ON INDUCED MORPHISMS OF MISLIN GENERA

Peter Hilton
Dedicated to my good friend Karl Gruenberg, in admiration and affection, on the occasion of his $65^{\text {th }}$ birthday

Abstract

Let N be a nilpotent group with torsion subgroup $T N$, and let $\alpha: T N \rightarrow \tilde{T}$ be a surjective homomorphism such that $\operatorname{ker} \alpha$ is normal in N. Then α determines a nilpotent group \tilde{N} such that $T \tilde{N}=\tilde{T}$ and a function α_{*} from the Mislin genus of N to that of \tilde{N} if N (and hence \tilde{N}) is finitely generated. The association $\alpha \mapsto \alpha_{*}$ satisfies the usual functorial conditions. Moreover $[N, N]$ is finite if and only if $[\tilde{N}, \tilde{N}]$ is finite and α_{*} is then a homomorphism of abelian groups. If \tilde{N} belongs to the special class studied by Casacuberta and Hilton (Comm. in Alg. 19(7) (1991), 20512069), then α_{*} is surjective. The construction α_{*} thus enables us to prove that the genus of N is non-trivial in many cases in which N itself is not in the special class; and to establish non-cancellation phenomena relating to such groups N.

0. Introduction

Guido Mislin introduced and discussed in [M] the genus $\mathfrak{G}(N)$ of a finitely generated (fg) nilpotent group N. This consists of isomorphism classes of $f g$ nilpotent groups M such that

$$
\begin{equation*}
M_{p} \cong N_{p}, \text { for all primes } p, \tag{0.1}
\end{equation*}
$$

where M_{p} is the p-localization of M. By abuse we say that M belongs to $\mathfrak{G}(N)$. It was early known that $\mathfrak{G}(N)$ is not trivial, but systematic methods of calculating the set $\mathfrak{G}(N)$ and representing its elements were lacking.

Mislin himself in [M], and together with the present author in [HM], described an abelian group structure which could be introduced into $\mathfrak{G}(N)$ if N satisfied the condition that its commutator subgroup $[N, N]$
is finite; we call the class of such $f g$ nilpotent groups \mathfrak{R}_{0}; moreover, $\mathfrak{G}(N)$ is then finite. However, this still did not permit any kind of systematic calculation of $\mathfrak{G}(N)$. Calculations were done for specific groups in [H2]. Later, Casacuberta and Hilton $[\mathbf{C H}]$ introduced a class of nilpotent groups $\mathfrak{R}_{1} \subset \mathfrak{R}_{0}$, and calculated $\mathfrak{G}(N)$ for $N \in \mathfrak{R}_{1}$; they further showed how to modify N to realize any given element in $\mathfrak{G}(N)$. The nature of the groups in \Re_{1} was further analysed in $[\mathbf{S}],[\mathbf{H S} 1]$-indeed, the class is very strongly restricted - and, in [S], [HS2], the calculation of the genus was extended from N to N^{k}, the direct product of k copies of N, provided $N \in \Re_{1}$. A key result in this work is that, for $N \in \Re_{1}$, $\mathfrak{G}(N)$ can only be non-trivial if $F N=N / T N$ is cyclic, where $T N$ is the torsion subgroup of N; recall that $F N$ is commutative for $N \in \mathfrak{R}_{0}$.

A significant difficulty in attempting to calculate $\mathfrak{G}(N)$ is that \mathfrak{G} lacks any kind of functoriality. We endeavor in this paper to go some way towards remedying this defect. Thus we suppose given a $f g$ nilpotent group N and a surjective homomorphism $\alpha: T N \rightarrow \tilde{T}$, for some finite group \tilde{T} which is, of course, necessarily nilpotent. Given the supplementary condition that $\operatorname{ker} \alpha$ is normal in N, we construct a $f g$ nilpotent group \tilde{N} such that $T \tilde{N}=\tilde{T}$ and a function $\alpha_{*}: \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$. Moreover, $N \in \Re_{0}$ if and only if $\tilde{N} \in \Re_{0}$; and α_{*} is then a homomorphism. It is easy to see that $\alpha \mapsto \alpha_{*}$ satisfies the usual functoriality conditions. Further we show in Section 2 that if $\tilde{N} \in \Re_{1}$ then α_{*} is surjective; thus, in this case, considerable information is made available about $\mathfrak{G}(N)$, since we may calculate $\mathfrak{G}(\tilde{N})$.

A particular, and important, example of the construction is afforded by taking \tilde{T} to be the abelianization of $T N$ with α the abelianizing homomorphism. To avoid triviality we take $F N$ cyclic. Then \tilde{N} satisfies two of the three conditions for membership of \Re_{1} (see below). Moreover, the third condition will be automatically satisfied if \tilde{T} happens to be cyclic.

We also show in Section 2 that a non-cancellation result proved in [CH] for groups in \mathfrak{R}_{1} extends to groups, which, in our sense above, lie over groups in \mathfrak{R}_{1}. That is, we obtain pairwise non-isomorphic groups (L, M, \ldots) in $\mathfrak{G}(N)$ such that $L \times C \cong M \times C \cong \cdots \cong N \times C$, where C is cyclic infinite.

