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NON-LOCAL REACTION-DIFFUSION
EQUATIONS MODELLING
PREDATOR-PREY COEVOLUTION

ANGEL CALSINA, CARLES PERELLO, JOAN SALDANA

Abstract

In this paper we examine a prey-predator system with a charac-
teristic of the predator subject to mutation. The ultimate equi-
librium of the system is found by Maynard-Smith et al. by the
so called ESS (Evolutionary Stable Strategy). Using a system
of reaction-diffusion equations with non local terms, we conclude
the ESS result for the diffusion coefficient tending to zero, without
resorting to any optimization criterion.

1. Introduction

In some other papers [1], [2], [3] we have introduced a way of modelling
some aspects of darwinian evolution through some reaction and diffusion
equations with non local terms.

In the case of a one-parameter family of individuals sharing (competing
for) a limited amount of resources we considered the equation

1
Up = (3: — / u(s,t) ds) u + dugs
0

for t > 0 and with Dirichlet or Neumann boundary conditions with re-
spect to « € [0,1]. What x measures here is the growth capacity of the
population of individuals with characteristic z. The diffusion term por-
trays the mutation (which we view as a spreading of the characteristic)
while the reaction one takes care of the selection.

For this equation we obtain the existence and uniqueness of solution
for the initial value problem, including the possibility of initial popula-
tion concentrated in a sole value of z (Dirac’s delta). For all d in the
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Neumann conditions and for d not too large in the Dirichlet case, we ob-
tain also an equilibrium solution in the positive cone of H'(0,1) which
is asymptotically stable and attracts all solutions in the interior of the
cone. This steady solution has the population concentrated for large
values of z, and tends to be concentrated at £ = 1 when d tends to 0.

We also considered similar problems when the population has its dy-
namics depending on more than one parameter, as would be the case if
different families can feed on different resources. Under some conditions
some non-trivial steady solutions exist which are globally asymptotically
stable in the positive cone.

This case would depict the appearance on the original family feeding
in only one resource, of an individual with the inheritable capacity of
taking advantage of another resource.

Lastly, we considered the interaction between preys and predators
when the former are liable to mutate, that is, to change a characteristic
z on which depends both their population growth capacity and their
capacity to deffend from the predator. We proved the existence of a co-
existence equilibrium and its asymptotic stability under some conditions,
rather stringent for the latter part.

In this note we examine a different prey-predator problem considered
by Maynard Smith [4], [5]. In these papers they consider a predator,
subject to mutation, and hence to evolution, feeding on non evolving
populations. They give a criterion, known as ESS (Evolutionary Stable
Strategy), which determines which will be the equilibrium of coexistence
(coevolution).

They consider a system with two different resources, which are compet-
ing among themselves. In our case, to simplify things we shall consider
that the predator feeds in some unlimited resource, which is not suffi-
cient to provide a positive coefficient of growth and also in some second
resource, which is subjected to intra-specific competition for a limited
amount of food.

The system is

) o' = (8(u) - h(@))u,
v' = (a+ h{a)u — p)v =: 7(a, u)v.

Here the prey population u(t) has a growth rate with a logistic term
é(u) which is in C1([0,00)), with negative derivative and attaining the
0 value for some population %, and a term taking into account the losses
through predation. In this term, A is a decreasing nonnegative function
of the parameter a € [0,1], with h(0) = 1. We assume h € C?([0,1]),
and h"(z) # 0 for all z.
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We also assume g > 1 in order to avoid the possibility of the predator
surviving without any prey.

The ESS criterion tells us that the equilibrium (evolutionary) is at-
tained at a dynamic equilibrium (u®",v%"), i.e., both %’ and v’ equal to
0, and for a value a* of a such that 7(a,u®") < 0 for all a € [0,1], i.e.,
the function a — 7(a,u®") attains its maximum value, which is 0, at
a = a*. Hence, g—; = 0 at the ESS if a* is an interior point.

The justification of the criterion runs as follows. Suppose we are at
equilibrium for some value of a (all predators with the same a). This
means 7 = 0, and hence this determines a value u* of u, and through
u' =0, also of v.

If a mutation takes place, changing a to a new value a,, which we
assume close to the former one, we obtain a system with a new equation,
to take care of the two kinds of predators now present,

v’ = (¢(u) — h(a)v — h(a1)v1)u,
(12) o = (a+ hla)u — uo,
vy = (a1 + h(ay)u — p)v;.

