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on the occasion of his 65 th birthday

Abstract	
Let N be a nilpotent group with torsion subgroup TN, and le t
a : TN —> T be a surjective homomorphism such that ker a is
normal in N. Then a determines a nilpotent group N such that
TN = T and a function a * from the Mislin genus of N to that of N
if N (and hence N) is finitely generated . The association a l—> oc *
satisfies the usual functorial conditions . Moreover [N, N] is finit e
if and only if [N, N] is finite and is then a homomorphism
of abelian groups . If Ñ belongs to the special class studied by
Casacuberta and Hilton ( Comm . irt. AZg . 19(7) (1991), 2051=
2069), then cx . is surjective. The construction cx * thus enables u s
to prove that the genus of N is non-trivial in many cases in whic h
N itself is not in the special class ; and to establish non-cancellation
phenomena relating to such groups N .

U . Introduction

Guido Mislin introduced and discussed in [M] the genus U~N} of a
finitely generated (fg) nilpotent group N. This consists of isomorphism
classes of f g nilpotent groups M such that

(0 .1)

	

Mp Np, for all primes p ,

where Mp is the p-localization of M. By abuse we say that M belongs
to O(N) . It was early known that C~ ~N} is not trivial, but systematic
methods of calculating the set C~ ~N} and representing its elements were
lacking .

Mislin himself in [M], and together with the present author in [HM] ,
described an abelian group structure which could be introduced into
C3~N} if N satisfied the condition that its commutator subgroup [N, N]
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is finite ; we call the class of such f g nilpotent groups No ; moreover ,

~ ~N} is then finite . However, this still did not permit any kind of sys-

tematic calculation of e3(N) . Calculations were done for specific groups

in [H2] . Later, Casacuberta and Hilton [CH] introduced a class of nilpo-

tent groups C No, and calculated ~~N} for N E N1 ; they further

showed how to modify N to realize any given element in O(N) . The
nature of the groups in N 1 was further analysed in [S], [HS1J indeed ,
the class is very strongly restricted— and, in [S], [HS2], the calculation

of the genus was extended from N to N k , the direct product of k copie s

of N, provided N E N 1 . A key result in this work is that, for N E N1 ,

U ~N} can only be non-trivial if FN = N/TN is cyclic, where TN is the
torsion subgroup of N ; recall that FN is commutative far N E No .

A significant difficulty in attempting to calculate e5(N) is that lacks

any kind of functoriality. We endeavor in this paper to go some way

towards remedying this defect . Thus we suppose given a f g nilpotent
group N and a surjective homomorphism a : TN —} T, for some finite

group T which is, of course, necessarily nilpotent . Given the supplemen-
tary condition that ker a is normal in N, we construct a f g nilpotent

group N such that TN = T and a function cx . : ~ ~N} -> O(N). More-

over, N E No if and only if N E No ; and a* is then a homomorphism .

It is easy to see that a 1—> a* satisfies the usual functoriality conditions .
Further we show in Section 2 that if N E N1 then a* is surjective ; thus ,
in this case, considerable information is made available about (N) ,

since we may calculate O(N) .

A particular, and important, example of the construction is afforded

by taking T to be the abelianization of TN with a the abelianizing

homomorphism . To avoid triviality we take FN cyclic . Then N satisfie s
two of the three conditions for membership of J~ 1 (see below) . Moreover ,

the third condition will be automatically satisfied if T happens to be
cyclic.

We also show in Section 2 that a non-cancellation result proved in
[CHI far groups in N I extends to groups, which, in our sense aboye, li e
over groups in N 1 . That is, we obtain pairwise non-isomorphic groups

(L,M, . . .)in5(N)suchthatLxCMxCNxC,where C
is cyclic infinite .

In Section 3 we give a typical example of the application of the method ,

with explicit calculations .

For the convenience of the reader, we collect here the crucial fact s
about the class N1 . We assume N E No and refer to the extension

(0 .2)

	

TN >--> N --H FN .
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ThenNE]~1 if

(i) TN is commutative ;
(u) (0 .2) is a split extension for an action w : FN —> Aut TN ;

(iii) w(FN) lies in the center of Aut TN .

We then note that, in the presence of (i), condition (iii) is equivalent t o

(iii)' for each 1 E FN, there exists a positive integer u such that 1 . a =
ua , for all a E TN .

