use the same symbol P

for the L1(u) operator, but we write it to the right of its variable. P

is called invertible if P1 = 1 and P is a one-to-one onto mapping of

Loo(p), and conservative if f € LE (p) and Pf < f imply Pf = f. It
(= <]

is known (see e.g. [4]) that P is conservative if and only if Z uP' =00
i-0

a.e. on X whenever u € L} (p) and u > 0 a.e. on X. Since P is positive,

we may extend the domain of P to the space M*(p) = M+ (X, F, ) of

all nonnegative extended real valued measurable functions on X, by the

relations

Pf =lim Pf, a.e. where f, € LY (p) and f, T f on X
and

uP = limu, P a.e. where u, € L] (n) and u, T u on X.
T

It is easily seen that by this process Pf and uP are uniquely determined
a.e. on X. We then have

(wP, f) = fx (uP)f dy = /X w(Pf)du = (u, Pf).

In this paper we consider several commuting Markov operators P; (i =
1,2,...,d) defined on Lo (p). Throughout the paper we will assume that
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each P; is conservative or invertible. Associated with these operators we
define the averages

Auf=(m+1)"* Y PMP*...PMf (n>0)

0<n;<n

and the maximal operator

M f =sup A, |f|.
n=0

Also we define the o-field of all invariant subsets of X:
I= {BEF:P,;].BI 1p for all 4 = 1,2,...,d}.

We call the system {Pi, P,,..., P;} ergodic if T is the trivial o-field.

It is known that if p is invariant under the P;, i.e., 1P, = 1 for all
© = 1,2,...,d then the sequence {A,f} converges a.e. for every f in
L;(p), 1 < p £ o0. But, if g is not assumed to be invariant, we cannot
expect the almost everywhere convergence of { A, f} for every f in L (u),
1 < p < 00. Therefore the author thinks that it would be of interest to
characterize those probability measures p for which the sequence {A, f}
converges a.e. for every f in Lf(u), 1 < p < co. As is easily seen,
such a characterization for p = oo is the existence of an invariant and
equivalent finite measure. Thus we will concern ourselves with the case
1 < p < oo below. It is interesting to note here that this problem for
d-parameter groups of null preserving point transformations was recently
examined by Martin-Reyes [5]. Hence our results may be regarded as
generalizations (and improvements) of those due to Martin-Reyes. We
will give a new characterization which has a connection with the invariant
measure problem. That is, we will prove in Section 3 that the sequence
{Anf} converges a.e. for every f in L} (u) if and only if there exists an
invariant and equivalent finite measure A for which the Radon-Nikodym
derivative v = d\/du satisfies

vE L;,(X,F,u) with 1/p+1/p' = 1.

Next, let us suppose that f*(z) = limA, f(z) exists a.e. for all f in

L (p), 1 < p < 0o. Do the functions f* belong to L} (u)? As is easily
seen, this is not true in general, unless p = co. So the following question
arises naturally. Does there exist a constant p;, 1 < p; < oo, such that
fre Ly (p)forall f e LE(u)? We will prove in Section 3 that the limit
= lifl:'n Anf exists a.e. and f* € L} (u) for all f in L (u) if and only
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if for any u € Ly (1), 1/p1 + 1/py = 1, the limit ug = lim uA, exists
a.e and in the norm topology of L,(u) and further we have uj € Ly (),
1/p+1/p =1

In Section 2 we study the special case where p is invariant under the
P;, and consider the measure A = V du, where V is a positive measurable
function on X. Regarding the P; as commuting Markov operators defined
on Lo (X,F,V du), we obtain some preliminary results which may be of
independent interest by themselves.

In what follows two functions f and g are not distinguished provided
that f = g a.e. on X, and if 1 < p < oo then p’ will be its conjugate
exponent, i.e. 1/p+1/p' = 1.

2. The invariant measure case

In this section we assume that the probability measure p is invariant
under the P;, or equivalently that 1P, =1 = Pl foralli=1,2,...,d,
and consider the measure A = V du, where V' is a positive measurable
function on X. It may happen that A X = fx Vidu = cc.