After the mutation the initial values will not be in equilibrium.

If we analyze the system of these equations we find that the population
with larger initial 7 will survive ultimately. That is, if 7(a;,u®) < 0, the
old equilibrium will be restored with v; = 0 while if 7(a;,u%) > 0, a new
equilibrium will be ultimately attained with v = 0 and v; surviving (see
appendix).

From this we deduce that a new value of & will remain fixed if it in-
creases 7, eliminating the former population (seal skin effect: evolution
takes advantage of changes). So, the only stable equilibrium under mu-
tation will be when a is a maximum (at least a local maximum) of the
function

b— 1(b,u?),

uq being defined by 7(a,u®) =0, i.e. a dynamic equilibrium.

It is easy to see that this value of a corresponds to a minimum of the
function u,.

This justification presupposes that the mutation is punctual and sup-
poses a new ecological (=dynamic) equilibrium being attained before a
new mutation appears.

In this paper we shall prove that we obtain the same criterion us-
ing our model, without assuming any such mechanism or accepting any
optimization criterion.
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2. P.D.E. model

In the case considered above, our model is

1)  “T (¢“”"J£lh”)‘“

vy = (z + h(z)u — p)v + dvge =: 7(2, u)v + dvg,.

with u(t) and v(z,t), where z € [0,1] and v satisfies Dirichlet boundary
conditions v(0,t) = v(1,t) = 0.
The non trivial equilibrium points satisfy

1
02 o) = [ ho,
Ay i =dv" + 7(z,u)v = 0.

With no predators (v = 0) the prey equilibrium population is @
(¢(@) = 0). We make the hypothesis that 7(z, %) > 0 for some z (taking
4 large enough, for instance); otherwise there could not be coexistence
equilibrium.

Now let A, be the first eigenvalue of A,, i.e.

1 1
(2.3) Au = max (] Tv° — d/ U’Q) .
fO‘ v2=1, v(0)=v(1)=0 \J0O 0

The hypothesis above implies that, for d small enough, A; is positive
(taking v close to a Dirac’s § in the maximum of 7). As A is increasing
in u for fixed d, and A9 < 0, we have a unique equilibrium solution ug4
such that A,, =0, with 0 < ug < @.

This means that

Ay,v=0

has non trivial solutions (eigenfunctions). As A, is the first eigenvalue
of A,,, the Sturm-Liouville theory ensures that the corresponding eigen-
functions do not change sign in (0,1). Among these we choose v4(z) such
that

1
Plug) = /o hvg (note vg > 0).

With this we have established the existence and uniqueness of a non-
trivial coexistence equilibrium point if @ is large and d small enough.
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3. Small mutation coefficient

In this paragraph we will assume that a* is a strict maximum, i.e.,
7(z,u®") < 0 if z # a*. We shall show that when d — 0, ug tends to
u* :=u*", and vg(z) to a Dirac’s delta at = = a*, i.e., to the equilibrium
predicted by the ESS criterion.

This can be expected if we look at the characterization of A,,(= 0)
as a maximum. For d = 0 we have that 7 as a function of z cannot be
positive in a whole interval, because by taking v with support in this
interval, the maximum would be positive. Also 7 cannot be negative
everywhere, because then the maximum would be negative. Hence it
has to be zero just at one point, i.e. at z = a*. This gives u = u*, the
only value of u for which the function

z — 7(x,u)

fulfills the requisites of having a maximum value equal to 0. On the other
hand the function v for which (2.3) attains its maximum value has its
support concentrated where 7 takes nonnegative values, i.e., at z = a*.