To avoid a trivial genus, we assume FN cyclic, say, FN = (0 . Let t
be the order of w(e) in Aut TN . Then [CHI, if N E 911 ,

(0 .3)

	

(Z/t)*/{±1} .

Moreover, if [m] E (7Z/t)*/{±1}, where m is prime to t, we may choos e
the isomorphism (0 .3) so that the group corresponding to m is ob-
tained from N by introducing a new action wm, of FN on TN, defined
by

(0 .4)

	

wm(S) = w ~S m ~ •

A final remark pertains to the general construction in Section 1 . There
is no need to insist that N be f g to carry out the construction. Thus
Theorem 1 .1 may be extended to yield a function a. from the extended

genus of N to the extended genus of N (see [H31) .

1. The construction

Let N E 9'tfs c 91; that is, N is a f g nilpotent group . There is then
a canonical exact sequenc e

(1 .1) T N >--> N --» FN, TN = torsion subgroup of N,
FN = torsionfree quotient

Now let a : TN -» i' be a surjection, so that T is a finite nilpotent
group. Assume that ker a is normal in N ; call this condition K . Then
we know [H1] that we may embed (1 .1) in a map of exact sequences

TN >2.-1N 7--r-* FN

T ~
z

N ~ FN
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with Ñ E J1 fg . Moreover, the LHS of (1 .2) is a push-out in the category

of groups ; and, obviously, FN = FN, TN = Tindeed, we will often
write TN for T. We now replace N by a nilpotent group M in the genus
of N; we will assume, as we may, that TM = TN and Mp = Np for
all primes p . We claim that ker a is normal in M under the natural
embedding ker cx Ç TN = TM Ç M . For (ker a)p is normal in Mp for

all primes p, which shows that ker cx is normal in M. We thus have a
commutative diagram

TN ~ M —L» FM

a

	

P '

TN

	

>--' FM

Theorem 1 .1 . The association M H M defines a function a *
v~(Ñ

Proof: We have the commutative diagram (identifying F Mp with
FNp )

N ~	
z p

T	 	 } Np

	

p

}

» F1V'p

ip

TNp ]	 a p

	

mp	 FMp

p

P7r '

Now it is easy to prove that

» F

~~Np ~ Np

Np

is also a push-out 1n the category of groups . Thus we have a (unique)

homomorphism : Np —> Mp such that içfip = f3p and k ip = ip . We
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claim that rp ~ = *p . For *p Op _ rp,3p = 7rp = rp~p and p P .=

~pip = o =

	

Thus the diagram

~ N ~ FNpP

	

P

l R

2 p

TNp >-->-
~ 1~ p	

—» FMPMP

commutes, showing that i is an isomorphism. This proves that

	

E
3 and establishes the theorem . ■

The following "functorial" properties of the association a 1—> a* are
obvious .

Theorem 1 .2 . (i) Id : TN ---~ TN satisfies the condition K and
Id. = Id

(ii) lf a : TN ~ T = TN satisfies condition K and ~ :

	

T
satisfies condition K, then &a satisfies condition K arid (da ) * = &r * a* .

Proof: (i) is trivial . As to (u), it suffices to remark that the existence o f
0 in (1 .2) guarantees that a satisfies condition K. Thus we superimpose
diagrams to produce

TN >- N ~ FN

a

	

Q

TN > >- N ----~ FN

TN >	 >- N ~ FN

and deduce, first, that c~a satisfies condition K and, second, that (da) * =
~*a* . For, just as (1 .3) was derived in similar manner to (1.2) so
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TN ~~ N ~ FM

FM

TN >----> M ----~ FM

is derived in a similar manner to (1 .4), and shows that

= d,a.(M) (da).(M). •

We now make the further hypothesis that N E No ; this is equivalent
to assuming that FN is commutative . Since FN = FN it follows that
N E No, so that both C3 (N), 113 (N) are finite abelian groups. (Notice
that, in fact, N E No if and only if N E No .) We then have

Theorem 1 .3 . Suppose that N E dto . Then a * : U(N) —> CU(N) is a
homomorphism.

Proof: Suppose that K + L = M in O(N) . We continue to asume
that

TK --=TL= TM =TN.