Theorem 2.1. Let P; (1 < i < d) be commuting Markov operators
on Lo (X, F, 1), where (X, F, ) is a probability measure space. Assume
that p is invariant under the P;. Let V be a positive measurable function
on X, and let 1 < p < 00. Then the following are equivalent.

(a) For every f in L} (V du), limA,f exists and is finite a.e. on X.

(b) For every f in L} (V du), Mf < co a.e. on X.
(c¢) There exists a positive measurable function U on X such that

/ Udpgt"’/ fPVdu (t>0,f€L;(Vdp)).
{Mf>t} b's
(d) There ezists a positive measurable function U on X such that

liminf/ Ud,ugt—f’f fPVidp (>0, feLi(Vdy)).

i {An f>t} X

(e) esssup{W € MH(X,Z,u) : W <V} >0ae onX (ifp=1);
E{V-P|I} < o0 a.e. on X (if 1 <p < 0).

Proof: 1t is clear that (a) = (b) and (¢) = (d).
(b) = (c). (b) implies that for each n > 0 and all f € L} (V dp),
|A,f| < oo a.e. on X. Thus the operator A, can be considered to be a
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continuous mapping from L,(V dy) to Lo(u), where Lo(p) denotes the
space of all finite valued measurable functions on X, equipped with the
topology of the convergence in measure. By this and Banach’s principle
(cf. e.g. [3, p. 2]) we see that the sublinear operator f — M]|f]| is
continuous from L,(V du) to Lo(p). Hence (c) follows from Nikishin’s
theorem (cf. [2, p. 536]).

(d) = (a). Let f € L} (V dp), and choose fy € Li(u), N=1,2,...,
so that fiy T f on X. Since y is invariant under the P;, it follows that
1Pl = 1 for all 1 < r < o0, and hence the classical pointwise ergodic
theorem for d-parameter semigroups of Dunford-Schwartz operators can
be applied to infer that

lim A, fxv = E{fn|Z} a.e. on X.

Using this we see that the pointwise limit f*(z) = limA,, f(z) exists a.e.
1)
on X (but may equal to infinity on some subset of X) and that

f*=E{f|T} a.e. on X.

To prove that f* < co a.e. on X, let us write B = {z : f*(z) = oo}.
Then, since B C liminf{A,f > t} for any t > 0, we have by Fatou’s

lemma and (d),

/ Udp < liminf/ Udu < t_p/ fPvdp.
B n {Anf>t} X

Letting ¢ T oo, it follows that [ 5 U dp =0, and consequently uB = 0.

(a) = (e). Asin [8], we use the ergodic decomposition technique. We
first note that for the proof it may be assumed without loss of generality
that (X, F, ) is a Lebesgue measure space in the sense of Rokhlin [6].
Then using Rokhlin’s theory we can find a countable family {E;} of sets
in 7 such that if £ denotes the decomposition of X induced by {E;}, i.e.,
C € £ has the form

C =) Ei(e)
where ¢; = +1, E;(1) = E; and E;(—1) = X\ E;, then:

(i) The factor space (X/&, F¢,pe) of (X, F, u) with respect to £ is a
Lebesgue measure space.

(ii) To a.e. C € X /€ with respect to p¢ there corresponds a Lebesgue
measure pc on C' such that if B € F then B N C is measurable with
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respect to uc for a.e. C € X/, and the function h(C) = pc(BNC) is
measurable with respect to p¢ and satisfies, for all Z € F of the form
Z =1"YZ/¢), where t : X — X/€ denotes the canonical mapping,

uenz)= [  HO)u(©) = / (B0 C)(©).

(iii) To a.e. C € X/ there correspond commuting Markov oper-
ators P(C)1, P(C)a,...,P(C)q defined on Lo(C,uc) such that the
system {P(C)y,P(C)z,...,P(C)q} is ergodic, and also such that if
u € L1(X,F,pn) and f € Loo(X,F,p) then, for a.e. C € X/§,

ucP(C)i = (uP,)c and P(C)ifc = (Pif)c forall i =1,2,...,d,

where ug, (uP;)¢, fe and (P;f)c denote, respectively, the restriction
functions of u, uP;, f and P;f to the set C.