More precisely, we state,
3.1. Theorem. Assume @ is such that

max 7(z,%) > 0.
z€[0,1)

Then the coezistence equilibrium point (ug,vq(x)) (existing for suffi-
ciently small values of d) satisfies

lim ug =u*
d—0 d 1

lim vg =0 for alle > 0, and
da—0 la*—g,a*+¢]¢

1
Jim [ va= ou)/hta).
i.e. the predator population tends to be concentrated at the ESS a*.

Proof:

For small positive d, the positive part of 7(z,u4), 77, has a non empty
support, including ¢* in it. For any 75 > 0, let (79) be the length of the
support of (1 — 7). Due to the hypothesis on h, this set is an interval
or the union of two disjoint intervals.
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We first show that for any 79 > 0, I(7g) tends to 0 when d goes to 0.
Consider the eigenvalue problem

dv" + v = p, v(a) = v(b) =0,

where a and b are the extremes of the larger connected component of the
support of (1 — 7o) *.
The first eigenvalue of this problem is

E=T0= a2

We have, using the Rayleigh quotient characterization,

dm? b b
Tg—m= . max [f 'rgrp?—d/ @™
[, e*=1,¢(a)=¢(t)=0 | /a a

b b
< max /Tcp2—d/ ©? <Ay, =0.
[7e2=1,0(@)=¢(b)=0 | Ja a

Hence, I(mp) < 2m+/d/70.

Therefore, as T is an increasing function of u, it follows that ug — u*
when d — 0.

We now prove that dlimﬂ‘ud(:c) = 0 for all z # a* which implies the

second statement of the theorem. Take a fixed z; # a*. For instance
assume z; < a* and let x5 be such that 2, < 23 < a*. For a sufficiently
small dg > 0, 7(z,ug) will be negative in the interval [0,z2] X [ug,, u*]
and, hence, bounded above by a negative number —k. (2.2) implies that
va(z) is an increasing function in [0, z2] for d < dp. Suppose there exist
¢ > 0 and a sequence d, going to 0 such that

va, (z1) > ¢,

and, hence, also vg, (z) > ¢ if z € [z1,22]. Then in this interval we will
have
, k
vg, (z) = (T va,) ud“)?—'d > 4o
dn T dn

and consequently,
T2
lim/ vg, (8) ds = +o0.
z
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But this is in contradiction with
1
lim/ hvg, = lim ¢(uq, ) = ¢(u*).
0
Finally, the last assertion follows from

<

h(a*) /01 vg — P(u”)

1 1
h(a*)/ Vg —/ hug
0 0

a*+e
[, na) - h@)vate)+

*—e

+ |¢(ua) — ¢(u”)] <

/ Ih(a*) — h(z)lua(z) + |6 (ua) — H(u")]
la®—e,a* +¢]¢

a*+e

for all £ > 0 and the fact that / vq is bounded:
a*—¢
a*+e
fa'+£ B /a"+£ h‘-‘)d - /a‘_e hvg -
@t —e A ar—e PR T min B¢

[a*—e,a*+g]

because h(a*) > 0 (otherwise 7(a*,u*) would be negative). ®

4. A possible mechanism of speciation

321

In the previous section we have examined the limiting shape of the
coexistence equilibrium solutions of system (2.1) when the diffusion co-
efficient d tends to 0. The result is that the predator population vy(z)
tends to concentrate around a point a* € [0,1] which minimizes the

function u® = %, or equivalently, which maximizes the function

a— 1(a,u) =a+ h(a)u — p

with a maximum value equal to 0. This obviously implies that a* can
belong to the open interval (0,1) only if A” < 0 (remember we are
assuming that h”(z) never becomes 0). This case is called generalist
strategy and the other one, when a* is an extreme value of the interval
[0, 1] (possible either with A” > 0 or h” < 0), is called specialist strategy*.
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We shall show now that, with moderatly small values of d, and for
k" > 0, one can have equilibrium distributions of the predator population
vg(z) with two maxima in [0, 1]. This corresponds to a concentration of
the population around two different values of the characteristic z and,
hence, to the differentiation of two kinds of individuals, tending to feed
in two different resources.

Let us consider system (2.1) now imposing Neumann boundary con-
ditions.

Theorem 4.1. Assume h(1) > 0 and h''(z) > 0 (besides h(0) = 1
and h'(z) < 0). Let o and B be defined by

. /2 -1

oo (12 )
L1
Joh=3h1)

gEm T T TR

h(1)
h'(1)
Assume also that @ is such that 7(z, ) is positive in the whole interval
[0,1].
Then there exists dg > 0 such that for all d > dy there exists an equi-
librium solution of (2.1) plus Neumann boundary conditions (ug4,va(z))

satisfying

(substituting 1 — by oo if K'(1) = 0) and assume p € (a, 3).