In Section 3 we give a typical example of the application of the method, with explicit calculations.

For the convenience of the reader, we collect here the crucial facts about the class \Re_{1}. We assume $N \in \Re_{0}$ and refer to the extension

$$
\begin{equation*}
T N \mapsto N \rightarrow F N \tag{0.2}
\end{equation*}
$$

Then $N \in \mathfrak{R}_{1}$ if
(i) $T N$ is commutative;
(ii) (0.2) is a split extension for an action $\omega: F N \rightarrow \operatorname{Aut} T N$;
(iii) $\omega(F N)$ lies in the center of Aut $T N$.

We then note that, in the presence of (i), condition (iii) is equivalent to
(iii)' for each $\xi \in F N$, there exists a positive integer u such that $\xi \cdot a=$ $u a$, for all $a \in T N$.
To avoid a trivial genus, we assume $F N$ cyclic, say, $F N=\langle\xi\rangle$. Let t be the order of $\omega(\xi)$ in Aut $T N$. Then $[\mathbf{C H}]$, if $N \in \mathfrak{R}_{1}$,

$$
\begin{equation*}
\mathfrak{G}(N) \cong(\mathbb{Z} / t)^{*} /\{ \pm 1\} \tag{0.3}
\end{equation*}
$$

Moreover, if $[m] \in(\mathbb{Z} / t)^{*} /\{ \pm 1\}$, where m is prime to t, we may choose the isomorphism (0.3) so that the group N_{m} corresponding to m is obtained from N by introducing a new action ω_{m} of $F N$ on $T N$, defined by

$$
\begin{equation*}
\omega_{m}(\xi)=\omega\left(\xi^{m}\right) \tag{0.4}
\end{equation*}
$$

A final remark pertains to the general construction in Section 1. There is no need to insist that N be $f g$ to carry out the construction. Thus Theorem 1.1 may be extended to yield a function α_{*} from the extended genus of N to the extended genus of \tilde{N} (see [H3]).

1. The construction

Let $N \in \Re_{f g} \subset \mathfrak{R}$; that is, N is a $f g$ nilpotent group. There is then a canonical exact sequence
(1.1) $T N \stackrel{i}{\mapsto} N \stackrel{\pi}{\rightarrow} F N, T N=$ torsion subgroup of N,

$$
F N=\text { torsionfree quotient }
$$

Now let $\alpha: T N \rightarrow \tilde{T}$ be a surjection, so that \tilde{T} is a finite nilpotent group. Assume that ker α is normal in N; call this condition K. Then we know [H1] that we may embed (1.1) in a map of exact sequences

with $\tilde{N} \in \Re_{f g}$. Moreover, the LHS of (1.2) is a push-out in the category of groups; and, obviously, $F \tilde{N}=F N, T \tilde{N}=\tilde{T}$-indeed, we will often write $T \tilde{N}$ for \tilde{T}. We now replace N by a nilpotent group M in the genus of N; we will assume, as we may, that $T M=T N$ and $M_{p}=N_{p}$ for all primes p. We claim that $\operatorname{ker} \alpha$ is normal in M under the natural embedding $\operatorname{ker} \alpha \subseteq T N=T M \subseteq M$. For $(\operatorname{ker} \alpha)_{p}$ is normal in M_{p} for all primes p, which shows that $\operatorname{ker} \alpha$ is normal in M. We thus have a commutative diagram

Theorem 1.1. The association $M \mapsto \tilde{M}$ defines a function α_{*} : $\mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$.

Proof: We have the commutative diagram (identifying $F M_{p}$ with $F N_{p}$)

Now it is easy to prove that

\[

\]

is also a push-out in the category of groups. Thus we have a (unique) homomorphism $\kappa: \tilde{N}_{p} \rightarrow \tilde{M}_{p}$ such that $\kappa \beta_{p}=\beta_{p}^{\prime}$ and $\kappa \tilde{i}_{p}=\tilde{i}_{p}^{\prime}$. We
claim that $\tilde{\pi}_{p}^{\prime} \kappa=\tilde{\pi}_{p}$. For $\tilde{\pi}_{p}^{\prime} \kappa \beta_{p}=\tilde{\pi}_{p}^{\prime} \beta_{p}^{\prime}=\pi_{p}=\tilde{\pi}_{p} \beta_{p}$ and $\tilde{\pi}_{p}^{\prime} \kappa \tilde{i}_{p}=$ $\tilde{\pi}_{p}^{\prime} \tilde{i}_{p}^{\prime}=0=\tilde{\pi}_{p} \tilde{i}_{p}$. Thus the diagram

commutes, showing that κ is an isomorphism. This proves that $\tilde{M} \in$ $\mathfrak{G}(\tilde{N})$ and establishes the theorem.

The following "functorial" properties of the association $\alpha \mapsto \alpha_{*}$ are obvious.