To prove the implication (a) = (e) for p = 1 we define
V =esssup{W € M*(X,Z,u): W <V},
and assuming that u{V = 0} > 0, we derive a contradiction as follows.
Since {V =0} € Z, it may be supposed without loss of generality that
{V =0} = X. Then we use the ergodic decomposition technique. Define
the funciton h, on X/£ by
ha(C) =pc({V <1/n}NnC) (n>1).

Since h,(C) > 0 for a.e. C € X/¢ because V = 0 on X, if f, denotes
the function on X defined by

fa(@) =07 Hha(C))  Lvcr/ny(z) (z € C € X/E),

then we have

f faduc =1/n (C € X/€)
C

| tvau=[ . ( / and,uC) due(C)

S/ (1/n?) due(C) = 1/n?.
x/¢

and
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o0
Therefore the function f = Z fn satisfies f € LT(V du). But, since
n=1
fo ¢ Lf(uc) for ae. C € X/¢, it follows from (iii) and the classi-
cal pointwise ergodic theorem for d-parameter semigroups of Dunford-
Schwarz operators that for a.e. C € X/,

[H(z)= 1171;11 Apnf(z) =0 ae. onC

with respect to the measure ug. It follows that f*(z) = oo a.e. on X
with respect to the measure u. This contradicts (a).

Next, let us consider the case 1 < p < oo, and suppose that the set
B={z: E{Vl"pr|1}($) =00}

is not a null set. Since B € Z, we then suppose without loss of generality
that B = X, and from this we derive a contradiction as follows. First
we note that if E{V1™?|I} = co a.e. on X then

/ Vl‘p'duc = oo for a.e. C € X/E.
c

Using this and doing as in the proof of the implication (a) = (b) of
Theorem 1 in [8] (see especially p. 75 in [8]) it is possible to construct a
function f in L} (V du) so that for a.e. C € F/€, where F is aset in T
and satisfies uF > 0, we have fC fdpc = co. Then it follows from (iii)
that for a.e. C € F/¢,

f*(z) =lim A, f(z) = co a.e. on C
with respect to the measure uc. Hence f*(z) = oo a.e. on F with

respect to the measure p. This contradicts (a), because f € Ly (V du).

(e) = (a). (e) implies the existence of a sequence {Xxn} of sets in Z,
with Xy T X, such that if Vy denotes the restriction function of V to
Xy then

Vil e Lh(Xn,V dy).

Here, since X € Z, for the proof of (a) it may be supposed without
loss of generality that Xy = X. Then for any f € L (V du) the Holder
< 00

inequality yields
( 1
(L)
x Vilzewo,vaw
(p=1)

/xfdﬂ':/xfévdﬂi< (/ fdep')lip(/ (%)p*v’dp)lfp’(m
b e X

L (1< p < o0),
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so that f € L] (u), and hence (a) follows from the classical pointwise
ergodic theorem for d-parameter semigroups of Dunford-Schwartz oper-
ators. The proof is complete. R

The following corollary is immediate from the equivalence of (a) and
(e) in Theorem 2.1.

Corollary 2.2. Let P; (i =1,2,...,d) be as in Theorem 2.1. Suppose
in addition that the system {Py, Ps,...,P;} is ergodic. Then limA, f

exists and is finite a.e. on X for every f in L (Vdp), 1 <p < oo, if
and only if V™! € Ly (X, F,V du).

3. The general case

Theorem 3.1. Let (X,F,u) be a probability measure space and let
P, (i = 1,2,...,d) be commuting Markov operators on L.(X,F,pu).
Assume that each P; is conservative or invertible. If 1 < p < oo, then
the following are equivalent.

(a) For every f in Lf(u), imA, f exists and is finite a.e. on X.