Then, according to [HM], there exists an exhaustive pair (p : N --4 K,

1/) : N —) L, such that we may form the push-out (in %)

1V ~ K

T

L ~ M

We recall from [HM] that an exhaustive pair (9p,

	

is defined by the
requirement s

(i) ~p or ~ is a T-equivalence, where

T = T(N) = {p l N has p-torsion} ;

and (u) for all primes p, (p or ~ is a p-equivalence .
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However, examination of the proof of Theorem 2 .3 of [HM] show s
that we may assume that both ~P and ~ are T-equivaZences . For having
constructed cp as a T-equivalence, we define

P= {po is not a p-equivalence }

and then, modifying the argument in [HM], construct ~ to be a (Pu T ) -
equivalence .

With this strengthened sense of an exhaustive pair, we revert to (1 .6) .
Then when restricted to TN, are both isomorphisms, so we may
suppose that both are identities on TN. We may then suppose that a ,
r are also identities on TN. Now let us factor out ker a from each of K,
L, M, N . Since ker a Ç TN, this gives rise to a commutative diagram

Ñ	 `~	 > K

7P

	

T

L

	

M

which is easily seen to inherit from (1 .6) the property of being a push-out
in 91 . Moreover, it is plain that , ~ remain T-equivalences and that ,
for all primes p, c,3 or ~ is a p-equivalence. Since TN is a quotient of TN
it is plain that T(N) Ç T(N), so that and O are T(Ñ)-equivalence s
and

	

is an exhaustiva pair . We conclude that

k + L = M in O(N) ,

so that (p is a homomorphism . ■

2 . A special case

Since it has not yet proved possible to calculate C3 ~N} systematically
for N E No, it is not to be expected that we would have much success
in trying to analyse the homomorphism a* in the generality in which
it has been introduced in the preceding section . However, we do find it
possible to make some headway if we make the restrictiva assumptio n
that N E N1 . We then prove

Theorem 2.1 . Let a* : C3 (N) —> ~ ~N} be defined as in Section 1 and
let N E 911 . Then a* is a surjective homomorphism .

Proof: Since Ñ E 91o, it follows that N E No and a* is a homomor-
phism. Now C3~N} = 0 unless FN is cyclic [S], [HS] . Thus, to avoid
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triviality, we assume FN cyclic . Under this assumption, the top row o f

(1 .2) splits for an action w : FN ~ Aut TN. Let o- : FN -4 N be a
splitting (ii-a = 1), so that, if FN = (e), then w is given by

(2.1)

	

w(e)(a) = yay–1 , a E TN, where y= o-(e) .

We will often write e - a for w(O(a) . We use f3o- : FN ~ N to split

the botton row of (1 .2) and write w : FN —> Aut TIV far the associated
action . Note that c~ is given by

j)(0(aa) = a(w(e)(a)), a E TN.(2 .2 )

We write (2 .2) more simply as

(2 .3)

	

aa= a(e -a), aETN.

Now let t be the height of ker D in FN; that is, . since FN is cyclic, t
is the arder of (D(O in Aut TN. Then, by the main theorem of [CH] ,

(2 .4)

	

03(N)

	

(Z/ .i)*/{+1} .

Moreover, we may choose the isomorphism (2 .4) so that the grou p

m prime to corresponding to [m] E (Z/)*/{±1}, is obtained from N
simply by replacing the action D by a new action eJm, , defined by

(2.5)

	

c~ m (e) (a) = cv(em)(~), á E TN.

Of course we have freedom in (2 .4) to choose rn within its given class

[m] without changing 1Vm . We will, in fact, choose m to be a T'-number ,

where T = T(N) is the set of primes p such that N has p -torsion . To
see that we can do this it suffices to notice that m is prime to t so that ,
by Dirichlet's Theorem, the residue class [m] contains primes not in T .

With such a choice of m, we show that Nm, may be represented a s
a* (Nm) for a suitable group Nm in O(N). We define Nm to be the
semi-direct product of TN and FN for the action wm : FN ~ Aut TN ,
given by

(2.6)

	

wm (e) (a) = w(em) (a), a E TN.