Theorem 1.2. (i) Id : $T N \rightarrow T N$ satisfies the condition K and $\mathrm{Id}_{*}=\mathrm{Id}$.
(ii) If $\alpha: T N \rightarrow \tilde{T}=T \tilde{N}$ satisfies condition K and $\tilde{\alpha}: T \tilde{N} \rightarrow \tilde{\tilde{T}}$ satisfies condition K, then $\tilde{\alpha} \alpha$ satisfies condition K and $(\tilde{\alpha} \alpha)_{*}=\tilde{\alpha}_{*} \alpha_{*}$.

Proof: (i) is trivial. As to (ii), it suffices to remark that the existence of β in (1.2) guarantees that α satisfies condition K. Thus we superimpose diagrams to produce

and deduce, first, that $\tilde{\alpha} \alpha$ satisfies condition K and, second, that $(\tilde{\alpha} \alpha)_{*}=$ $\tilde{\alpha}_{*} \alpha_{*}$. For, just as (1.3) was derived in similar manner to (1.2) so

is derived in a similar manner to (1.4), and shows that

$$
\tilde{\tilde{M}}=\tilde{\alpha}_{*} \alpha_{*}(M)=(\tilde{\alpha} \alpha)_{*}(M) .
$$

We now make the further hypothesis that $N \in \mathfrak{R}_{0}$; this is equivalent to assuming that $F N$ is commutative. Since $F N=F \tilde{N}$ it follows that $\tilde{N} \in \mathfrak{R}_{0}$, so that both $\mathfrak{G}(N), \mathfrak{G}(\tilde{N})$ are finite abelian groups. (Notice that, in fact, $N \in \mathfrak{R}_{0}$ if and only if $\tilde{N} \in \mathfrak{R}_{0}$.) We then have

Theorem 1.3. Suppose that $N \in \mathfrak{R}_{0}$. Then $\alpha_{*}: \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$ is a homomorphism.

Proof: Suppose that $K+L=M$ in $\mathfrak{G}(N)$. We continue to assume that

$$
T K=T L=T M=T N .
$$

Then, according to [HM], there exists an exhaustive pair $\varphi: N \rightarrow K$, $\psi: N \rightarrow L$, such that we may form the push-out (in \mathfrak{R})

We recall from $[\mathbf{H M}]$ that an exhaustive pair (φ, ψ) is defined by the requirements
(i) φ or ψ is a T-equivalence, where

$$
T=T(N)=\{p \mid N \text { has } p \text {-torsion }\} ;
$$

and (ii) for all primes p, φ or ψ is a p-equivalence.

However, examination of the proof of Theorem 2.3 of [HM] shows that we may assume that both φ and ψ are T-equivalences. For having constructed φ as a T-equivalence, we define

$$
P=\{p \mid \varphi \text { is not a } p \text {-equivalence }\}
$$

and then, modifying the argument in $[\mathbf{H M}]$, construct ψ to be a $(P \cup T)$ equivalence.

With this strengthened sense of an exhaustive pair, we revert to (1.6). Then φ, ψ, when restricted to $T N$, are both isomorphisms, so we may suppose that both are identities on $T N$. We may then suppose that σ, τ are also identities on $T N$. Now let us factor out $\operatorname{ker} \alpha$ from each of K, L, M, N. Since $\operatorname{ker} \alpha \subseteq T N$, this gives rise to a commutative diagram

$$
\begin{equation*}
\tilde{N} \xrightarrow{\tilde{\varphi}} \tilde{K} \tag{1.7}
\end{equation*}
$$

$$
\tilde{L} \xrightarrow{\tilde{\sigma}} \tilde{M}
$$

which is easily seen to inherit from (1.6) the property of being a push-out in \Re. Moreover, it is plain that $\tilde{\varphi}, \tilde{\psi}$ remain T-equivalences and that, for all primes $p, \tilde{\varphi}$ or $\tilde{\psi}$ is a p-equivalence. Since $T \tilde{N}$ is a quotient of $T N$ it is plain that $T(\tilde{N}) \subseteq T(N)$, so that $\tilde{\varphi}$ and $\tilde{\psi}$ are $T(\tilde{N})$-equivalences and $(\tilde{\varphi}, \tilde{\psi})$ is an exhaustive pair. We conclude that

$$
\tilde{K}+\tilde{L}=\tilde{M} \text { in } \mathfrak{G}(\tilde{N})
$$

so that φ is a homomorphism.

2. A special case

Since it has not yet proved possible to calculate $\mathfrak{G}(N)$ systematically for $N \in \Re_{0}$, it is not to be expected that we would have much success in trying to analyse the homomorphism α_{*} in the generality in which it has been introduced in the preceding section. However, we do find it possible to make some headway if we make the restrictive assumption that $\tilde{N} \in \Re_{1}$. We then prove

Theorem 2.1. Let $\alpha_{*}: \mathfrak{G}(N) \rightarrow \mathfrak{G}(\tilde{N})$ be defined as in Section 1 and let $\tilde{N} \in \Re_{1}$. Then α_{*} is a surjective homomorphism.