(b) For every f in L} (u), Mf < oo a.e. on X.
(c) There exists a positive measurable function U on X such that

/ Ud,uit_p/ fPdu (t>0,f€L;{,u)).
J{M f>t} X

(d) There exist a positive measurable function U on X, a positive
constant r and a subsequence {n(k)} of the sequence {n} such
that

r/p
/ Udp<t™ (/ f"du) (t>0, f € L} (1))
{Aney >t} X

(e) For every u in Li(u), the sequence {uAn} converges in the norm
topology of L1(u) and also a.e. on X; further to each v € LT (k)
with vP; = v for all i = 1,2,...,d there corresponds a sequence
{Xn~} of sets in T such that X 1 X and the restriction function
vy of v to Xy is in Ly (Xn,p) for each N > 1.

(f) There exists v € L;ﬁ(,u) withv > 0 a.e. on X and vP; = v for all
i=1,2,....d.

In order to prove Theorem 3.1 we begin by proving the following



MULTIPARAMETER POINTWISE ERGODIC THEOREMS 403

Lemma 3.2. Let P; (i =1,2,...,d) be commuting Markov operators
on Loo(X, F, 1), where (X, F, ) is a probability measure space. Assume
that each P; is conservative or invertible. Then the sequence {A,f}
converges a.e. on X for every f in Loo(X,F, 1) if and only if there exists
a function v in LT (X, F, u) such that v > 0 a.e. on X and vP, = v for
alli=1,2,....,d.

Proof: Suppose the first assertion of the lemma holds. Then for any
u € Ly(u) and f € Loo(p) the sequence

(udn, f) = ] (wAn) f dp = [X w(Anf) d = (u, Anf)

X
converges to a finite limit as n — oo. It follows from the Vitali-Hahn-
Saks theorem that {uA,} converges weakly in L,(u). Hence by a mean
ergodic theorem (c.f. e.g. [4, Theorem 2.1.5]), {uA,} converges strongly
in Ly(u). Let v € LT (1) be the limit function of the sequence {14,} in
L1(p). Since vP; = v for each 1, it follows that the set B = {z : v(z) = 0}
satisfies Pj1p < 1p for each i. Here if P, is conservative, then we
have P;1p = 1p. On the other hand, if P, is invertible then, since
vP, =v = ‘U'Pi_l, we have P,1g = 1p, too. Consequently B € Z, and
thus

uB = (1,A,1p) = (14,,1p) —>/ vdp = 0.
B

Conversely, if the second assertion holds, then the P; may be regarded
as commuting Markov operators defined on L (X, F,vdu) such that

NPillL,(x,Fpapy =1 (1<i<d).
Thus we may apply the classical pointwise ergodic theorem for d-para-

meter semigroups of Dunford-Schwartz operators to infer that the first
assertion of the lemma holds. ®

Proof of Theorem 3.1: (a) = (b) and (c) = (d) are immediate. The
proof of (b) = (c) is the same as that of the corresponding part of
Theorem 2.1. (f) = (a) follows from the classical d-parameter pointwise
ergodic theorem, since L,(u) C L (vdy).

(d) = (a). We may suppose that 0 < U <1 on X. Given an € > 0,
choose § > 0 so that u{U < 6} < &. Then, since A,15 < 1 on X for
any B € F, (d) implies

/ (An(k)lB)dP: <&t /(An(k)lB)U du + p{U < 6}
X

<§! / Udpt+t/ Udp | +e
{An1e>t} X

<EHT(WB) /P 467+ (t>0).
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Letting ¢ | 0 and then uB | 0, we see that

lim su 1A,k du =0.
#B—’Ukzrl)./B () O

Since p is a probability measure, it follows that the set {14, : k > 1}
is weakly sequentially compact in Li{u). Hence, by a mean ergodic
theorem, the averages 1A, converge in the norm topology of L(u) to
some v € Lf(,u). Then, as in the proof of Lemma 3.2, we see that
v > 0 a.e. on X. Therefore, regarding the P; as commuting Markov
operators defined on Loo(z, F, v du) such that | P;|| £, (x, 7,0 du) = 1 for all
i=1,2...,d, we can apply the classical d-parameter pointwise ergodic
theorem to infer that for every f in L (n) = L} (v™'vdy) the limit
fHz) = li’rr"nAﬂ f(z) exists a.e. on X (but may equal to infinity on some

subset of X) and that
f*=FE{f|X,Z,vdu)} a.e. on X.