0,1 p—1 _ -

, = max | =ru<ug<u

max(u ,u’) =m (;.L 0 ) d

and vq(z) having ezactly one minimum and no mazimum in (0,1) (so
having two peaks at the extreme points of the interval).

Proof: First note that the hypotheses on h imply that the interval
(o, B) contains at least the point y—jry:
From .
1+A'(0) <h(l)=1 +/ h'(s)ds <1+ h'(1)
0

it immediately follows
1 1 h(1)

RO SToRM ST RQy
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and from
! 1
Mnsﬁhs§u+mm
it follows
/2 _ 1 fu h—h(1)/2
1— fIn ™ T=h(1) Jyh—h(1)

Now observe that, for u € (, 3),

is negative for any sufficiently large d because

1
lim )\ﬁ:f 7(z,a) dz.
0

d—o0

As Az > 0 (take v constant), it follows that for any d > dp there is a
unique ugq € (4, 1) such that A,, = 0.
Finally, from

h(1)
RO PR

it easily follows
iu"L(O) >0> iu"‘(l)
da da

and A" > 0 implies that the function u® has no interior minimum. From
this it follows that, for ug > @, 7(-,uq) is positive in two intervals of the
form (0,2,) and (z2,1) and negative in (z1,z2). Notice that if 7(z,uq)
were positive everywhere then \,, would be positive.
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Finally, vy is a positive function satisfying

Ug — _’r(ﬁ..";iua_) Va,

v(0) = v5(1) =0

and hence it attains its local maxima at 0 and 1 and its absolute minimum

in (21, 22). '
Remarks. a) The hypothesis in theorem 4.1 are not sufficient in order

to obtain similar results in Dirichlet boundary conditions.

b) When p = ﬁ(n’ the result of theorem 4.1 is true for any positive

d.
5. Appendix

We shall prove that system (1.2) has the coexistence equilibrium point
corresponding to v = 0 (resp. v; = 0) as a global attractor for the
(open) positive octant iff 4725 > 4724 (resp. <). This corresponds to an
increasing of the value of 7, which is zero, at equilibrium, when we take
a; instead of a. For facility of notation we shall take a; and a; instead
of a and a,, respectively and assume a; < as.

Taking v = w cos? #, wsin? 6, system (1.2) becomes
(5.1)

u' = (¢(u) — w(h(ay) cos® 8 + h(az)sin® 0))u =: (¢(u) — h(0)w)u,
1

0 = §(a2 — a3 + (h(a2) — h(a1))u)sin @ cos ¥,

w’ = (a1 cos? @ + azsin? @ + (h(a;1) cos® 8 + h(az) sin® O)u — p)w =:
(a(8) + h(B)u — p)w.

Notice that (a(8),h(#)) belongs to the segment with extremes (aj, h1)
and (ag, h2). (Here h; := h(a;)).

We shall deal first with the case £ > £792, being the case with
contrary sign dealt in a similar way. Under this condition we have that
0 > 0 (resp. <) for u < 2= =: 4 (resp. >).

If we consider the two dimensional system with # fixed we have that
the equilibrium u® = %ﬁl, w* = i(:) is a global attractor for the
(open) positive quadrant. As a matter of fact V = (—p +a)Inu + hu —
¢ (42) Inw + hw is a Lyapunov function valid for all u > 0, w > 0.

We notice that

wgli _az—ay+ (hg — hy)u ) sin @ cos
dw ~ a(@) +hB)u—p 2
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which implies that, given & and w, for u < @ the absolute value of % is
larger than this value for u > .

If we consider the two dimensional system with @ fixed and a = a; for
the part of the (u,w) plane satisfying

#(u)(az — a1 + (ha — h1)u) + (h1(u — a2) — ha(p — a1))w < 0

and a = ay otherwise, the unstable orbit of the rest point (&,0) is an
outer eventual bound for the orbits of system (5.1). This forces the
orbits of the system to project on the (w,8) plane with w bounded.
Following this projection we see that the orbit winds in such a way that
the turns at the relative extremes of w are made with @ increasing. This,
together with the fact that the slope for © > % has an absolute value
smaller that the one for u < u* forbids the orbit from crossing itself. So
@ increases each time a value of w is repeated. The w-limit set of the
orbit is then, either the equilibrium point (u$,w$, %) or it projects in a
one-dimensional set separated from 6§ = 7, which is impossible owing to
the non crossing condition mentioned above.
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