Proof: Since $\tilde{N} \in \Re_{0}$, it follows that $N \in \Re_{0}$ and α_{*} is a homomorphism. Now $\mathfrak{G}(\tilde{N})=0$ unless $F N$ is cyclic [S], [HS]. Thus, to avoid
triviality, we assume $F N$ cyclic. Under this assumption, the top row of (1.2) splits for an action $\omega: F N \rightarrow$ Aut $T N$. Let $\sigma: F N \rightarrow N$ be a splitting $(\pi \sigma=1)$, so that, if $F N=\langle\xi\rangle$, then ω is given by

$$
\begin{equation*}
\omega(\xi)(a)=y a y^{-1}, a \in T N, \text { where } y=\sigma(\xi) \tag{2.1}
\end{equation*}
$$

We will often write $\xi \cdot a$ for $\omega(\xi)(a)$. We use $\beta \sigma: F N \mapsto \tilde{N}$ to split the botton row of (1.2) and write $\tilde{\omega}: F N \rightarrow \operatorname{Aut} T \tilde{N}$ for the associated action. Note that $\tilde{\omega}$ is given by

$$
\begin{equation*}
\tilde{\omega}(\xi)(\alpha a)=\alpha(\omega(\xi)(a)), \quad a \in T N \tag{2.2}
\end{equation*}
$$

We write (2.2) more simply as

$$
\begin{equation*}
\xi \cdot \alpha a=\alpha(\xi \cdot a), \quad a \in T N \tag{2.3}
\end{equation*}
$$

Now let \tilde{t} be the height of $\operatorname{ker} \tilde{\omega}$ in $F N$; that is, since $F N$ is cyclic, \tilde{t} is the order of $\tilde{\omega}(\xi)$ in Aut $T \tilde{N}$. Then, by the main theorem of $[\mathbf{C H}]$,

$$
\begin{equation*}
\mathfrak{G}(\tilde{N}) \cong(\mathbb{Z} / \tilde{t})^{*} /\{ \pm 1\} \tag{2.4}
\end{equation*}
$$

Moreover, we may choose the isomorphism (2.4) so that the group \tilde{N}_{m}, m prime to \tilde{t}, corresponding to $[m] \in(\mathbb{Z} / \tilde{t})^{*} /\{ \pm 1\}$, is obtained from \tilde{N} simply by replacing the action $\tilde{\omega}$ by a new action $\tilde{\omega}_{m}$, defined by

$$
\begin{equation*}
\tilde{\omega}_{m}(\xi)(\tilde{a})=\tilde{\omega}\left(\xi^{m}\right)(\tilde{a}), \quad \tilde{a} \in T \tilde{N} \tag{2.5}
\end{equation*}
$$

Of course we have freedom in (2.4) to choose m within its given class [m] without changing \tilde{N}_{m}. We will, in fact, choose m to be a T^{\prime}-number, where $T=T(N)$ is the set of primes p such that N has p-torsion. To see that we can do this it suffices to notice that m is prime to \tilde{t} so that, by Dirichlet's Theorem, the residue class [m] contains primes not in T.

With such a choice of m, we show that \tilde{N}_{m} may be represented as $\alpha_{*}\left(N_{m}\right)$ for a suitable group N_{m} in $\mathfrak{G}(N)$. We define N_{m} to be the semi-direct product of $T N$ and $F N$ for the action $\omega_{m}: F N \rightarrow$ Aut $T N$, given by

$$
\begin{equation*}
\omega_{m}(\xi)(a)=\omega\left(\xi^{m}\right)(a), \quad a \in T N \tag{2.6}
\end{equation*}
$$

We first show that $N_{m} \in \mathfrak{G}(N)$. Consider the diagram

where the endomorphism of $F N$ is just $\xi \mapsto \xi^{m}$. Then (2.6) asserts that (2.7) satisfies the compatibility condition permitting us to complete it with $\varphi: N_{m} \rightarrow N$ to a commutative diagram. Now if $p \in T$ then m : $F N \rightarrow F N$ is a p-equivalence, so that $\varphi: N_{m} \rightarrow N$ is a p-equivalence. If $p \notin T$ then $T N_{p}$ is the trivial group so both N and N_{m} are p-equivalent to $F N$ and hence p-equivalent to each other. Thus $N_{m} \in \mathfrak{G}(N)$.