To see that f* < oo a.e. on X, let us write B = {z : f*(x) = oo}. Since
B C limkinf{An(k) f >t} for each t > 0, it follows from (d) together with

Fatou’s lemma that

r/p
fUd,uSliminf/ Udpgt_"(/ fpd,u) .
B B {Anpe >t} X

Letting £ T oo, we have fB Udp = 0 and hence uB = 0.

(a) = (e). Since Loo(p) C Lp(p), it follows from Lemma 3.2 that
there exists a function vy in LT () such that vo > 0 a.e. on X and
voP; = vy for each i. As before, let us regard the P; as commuting
Markov operators on Lo, (X, F,vpdp). Then, considering the invertible
mapping u — u/vp from Li(X,F, ) onto Li(X,F,vodp), we see that
for any v in L,(u) the sequence {(uAn)/vo} converges a.e. on X and
also in the norm topology of L;(vgdu). This proves the first assertion of
(e). To prove the second assertion, let v € Lj (u) be such that vP; = v
for each i. Then the set D = {z : v(z) > 0} is in Z, and as before
regarding the P; as commuting Markov operators on Lo (D,vdy) and
noticing that L} (D,u) = Ly (D, %v dp), we may apply the equivalence
of (a) and (e) in Theorem 2.1 to infer the existence of a sequence {Dy } of
sets in Z, with Dy T D, such that if vx denotes the restriction function
of v to Dy then

1\ 1
N = (—) €L, (DN,;vd,u) = Ly (Dn, p).

UN
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(e) = (f) Letting w = lim 1A4,, in L, (y), it follows that wP; = w and
w > 0 a.e. on X. Choose {Xy} in Z so that the functions wy = wlx,

are in Ly (p). It then suffices to define v = Z 2_N||wN||;,1wN. The

N=1
proof is complete. W

Theorem 3.3. Let (X,F,u) be a probability measure space and let
P, (i = 1,2,...,d) be commuting Markov operators on Lo(X,F,p).
Assume that each P; is conservative or invertible. If 1 < p, p1 < 00,
then the following are equivalent.

(a) The limit f*(z) = limA, f(z) ezxists a.e. on X and f* € Ly, (p)
for all f in L} ().
(b) For every w in Ly, (1) the limit uf(z) = limuA,(z) ezists a.e. on

X and in the norm topology of L1(p); further uf is in Ly (p).
(¢c) For every u in L;’,l (1) with |lullp; >0 we have

0 < [liminf uA,||, < oco.
n

(d) To eachu in L;;1 (1) there corresponds a functional F, defined on
L¥ (1) such that

F.(fr)—0 whenever f, | 0
1) a.e. on X(if p= o00),
( F.(f) < Kullfllp, K. being a constant depending
only on u(if 1 < p < 00),
@) { F,(tf) =tF,(f) for constants t > 0, and
3) 0 < Fu(f) < Fu(f +9),
(4) Fu(Pif} < Fu(f): and

(5)  Fu.(f) zfxufd,u whenever f = P;f foralli=1,2,...,d.
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Proof: (a) = (b). Since Leo(p) C Lyp(p), it follows from the proof
of Lemma 3.2 that the sequence {1A4,} converges in the norm topology
of Li(u) to some v in L (u) with vP; = v for each P;. Since P; is
conservative or invertible by hypothesis, it follows that v > 0 a.e. on X.
Hence, by the classical d-parameter pointwise ergodic theorem, we see
that if u € L:,l (1) (C LT (1)) then the limit ui(z) = lirrlnuAn(x) exists

a.e. on X and also in the norm topology of Li{u). In order to prove
that ug is a function in L;',(,u}, let f be any function in L;‘(p,) and put
fnv = f AN. Then we have

/ upf dp = lim/ ugfn dp = limlim(uA,, )
X N Jx N n

= limlim(u, An /) = lim(u, %)
< j;{ wf* dp <l |1l < 00

It follows that ug € L;;(,u).