We first show that Nm E O(N). Consider the diagram

TN > > N,n ~ FN

lm
TN ~ N	 >> FN
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where the endomorphism of FN is just e f--> ~ m . Then (2 .6) asserts that
(2 .7) satisfies the compatibility condition permitting us to complete i t
with : N,n --> N to a commutative diagram. Now if p E T then m :
FN —} FN is a p-equivalence, so that ~ : Nm —> N is a p-equivalence. I f
p T then TNp is the trivial group so both N and N,, L are p-equivalent
to FN and hence p-equivalent to each other . Thus N,n E O(N) .

Finally we show that a(N) -= N, . Consider the diagrams

TN >~ N --» FN

a 1

	

0 1
TN ~ N ---» FN

TN ~ N,n --» FN

a

TN >	 >- N,n -» FN

Recall that we are writing "- " to indicate the actions of FN on TN or
TN in the first diagram; let us write "o" for the actions of FN on TN or
TN in the second diagram of (2 .8) . Then (2.3) ~ - aa = a (e • a), a E TN
and (2 .6) e o a = em • a, a E TN. Moreover, by (2 .5), e o aa = em • aa ,
a E TN. But since ~ . (ya = • a), it follows that em

• aa == a(em . a) ,
whence

a( o a) = a(r . a) _ ~m • aa =e o aa, a E TN.

This, however, is precisely the compatibility condition guaranteeing the
existence, in the second diagram of (2.8), of f3„z : N,n

	

N„n makin g
the diagram commutative . Then

	

must be surjective . This, however ,
guarantees that

TN

~

	

13 m

?in
l N >---} .i Y r-n

is a push-out in the category of groups and hence, by the uniqueness of
push-outs, that

	

= a* (N„,, ) . ■
We now consider the groups N,n E ~ ~N} constructed in the course of

our proof of Theorem 2 .1 . We have immediately
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Corollary 2 .2 . Suppose Nm ^--J Nm ~ . Then m m' mod

For if Nm ' N77.~~ then Nm, Nm, . We use Corollary 2 .2 to obtain a
non-cancellation result . We need some preliminary lemmas, the first o f
which addresses Remark 1 of [HM, Section 41 .

Lemma 2.3. Let N E ato and let FZN = nZN, where ZN is th e
center of N and n = expTZN . Let k be a T-number, where T = T(N) ,
and let QN = N/kFZN : Then QN is a finite group and p E T(QN) if
and only if p E T .

Remark. In [HM] it was remarked that we achieved the same effec t
whether we defined n to be the exponent or the order of TZN ; of course ,
in either case FZN is free abelian .

Proof o.€ Lemma 2.3 : Since [N, N] is finite and N is f g nilpotent ,
N/ZN is finite . Also ZN is f g so ZN/knZN is finite . Hence N/knZN
is finite. Now let ZN = F O TZN, with F f g free abelian. Then
kFZN = knF, so

(2 .9)

	

ZN/kFZN = F/knF TZN.

Also we have an exact sequence

(2 .10)

	

ZN/kFZN N QN ~ N/ZN.

From (2.9) we infer, for an arbitrary prime p ,

ZN has p-torsion ZN/kFZN has p-torsion ~ N has p -torsion .
Thus, from (2.10) ,

QN has p-torsion ~ ZN/kFZN or N/ZN has p-torsion ~ N
has p- torsion; and N has p-torsion ~ ZN or N/ZN has p -torsion
~ ZN/kFZN or N/ZN has p-torsion ~ QN has p-torsion .

This completes the proof . ■

Lemma 2.4 . Let N E No with FN cyclic, FN = (O . Let t be the
order of w (O E Aut TN . Then t is a T -number, where T = T(N) .

Proof: Certainly FZN is a free cyclic group . Suppose it is generated
by (a, e), a E TN . By conjugating with (1, e) it is clear that . a = a .
Let k be the order of a . Then (a,e5 ) Ic = (l,sk) . Now, since t is the
order of w(e), we infer that tjsk .
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We compute QN as in Lemma 2 .3 . We have

N = (TN, y), where y = (1, )

kFZN = (y sk ) (we confuse additive and multiplicative notation here! )

Thus, QN = (TN, ylysk = 1) .

When we abelianize QN we get generators from (TN)a& , togethe r
with y ; and the only relation involving is ysk == 1 . Thus ski exp QNab ,
whence ti exp QNab . Now since QN is a finite nilpotent group, T(QN) =
T(QNab ), so that, by Lemma 2 .3 ,

(2 .11)

	

T = T(N) = T(QNab ) .