Finally we show that $\alpha_{*}\left(N_{m}\right)=\tilde{N}_{m}$. Consider the diagrams

Recall that we are writing "." to indicate the actions of $F N$ on $T N$ or $T \tilde{N}$ in the first diagram; let us write "०" for the actions of $F N$ on $T N$ or $T \tilde{N}$ in the second diagram of (2.8). Then (2.3) $\xi \cdot \alpha a=\alpha(\xi \cdot a), a \in T N$ and (2.6) $\xi \circ a=\xi^{m} \cdot a, a \in T N$. Moreover, by (2.5), $\xi \circ \alpha a=\xi^{m} \cdot \alpha a$, $a \in T N$. But since $\xi \cdot \alpha a=\alpha(\xi \cdot a)$, it follows that $\xi^{m} \cdot \alpha a=\alpha\left(\xi^{m} \cdot a\right)$, whence

$$
\alpha(\xi \circ a)=\alpha\left(\xi^{m} \cdot a\right)=\xi^{m} \cdot \alpha a=\xi \circ \alpha a, \quad a \in T N
$$

This, however, is precisely the compatibility condition guaranteeing the existence, in the second diagram of (2.8), of $\beta_{m}: N_{m} \rightarrow \tilde{N}_{m}$ making the diagram commutative. Then β_{m} must be surjective. This, however, guarantees that

is a push-out in the category of groups and hence, by the uniqueness of push-outs, that $\tilde{N}_{m}=\alpha_{*}\left(N_{m}\right)$.

We now consider the groups $N_{m} \in \mathfrak{G}(N)$ constructed in the course of our proof of Theorem 2.1. We have immediately

Corollary 2.2. Suppose $N_{m} \cong N_{m^{\prime}}$. Then $m \equiv m^{\prime} \bmod \tilde{t}$.

For if $N_{m} \cong N_{m^{\prime}}$ then $\tilde{N}_{m} \cong \tilde{N}_{m^{\prime}}$. We use Corollary 2.2 to obtain a non-cancellation result. We need some preliminary lemmas, the first of which addresses Remark 1 of $[\mathbf{H M}$, Section 4].

Lemma 2.3. Let $N \in \mathfrak{R}_{0}$ and let $F Z N=n Z N$, where $Z N$ is the center of N and $n=\exp T Z N$. Let k be a T-number, where $T=T(N)$, and let $Q N=N / k F Z N$. Then $Q N$ is a finite group and $p \in T(Q N)$ if and only if $p \in T$.

Remark. In [HM] it was remarked that we achieved the same effect whether we defined n to be the exponent or the order of $T Z N$; of course, in either case $F Z N$ is free abelian.

Proof of Lemma 2.3: Since $[N, N]$ is finite and N is $f g$ nilpotent, $N / Z N$ is finite. Also $Z N$ is $f g$ so $Z N / k n Z N$ is finite. Hence $N / k n Z N$ is finite. Now let $Z N=F \oplus T Z N$, with $F f g$ free abelian. Then $k F Z N=k n F$, so

$$
\begin{equation*}
Z N / k F Z N=F / k n F \oplus T Z N \tag{2.9}
\end{equation*}
$$

Also we have an exact sequence

$$
\begin{equation*}
Z N / k F Z N \mapsto Q N \rightarrow N / Z N \tag{2.10}
\end{equation*}
$$

From (2.9) we infer, for an arbitrary prime p,
$Z N$ has p-torsion $\Rightarrow Z N / k F Z N$ has p-torsion $\Rightarrow N$ has p-torsion.
Thus, from (2.10),
$Q N$ has p-torsion $\Rightarrow Z N / k F Z N$ or $N / Z N$ has p-torsion $\Rightarrow N$ has p-torsion; and N has p-torsion $\Rightarrow Z N$ or $N / Z N$ has p-torsion $\Rightarrow Z N / k F Z N$ or $N / Z N$ has p-torsion $\Rightarrow Q N$ has p-torsion.

This completes the proof.

Lemma 2.4. Let $N \in \Re_{0}$ with $F N$ cyclic, $F N=\langle\xi\rangle$. Let t be the order of $\omega(\xi) \in$ Aut $T N$. Then t is a T-number, where $T=T(N)$.

Proof: Certainly $F Z N$ is a free cyclic group. Suppose it is generated by $\left(a, \xi^{s}\right), a \in T N$. By conjugating with $(1, \xi)$ it is clear that $\xi \cdot a=a$. Let k be the order of a. Then $\left(a, \xi^{s}\right)^{k}=\left(1, \xi^{s k}\right)$. Now, since t is the order of $\omega(\xi)$, we infer that $t \mid s k$.

We compute $Q N$ as in Lemma 2.3. We have

$$
N=\langle T N, y\rangle, \text { where } y=(1, \xi)
$$

$k F Z N=\left\langle y^{s k}\right\rangle$ (we confuse additive and multiplicative notation here!)
Thus, $Q N=\left\langle T N, y \mid y^{s k}=1\right\rangle$.
When we abelianize $Q N$ we get generators from $(T N)_{a b}$, together with \bar{y}; and the only relation involving \bar{y} is $\bar{y}^{s k}=1$. Thus $s k \mid \exp Q N_{a b}$, whence $t \mid \exp Q N_{a b}$. Now since $Q N$ is a finite nilpotent group, $T(Q N)=$ $T\left(Q N_{a b}\right)$, so that, by Lemma 2.3,

$$
\begin{equation*}
T=T(N)=T\left(Q N_{a b}\right) . \tag{2.11}
\end{equation*}
$$

Since $t \mid \exp Q N_{a b}, t$ is a $T\left(Q N_{a b}\right)$-number. Hence, by (2.11), t is a T number.