(b) = (c). Obvious.

(c) = (b). There exists vg € Lj(u) such that voP; = vg for all
i =1,2,...,d and also such that if v € L] (u) satisfies vP;, = v for all
i=1,2,...,d then {v > 0} C {vy > 0}. By virtue of (c) it is sufficient
to show that vg > 0 a.e. on X. But, since {vg = 0} is a set in 7 and the
function g = limﬂinf uA, (u € L;,l (u)) satisfies @igP; = 1ip € Ly (p) for
all i =1,2,...,d, this follows immediately from (c).

(b) = (d). Foru € L;',l (u), let F, be the functional on L} (1) defined
by

Fu(f) = fx wfde (feLb®w)

where uf(z) = limuA, (z) a.e. on X. Since the sequence {uA,} con-
n

verges to uj) in the norm topology of L, (), F, satisfies all the require-
ments from (1) to (5).

(d) = (a). Let u € L;L,l(,u) with © > 0 a.e. on X. We define a
functional g on Lo, (u) by putting

a(f) = Fu(f*) (£ € Loo())-

Clearly we have q(f + 9) < q(f) + q(g), q(tf) = tq(f) for each constant
t > 0, and ¢(P;f) < g(f) for each P;. On the other hand, since P; is
conservative or invertible by hypothesis, it follows that

{fe€Llo(p):Pif =floralli=1,2,...,d} = Leo(X, T, ).
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Thus, by a variant of the Hahn-Banach theorem (cf. e.g. [7, Propo-
sition 10.5], the linear functional f — F,(f) = Jx uf dp defined on
Loo(X,Z,p) can be extended to a linear functional F on Loo(u) =
Loo(X, F, i) so that

(6) Fi(f) < a(f) and Fi(P:f) = P;(f)

forall f € Loo(p) and P; (1 <1 < d). F} is positive, because f € L} ()
implies —F7(f) = F;(=f) < q(—f) =0.

Now, let us set A(B) = F;(1p) for B € F. By (1) and (6), ) is a finite
measure absolutely continuous with respect to u and invariant under the
P;. Therefore the function u§ = d\/du € L7 (i) satisfies uyP; = u for
all P;, and hence the set B = {z : u)(z) = 0} is in Z. This and (5)
imply F;(1g) = F,,(1g) = fBud,u = 0 and pB = 0. Thus the P; can be
regarded as commuting Markov operators defined on Lo (X, F,uy du)
such that

”'P?:"Ll.(X,F,u;dp) =1 (1 <i< d)

We then apply the classical d-parameter pointwise ergodic theorem to
infer that for any f > 0 on X the pointwise limit

f*(2) = lim A, f(2)

exists a.e. on X (but may equal to infinity on some subset of X); further
we see that if 0 < f, T f a.e. on X then f} T f* a.e. on X.

Next, let f € L (u) be fixed arbitrarily, and put fy = f A N. Since

fx T f"ae on X and f € LL(X,Z,p), we see by (5), (6) and an
approximation argument that

/ uf"‘d,u=lim/ uf;\}dpzlimf ug fr dp
X N Jx N Jx
= lim (lim/ uE(Aan)d,u) = lim (lim/ (wgAn)fn d,u)
N n Sx N n Jx
~tips [ i du <l Fulfv) < lin Kul vl

SKullfllp<oo (ue L;’;(u) with > 0 a.e. on X).

This proves that f* € L+ (u), completing the proof. ®

Remark. Using the duality relation between Lorenz spaces L(p,q)
and L(p’,q'), where 1 < p, g < o0, it is possible to generalize Theorem 3.3
to L(p, q) spaces. For this see [9], in which one-parameter semigroups of
null preserving point transformations are studied.