Since ti exp QNab, t is a T(QNab)-number . Hence, by (2 .11 ), t is a T-
number . ■

Before stating our non-cancellation result, we observe that the invari-
ant t provides us with a partial converse to Corollary 2.2 . Thus we may
prove

Theorem 2.5 . (i) tlt ; (ii) if m m' mod t, then Nm Nm , •

Proof: (i) follows immediately from (2 .3) and the fact that a is sur-
jective .

As to (u), observe first that Nm N,n ; for we have the diagra m

TN >—>.- N,.TZ -» FN

TN

	

N_,n ---» FN

satisfying the obvious compatibility condition, giving rise to an isomor-
phism Nm . Further we have an actual equality between Nm and
N,n+gt since em+gt • a = 1m • a, for all a E TN . ■

We are now ready to enunciate our non-cancellation theorem; recall
that we have constructed a group Nm in V ~N} for each m such that m
is a T' -number prime to t ; and that N,n r" N,n, m ±m ' mod t .

Theorem 2 .6 . Nm x C N x C, where C is cyclic infinite .

Proof: Since m is a T ' -number it follows from Lemma 2 .4 that m i s

prime to t, the order of w(e) in Aut TN. Let A = m t be a unimod-
r s

ular matrix over Z ; let C = (TI) and interpret A as the automorphism o f
FN x C given by 1 1—> rrlr , r~ 1—>

~t
~ls

. Consider the diagram
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TN ' ' Nm XC ~ FN x C

(2 :12) A

TN ~ NxC. ~ FNx C

We claim that (2 .12) satisfies the compatibility condition . Far C operates
trivially on TN so we may write, for the top row of (2 .12) ,

(2 .13)

	

oa= em • a, r]o a=a, aETN.

and, for the bottom row of (2 .12) ,

(2 .14)

	

r) • a =a, a ETN.

Moreover, each of N,n x C, N x C is the semi-direct product for the give n
actions. Further

A~•a=rrir •a= r •a=oa ,

Ar7•a= en5
- a= a = ~l oa,

by (2 .13) and (2 .14) . It follows that we may find

(p :N,n XC>—> N x C

completing (2 .12) to a commutative diagram. It is then clear that ço i s
an isomorphism . ■

Now to obtain an actual non-cancellation example, it suffices to find
an example of the data of Theorem 2.1 in which t # 1,2,3,4,6 . In the
next section we show, in fact, how to construct examples with any given
t .

3. Examples

We may apply Theorem 1 .1 by factoring [TN, TN] , [N, N] nTN, TZN ,
ZN n TN out of TN and N and letting a, be the associated quotient
maps. The first is especially interesting for then TN is commutative ,
but N, in general, is not . If N E lto, we may apply Theorem 1 .3 ; and
we may further hope that N E 911 so that we can apply Theorem 2 .1 . If
FN is cyclic we will only need to verify condition (iii) for membershi p
of (see the Introduction) , and, if TN is also cyclic, condition (iii) is
automatically verified .
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We now give an example (or, rather, a family of examples) which
gives rise to a group N in 91 1 (although TN is not cyclic), and thus to
the construction of non-trivial genera C3 ~N} for groups N in 91p, with
TN non-commutative, and to explicit non-cancellation results, based on
Corollary 2 .2 and Theorem 2 .6 .

Given i, choose n and u such that (i) n is even ; (u) p i n ~ p l u — 1, fo r
all primes p ; (iii) the order of u mod n is t . Notice that (i) and (u) imply
that u is odd . As examples of possible choices for n and u, we have :

It is odd, say t = px Ip22 . . . peAA , choose

n = 2pl'+1p22+1 . . . paa+1 , u = 1 + 213113 2 . . . pa y

if i- is even, say = 2 1 ,p22 . . . g' , choos e

n = 2 2 x+2p22+1 . . . pá +1 , u = 1 + 4132 . : . p A .

Now set TN = ( x, y, z i x2 = y 2 = z2n = 1, [x, y] = zn , [x, z] = [y, z] =

1) . Obviously TN is nilpotent of class 2 . Let FN = (e) operate on TN
by the rul e

(3 .1)

	

x = x, e ' y=y, e z = Z ' .