Before stating our non-cancellation result, we observe that the invariant t provides us with a partial converse to Corollary 2.2. Thus we may prove

Theorem 2.5. (i) $\tilde{t} \mid t$; (ii) if $m \equiv m^{\prime} \bmod t$, then $N_{m} \cong N_{m^{\prime}}$.
Proof: (i) follows immediately from (2.3) and the fact that α is surjective.

As to (ii), observe first that $N_{m} \cong N_{-m}$; for we have the diagram

satisfying the obvious compatibility condition, giving rise to an isomorphism $N_{m} \cong N_{-m}$. Further we have an actual equality between N_{m} and $N_{m+q t}$ since $\xi^{m+q t} \cdot a=\xi^{m} \cdot a$, for all $a \in T N$.

We are now ready to enunciate our non-cancellation theorem; recall that we have constructed a group N_{m} in $\mathfrak{G}(N)$ for each m such that m is a T^{\prime}-number prime to \tilde{t}; and that $N_{m} \cong N_{m^{\prime}} \Rightarrow m \equiv \pm m^{\prime} \bmod \tilde{t}$.

Theorem 2.6. $N_{m} \times C \cong N \times C$, where C is cyclic infinite.
Proof: Since m is a T^{\prime}-number it follows from Lemma 2.4 that m is prime to t, the order of $\omega(\xi)$ in Aut $T N$. Let $A=\left(\begin{array}{cc}m & t \\ r & s\end{array}\right)$ be a unimodular matrix over \mathbb{Z}; let $C=\langle\eta\rangle$ and interpret A as the automorphism of $F N \times C$ given by $\xi \mapsto \xi^{m} \eta^{r}, \eta \mapsto \xi^{t} \eta^{s}$. Consider the diagram

We claim that (2.12) satisfies the compatibility condition. For C operates trivially on $T N$ so we may write, for the top row of (2.12),

$$
\begin{equation*}
\xi \circ a=\xi^{m} \cdot a, \quad \eta \circ a=a, \quad a \in T N \tag{2.13}
\end{equation*}
$$

and, for the bottom row of (2.12),

$$
\begin{equation*}
\eta \cdot a=a, \quad a \in T N \tag{2.14}
\end{equation*}
$$

Moreover, each of $N_{m} \times C, N \times C$ is the semi-direct product for the given actions. Further

$$
\begin{aligned}
& A \xi \cdot a=\xi^{m} \eta^{r} \cdot a=\xi^{m} \cdot a=\xi \circ a \\
& A \eta \cdot a=\xi^{t} \eta^{s} \cdot a=a=\eta \circ a
\end{aligned}
$$

by (2.13) and (2.14). It follows that we may find

$$
\varphi: N_{m} \times C \mapsto N \times C
$$

completing (2.12) to a commutative diagram. It is then clear that φ is an isomorphism.

Now to obtain an actual non-cancellation example, it suffices to find an example of the data of Theorem 2.1 in which $\tilde{t} \not \equiv 1,2,3,4,6$. In the next section we show, in fact, how to construct examples with any given \tilde{t}.

3. Examples

We may apply Theorem 1.1 by factoring $[T N, T N],[N, N] \cap T N, T Z N$, $Z N \cap T N$ out of $T N$ and N and letting α, β be the associated quotient maps. The first is especially interesting for then $T \tilde{N}$ is commutative, but \tilde{N}, in general, is not. If $N \in \Re_{0}$, we may apply Theorem 1.3 ; and we may further hope that $\tilde{N} \in \Re_{1}$ so that we can apply Theorem 2.1. If $F N$ is cyclic we will only need to verify condition (iii) for membership of \Re_{1} (see the Introduction), and, if $T \tilde{N}$ is also cyclic, condition (iii) is automatically verified.

We now give an example (or, rather, a family of examples) which gives rise to a group \tilde{N} in \Re_{1} (although $T \tilde{N}$ is not cyclic), and thus to the construction of non-trivial genera $\mathfrak{G}(N)$ for groups N in \Re_{0}, with $T N$ non-commutative, and to explicit non-cancellation results, based on Corollary 2.2 and Theorem 2.6.