As a direct corollary to Theorems 3.1 and 3.3 we have
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Theorem 3.4. Let (X,F,p) be a probability measure space and let
P, (i = 1,2,...,d) be commuting Markov operators on Le.(X,F,p).
Assume that each P; is conservative or invertible, and that the system
{P1, Py, ..., P;} is ergodic. If 1 < p < o0, then the following are equiva-
lent.

(a) For every f in L (p), imA,f ezists and is finite a.e. on X.

(b) There ezists a function v in L;L,(u) such that v > 0 a.e. on X
and vP; =v for alli=1,2,...,d.

(c) For everyu € LT (u) with ||lul|; > 0, the limit u}(z) = limuA,(z)
exists a.e. on X, uj € L;’,(,u,) and |lug|p > 0.

(d) For every u € L} (p) with ||ue > 0, the limit uj(z) =
limuA, (z) exists a.e. on X, uj € L;‘,(,u,) and |lug|lpr > 0.

(e) There exists a functional F defined on LY (1) such that

(7) F(1) =1 and F(f) < K||fl|p, K being a constant,
(8) F(tf) =tF(f) for constants t > 0, and F{f+ g) < F(f)+ F(g),

(9) 0<F(f) < F(f+9),

(10) F(P.f) < F(f).

Final remark. If we don’t assume that the P; commute, then the
equivalence of (a) and (b) in Theorem 3.4 does not hold at least for
p = 1, under the notation

Anf=(n+1)"¢ Z PM Py, Prf

0<n;<n

We prove this by constructing a counterexample with d = 2. Let
(X,F,u) be a nonatomic probability measure space and let T be an
invertible, ergodic and measure preserving transformation on (X, F, u).
Let h be a function on X, with A > 1 on X, such that h € L;(u) and
h(logh) ¢ Ly(u). As is well-known (see e.g. [4, p. 54], we then have

sup(n +1)7! i hot' ¢ Ly(u).

n20 i=0
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On the other hand, since lim(n+1)~! Z hort = / hdp a.e. on X and
" i=0 X
in the norm topology of L;(u), there exists a sub-o-field B such that the

sequence
{n+1 Zho1"|3} (n>0)
is a.e. nonconvergent (cf. Theorem 4.3 in [1]). Here if we define

Pif = E{f|IB} and P,f = for (f € Loo(p))

then P, and P, are conservative Markov operators on Lo, (1) such that
1P, = 1P, = 1. Thus (b) in Theorem 3.4 holds with v = 1 on X. But
(a) in Theorem 3.4 does not hold for p = 1, because the averages

L sy i -2
Anh_n—HE{(n+l) ZhOTIB} Zhor

i=0

are a.e. nonconvergent.

References

1. DERRIENNIC Y. AND LIN M., On invariant measures and ergodic
theorems for positive operators, J. Functional Analysis 13 (1973),
252-267.

2.  GARCIA-CUERVA J. AND RuUBIO DE FRANCIA J. L., “Weighted
Norm Inequalities and Related Topics,” North-Holland, Amsterdam,
1985.

3. GARsIA A. M., “Topics in Almost Everywhere Convergence,” Mark-
ham, Chicago, 1970.

4. KRENGEL U., “Ergodic Theorems,” Walter de Gruyter, Berlin, 1985.

5. MARTIN-REYES F. J., On a pointwise ergodic theorem for multipa-
rameter groups, in “Almost Everywhere Convergence,” G. A. Edgar
and L. Sucheston, editors, Academic Press, Boston, 1989, pp.
267-279.

6. ROKHLIN V. A., On the fundamental ideas of measure theory, Mat.
Sb. (N.S.) 25 (1949), 107-150; Amer. Math. Soc. Translat. Series 1
10 (1962), 1-54.

7. ROYDEN H. L., “Real Analysis,” Macmillan, New York, 1988.



410

R. Saro

SATO R., On pointwise ergodic theorems for positive operators, Stu-
dia Math. 97 (1990), 71-84.

Sato R., Pointwise ergodic theorems in Lorentz spaces L(p, q) for
null preserving transformations, submitted for publication.

Department of Mathematics
~ School of Science

Okayama University

Okayama 700

JAPAN

Rebut el 4 de Marg de 1994