This clearly describes an automorphism of TN since u is prime to n by
(u) above and hence, being odd, prime to 2n . Moreover, zun = zn , again
because u is odd .

We claim that the action (3 .1) is nilpotent . For we have F°FNTN =
TN,

F IFNTN = (z'1 , zn ) ,

1 2FNT1Y = (z_1)2,z_1)n)
= ((Z I' 1/2 } 1

FFNT'N = (z (u-1)3 ), . . . ,

and thus, again by (u) above, I`INTN = {1} for k sufficiently large . If ,
then, we form the semi-direct product N of TN and FN far this action ,
N is a nilpotent group and, indeed, N E 91 0 •

Now [TN, TN] = (zn) . Thus we may factor out [TN, TN] to form

(3 .2)

	

= (TN)ab =

	

y, 212x = 2y = nz = O) ,

and, following the procedure of Section 1, we have the commutative
diagram
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TN ~ N --FN

	

TÑ >	 + N ~ FN

Now FN acts on TÑ by

(3.4)

	

—~,

	

• y =y~•—uz,

so that

(3 .5)

	

• á= uá, for all á E TÑ .

Moreover, expTÑ = n, so that N E 911 by (3 .5) and

(3 .6)

	

0(Ñ) r..., (z/ir/{±l} ,
by condition (iii) . Thus

(3 .7)

	

a * : C~~N} -4> (Z/i)*/{±1 }

and C~ ~N} is a non-trivial group, provided that

	

1, 2, 3, 4, 6 .

Now ut - 1 mod n. Thus u2t mod 2n, so that t = 2t or Ï . More-
over, we may follow the procedure of Section 2 to construct Nm if m is
prime to t and a T '-number, where T = T(N) . Plainly exp TN = 2n, s o
T consists of the prime divisors óf n .

Let us now insist, for simplicity, as we clearly may, that t and n have
precisely the same prime divisors, except that 21n even if t is odd. Thus
we can construct Nm if m is prime to t, with the additional condition
that m is odd, even if t is add . We thus have

Theorem 3 .1 . For a given t, choose (n, u) as above and construc t
the group N as described . Then there is a surjective homomorphis m

	

ac * :

	

(Z/)*/{±1} .

We may caso construct Nm E e5(N) for any odd m prime to t, and

(3 .8)

	

m ±m' mod 2t

	

m ±m ' mod t.

Moreover, N,.TZ x C^--' N x C for any odd m prime to t .

Finally, we become even more specific! Let itself be odd and choose
(n, u) as follows (this modifies slightly our earlier example of a possible
choice) . Thus, if t = pel l pe22 . . . pá , choose

(3 .9)

	

n = 2pel l+1
p1

2+1 . . . pá +1 , u = 1 + 4p1p2 . . . pa.
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The effect of this choice is that t = since the arder of u mod 2n is the
same ( i .e ., t) as the arder of u mod n . Thus, with the choice (3 .9) —of
course, other choices may have the same effect— we may improve (3 .8 )
to

(3.8')

	

m z- ±m'mod .<=>N,n^'N,n, .

Example 3 .1 . Let t = 35. Then, according to (3 .9), we choose
n = 2450, u = 141. Now (Z/35)*/{±1} = C12i its elements being [2] ,
[4], [8], [16], [32], [29], [23], [11], [22], [9], [18], [1] . Thus, since we mus t
take m odd, we have, as possible values of m ,

(3 .10)

	

m = 33,31,27,19,3,29,23,11,13,9,17,1 .

Each of these values of m yields, according to (3.8'), a group Nm in
O(N), no two of which are isomorphic . On the other hand all the groups
Nm x C, as m runs through the values of (3 .10), are isomorphic .

Remark. It is easy to extend Theorem 2.1 to the study of CU(N k ) ,
k > 2, where N k is the direct product of k copies of N . Far we recall
from [CH] the surjective homomorphism p : (N'), N E No ,
given by p(M) = M x Nkr1 . Plainly we have a commutative diagra m

C3~N}

	

9—>* e5(N k )

(3 .11)

	

la .

U(Ñ) -1» o (Ñk )
so that, since a* is surjective, so is cx~ . Since we have calculated (Ñk)
for N E 911 [S], [HS2], we may extend the applications in this section
from t~ ~N} to 5(N') . We leave the details to the reader .
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