Given \tilde{t}, choose n and u such that (i) n is even; (ii) $p|n \Rightarrow p| u-1$, for all primes p; (iii) the order of $u \bmod n$ is \tilde{t}. Notice that (i) and (ii) imply that u is odd. As examples of possible choices for n and u, we have:

It \tilde{t} is odd, say $\tilde{t}=p_{1}^{\ell_{1}} p_{2}^{\ell_{2}} \ldots p_{\lambda}^{\ell_{\lambda}}$, choose

$$
n=2 p_{1}^{\ell_{1}+1} p_{2}^{\ell_{2}+1} \ldots p_{\lambda}^{\ell_{\lambda}+1}, \quad u=1+2 p_{1} p_{2} \ldots p_{\lambda}
$$

if \tilde{t} is even, say $\tilde{t}=2^{\ell_{1}} p_{2}^{\ell_{2}} \ldots p_{\lambda}^{\ell_{\lambda}}$, choose

$$
n=2^{\ell_{1}+2} p_{2}^{\ell_{2}+1} \ldots p_{\lambda}^{\ell_{\lambda}+1}, \quad u=1+4 p_{2} \ldots p_{\lambda}
$$

Now set $T N=\langle x, y, z| x^{2}=y^{2}=z^{2 n}=1,[x, y]=z^{n},[x, z]=[y, z]=$ 1). Obviously $T N$ is nilpotent of class 2 . Let $F N=\langle\xi\rangle$ operate on $T N$ by the rule

$$
\begin{equation*}
\xi \cdot x=x, \quad \xi \cdot y=y, \quad \xi \cdot z=z^{u} . \tag{3.1}
\end{equation*}
$$

This clearly describes an automorphism of $T N$ since u is prime to n by (ii) above and hence, being odd, prime to $2 n$. Moreover, $z^{u n}=z^{n}$, again because u is odd.

We claim that the action (3.1) is nilpotent. For we have $\Gamma_{F N}^{0} T N=$ $T N$,

$$
\begin{aligned}
& \Gamma_{F N}^{1} T N=\left\langle z^{u-1}, z^{n}\right\rangle \\
& \Gamma_{F N}^{2} T N=\left\langle z^{(u-1)^{2}}, z^{(u-1) n}\right\rangle=\left\langle\left(z^{(u-1)^{2}}\right\rangle\right. \\
& \Gamma_{F N}^{3} T N=\left\langle z^{(u-1)^{3}}\right\rangle, \ldots
\end{aligned}
$$

and thus, again by (ii) above, $\Gamma_{F N}^{k} T N=\{1\}$ for k sufficiently large. If, then, we form the semi-direct product N of $T N$ and $F N$ for this action, N is a nilpotent group and, indeed, $N \in \mathfrak{R}_{0}$.

Now $[T N, T N]=\left\langle z^{n}\right\rangle$. Thus we may factor out $[T N, T N]$ to form

$$
\begin{equation*}
\tilde{T}=(T N)_{a b}=\langle\tilde{x}, \tilde{y}, \tilde{z} \mid 2 \tilde{x}=2 \tilde{y}=n \tilde{z}=0\rangle \tag{3.2}
\end{equation*}
$$

and, following the procedure of Section 1, we have the commutative diagram

$$
\begin{align*}
& T N \longrightarrow N \longrightarrow F N \\
& \alpha \downarrow \quad \quad \beta \downarrow \quad \|, \quad T \tilde{N}=\tilde{T} \text {. } \tag{3.3}\\
& T \tilde{N} \longrightarrow \tilde{N} \longrightarrow F N
\end{align*}
$$

Now $F N$ acts on $T \tilde{N}$ by

$$
\begin{equation*}
\xi \cdot \tilde{x}=\tilde{x}, \quad \xi \cdot \tilde{y}=\tilde{y}, \quad \xi \cdot \tilde{z}=u \tilde{z} \tag{3.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\xi \cdot \tilde{a}=u \tilde{a}, \text { for all } \tilde{a} \in T \tilde{N} . \tag{3.5}
\end{equation*}
$$

Moreover, $\exp T \tilde{N}=n$, so that $\tilde{N} \in \mathfrak{R}_{1}$ by (3.5) and

$$
\begin{equation*}
\mathfrak{G}(\tilde{N}) \cong(\mathbb{Z} / \tilde{t})^{*} /\{ \pm 1\} \tag{3.6}
\end{equation*}
$$

by condition (iii). Thus

$$
\begin{equation*}
\alpha_{*}: \mathfrak{G}(N) \rightarrow(\mathbb{Z} / \tilde{t})^{*} /\{ \pm 1\} \tag{3.7}
\end{equation*}
$$

and $\mathfrak{G}(N)$ is a non-trivial group, provided that $\tilde{t} \neq 1,2,3,4,6$.
Now $u^{\tilde{t}} \equiv 1 \bmod n$. Thus $u^{2 \tilde{t}} \equiv 1 \bmod 2 n$, so that $t=2 \tilde{t}$ or \tilde{t}. Moreover, we may follow the procedure of Section 2 to construct N_{m} if m is prime to \tilde{t} and a T^{\prime}-number, where $T=T(N)$. Plainly $\exp T N=2 n$, so T consists of the prime divisors of n.
Let us now insist, for simplicity, as we clearly may, that \tilde{t} and n have precisely the same prime divisors, except that $2 \mid n$ even if \tilde{t} is odd. Thus we can construct N_{m} if m is prime to \tilde{t}, with the additional condition that m is odd, even if \tilde{t} is odd. We thus have

Theorem 3.1. For a given \tilde{t}, choose (n, u) as above and construct the group N as described. Then there is a surjective homomorphism

$$
\alpha_{*}: \mathfrak{G}(N) \rightarrow(\mathbb{Z} / \tilde{t})^{*} /\{ \pm 1\} .
$$

We may also construct $N_{m} \in \mathfrak{G}(N)$ for any odd m prime to \tilde{t}, and

$$
\begin{equation*}
m \equiv \pm m^{\prime} \bmod 2 \tilde{t} \Rightarrow N_{m} \cong N_{m^{\prime}} \Rightarrow m \equiv \pm m^{\prime} \bmod \tilde{t} \tag{3.8}
\end{equation*}
$$

Moreover, $N_{m} \times C \cong N \times C$ for any odd m prime to \tilde{t}.
Finally, we become even more specific! Let \tilde{t} itself be odd and choose (n, u) as follows (this modifies slightly our earlier example of a possible choice). Thus, if $\tilde{t}=p_{1}^{\ell_{1}} p_{2}^{\ell_{2}} \ldots p_{\lambda}^{\ell_{\lambda}}$, choose

$$
\begin{equation*}
n=2 p_{1}^{\ell_{1}+1} p_{2}^{\ell_{2}+1} \ldots p_{\lambda}^{\ell_{\lambda}+1}, \quad u=1+4 p_{1} p_{2} \ldots p_{\lambda} . \tag{3.9}
\end{equation*}
$$

The effect of this choice is that $t=\tilde{t}$, since the order of $u \bmod 2 n$ is the same (i.e., \tilde{t}) as the order of $u \bmod n$. Thus, with the choice (3.9) -of course, other choices may have the same effect- we may improve (3.8) to

$$
m \equiv \pm m^{\prime} \bmod \tilde{t} \Leftrightarrow N_{m} \cong N_{m^{\prime}}
$$

Example 3.1. Let $\tilde{t}=35$. Then, according to (3.9), we choose $n=2450, u=141$. Now $(\mathbb{Z} / 35)^{*} /\{ \pm 1\} \cong C_{12}$, its elements being [2], [4], [8], [16], [32], [29], [23], [11], [22], [9], [18], [1]. Thus, since we must take m odd, we have, as possible values of m,

$$
\begin{equation*}
m=33,31,27,19,3,29,23,11,13,9,17,1 \tag{3.10}
\end{equation*}
$$

Each of these values of m yields, according to (3.8'), a group N_{m} in $\mathfrak{G}(N)$, no two of which are isomorphic. On the other hand all the groups $N_{m} \times C$, as m runs through the values of (3.10), are isomorphic.

Remark. It is easy to extend Theorem 2.1 to the study of $\mathfrak{G}\left(N^{k}\right)$, $k \geq 2$, where N^{k} is the direct product of k copies of N. For we recall from $[\mathbf{C H}]$ the surjective homomorphism $\rho: \mathfrak{G}(N) \rightarrow \mathfrak{G}\left(N^{k}\right), N \in \mathcal{N}_{0}$, given by $\rho(M)=M \times N^{k-1}$. Plainly we have a commutative diagram

so that, since α_{*} is surjective, so is α_{*}^{k}. Since we have calculated $\mathfrak{G}\left(\tilde{N}^{k}\right)$ for $\tilde{N} \in \mathfrak{R}_{1}[\mathbf{S}],[\mathbf{H S} 2]$, we may extend the applications in this section from $\mathfrak{G}(N)$ to $\mathfrak{G}\left(N^{k}\right)$. We leave the details to the reader.

References

[CH] Casacuberta C. and Hilton P., Calculating the Mislin genus for a certain family of nilpotent groups, Comm. in Algebra 19(7) (1991), 2051-2069.
[H1] Hilton P., Localization of crossed modules, Springer Lecture Notes in Mathematics 1029, 1984, pp. 311-324.
[H2] Hilton P., On the genus of nilpotent groups and spaces, Israel Journ. Math. 54(1) (1986), 1-13.
[H3] Hilton P., On the extended genus, Acta Math. Sinica 4(4) (1988), 372-382.
[HM] Hilton P. and Mislin G., On the genus of a nilpotent group with finite commutator subgroup, Math. Zeit. 146 (1976), 201-211.
[HS1] Hilton P. and Schuck C., On the structure of nilpotent groups of a certain type, to appear.
[HS2] Hilton P. and Schuck C., Calculating the genus of a certain nilpotent group, Bulletin de la Sociedad Matemática Mexicana, to appear.
[M] Mislin G., Nilpotent groups with finite commutator subgroups, Springer Lecture Notes in Mathematics 418, 1974, pp. 103-120.
[S] Schuck C., Some contributions to the study of a class of nilpotent groups, Ph. D. Dissertation, SUNY Binghamton, 1992.

Department of Mathematical Sciences SUNY Binghamton Binghamton, New York, 13902-6000 U.S.A.

Primera versió rebuda el 10 de Novembre de 1993, darrera versió rebuda el 14 de Març de 1994

