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Abstract

ASYMPTOTIC VALUES AND THE
GROWTH OF ANALYTIC FUNCTIONS

IN SPIRAL DOMAINS

J . E . BRENNAN AND A . L . VOLBERG

In this note we present a simple proof of a theorem of Hornblower
which characterizes those functions analytic in the open unit disk
having asymptotic values at a dense set in the boundary. Our
method is based on a kind of ó-mollification and may be of use in
other problems as well .

1 . Introduction

It is a well-known fact that if f is analytic in the open unit disk D and if
lf 1 is subject to a sufhciently strong growth restriction, then f has radial
limits almost everywhere en 8D. In 1963, however, G . R . MacLane [14]
extended that principle te a much larger class of functions, where radial
limits are completely inadequate for a description of boundary behavior .
A function f analytic in D is said to have an asymptotic value A at the
point (o E áD if there exists an are I' lying in D with one endpoint at
(o such that

f(z) - A as z , (o along I' .

Here, A = oc is allowed and it is entirely possible for a given f to have
more than one asymptotic value at a single point (o E áD (cf.[14], [16]) .
The MacLane class A consists of those nonconstant analytic functions
having asymptotic values at a dense set in OD.
The principal goal of MacLane's work is to obtain conditions on a

given f sufficient to guarantee that f E A, and his results are based en
the following simple fact : If f is analytic in D and y is an are on áD
then either

(i) f has asymptotic values at a dense set in y or ;
(ii) there exists a sequence of Koebe arcs y,z tending to a nontrivial

subarc y' of y such that 1 f (z) 1 = c > 0 en y�,, n = l, 2, . . .
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In particular, if as usual,

M(r) = M(r, f) = sup 1 f(z)
~zl-r

it can be shown (cf.[14]) that f E A whenever

1

(1 .2)

	

(1 - r) log+ M(r)dr < oo .
0

Nearly a decade later Hornblower [10] (cf. also [9]) improved MacLane's
result, replacing (1 .2) with the weaker, and apparently sharp, criterion

1

(1 .3)

	

log+ log+ M(r)dr < oo .
0

In addition to establishing the sufficiency of (1.3) he also proved that,
corresponding to each e > 0, there are functions not in A for which

(1 .4)

	

log+ log+ M(r) <

	

e_

	

1 - r

	

log)

	

g ~llr)

On the other hand, more than fifty years ago Valiron [22] (cf. also [23,
p . 191]) had actually shown that Hornblower's examples must have the
property that

(1.5)

	

lim sup
log log logM(r) > 1

r- 1

	

- log(1 - r)

and he further showed that equality in (1.5) is possible, from which it
follows that, for any e > 0, there are functions not in A with

(1 .6)

	

log+ log+ M(r) <

	

1(1 _ r\1+E'

Unfortunately, the work of Valiron seems to have been overlooked by
subsequent authors and we are grateful to A. E. Eremenko for bringing
it to our attention .
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The examples constructed by both Valiron and Hornblower are rather
long and quite technically involved . Our primary objective is to present
a simple example of the Valiron-Hornblower type based on a kind of
á-mollification . Although this work ovas carried out before ove became
aovare of [22], it is, nevertheless, closer in spirit to the work of Valiron
than to that of Hornblower .

Our second objective is to give a new proof of the sufficiency of (1 .3)
based on an idea of E . M. Dyn'kin [7] . Hornblower's original proof
in [10] relies (and so indirectly does ours) on a well-known theorem
of Beurling, Levinson, Sjdberg and Wolf concerning the existente of a
greatest subharmonic minorant to a given function (cf. [1], [2], [12],
[13], [21], [25]) . A special case of the latter was obtained much earlier by
Carleman [4], but his method is quite general in nature . Later MacLane
[15] found another approach leading to the sufficiency of (1 .3) and in the
process gave a new proof of the Beurling-Levinson-Sjdberg-Wolf theorem,
which, incidentally, ovas also discovered by Gurarii [8] . Definitive results
in this direction can be found in articles [5] and [6] of Domar (cf . aleo
[11, p . 374-383]) .

There are, of course, other ways in which to describe or capture the
boundary behavior of analytic functions subject to a growth restriction,
the most noteworthy being in terms of distribution theory. It follows
from the Schwartz program that if f is analytic in D then the functions
f,, = f (reto ) converge as r T 1 to a distribution supported on áD if and
only if there exist constante C, k such that

(1.7)

	

M (r) < (1 Cr)k ,

	

r < 1 .

The corresponding result for functions with very rapid growth is due
to Beurling [1] and is this : As r 1 1 the functions f,- converge to a
generalized distribution if and only if

r

.
(1 .8)

	

log+ log+ M(r)dr < oo .
0

We do not, at present, know of any direct connection between the exis-
tente of asymptotic and distributional boundary values .



468

	

J. E. BRENNAN, A. L . VOLBERG

2. Functions with no asymptotic values

In this section we shall outline a procedure for constructing analytic
functions with a given growth, having no asymptotic boundary values .
Later in Section 3 we shall present the more technical details associated
with that construction .
To this end let M(r) be a given nondecreasing function defined for

0 < r < 1 such that M(r) > e and let us assume that

1
(2.1)

	

f log log M(r)dr = +oo .
0

Setting p(r) = log log M(1 - 2r) we obtain a nonincreasing function
on 0 < r <_ 1/2 with fo

/2
p(r)dr = oo . With only mild regularity

assumptions en M(r) (or equivalently on tt(r)) we arrive at our main
theorem :

Theorem 1 . If M(r) is given as above satisfying (2.1) and if, more-
over,

(1) rp(r) �+ 0 as r �+ 0
(2) p(r) > cp(2r), 0 < r < 1/2 and c > 1

i
(3)

	

fo rN,(r) dr < oo

then there exists a function f analytic in D, not however belonging to
,A, such that

(2.2)

	

M(r, f) < M(r),

	

0 < r < 1.

It should be noted here that p(r) = r log lar is a typical function satis-
fying the conditions of Theorem 1 and it represents the situation studied
by Hornblower [10] . Also, taking u = log 1f 1 we recover a theorem of
Rippon [20] and Hayman [9], since u is subharmonic and, as we shall
see, has no asymptotic boundary values on aD .

As a first step in the proof we define

1/2
(2 .3)

	

X(y) =
/y

	

p(t)dt .

Evidently, X is a monotonically decreasing function and X(0+) =
limX(y) = oo. We can, therefore, define ~b(x) = X-1 (x) for x > 1

and 0 can be extended to the entire interval (0, +oo) in such a way
that 0(0+) = oo . The domain U bounded by the two curves ~b(x) and
O(x + 27r) will be of special interest.



(2.4)

Figure 1

The map J(w) = eiw takes 0 onto SZ = D \ F, where

is a spiral asymptotic to 8D . Tf we now choose a conformal map G : 0 ->
IT = {( = ~ + i77 : lill < 7r/2} with G(+oo) = +oo we can, in principle,
look for functions with a given growth in 11 and by transferring them to
9 we might hope to obtain the desired example .

y
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Fix a > 1, define la«) = expexp(a0) for ( E II, and consider the
following two regions :

(i)

	

B+ = {~ E 1 1 : 1r]1 < 2a }

(ii) B_ = {~ E II : ~ +

	

< 1rll < i } , e small and positivo .

The function

(2.5)

	

La (z) = la (G(-ilogz)),

	

z E 9

is defined on SZ and grows like la in the corresponding spiral domains
St = J o G-1 (Bf ) . In particular, if a = 1 + c is Glose to 1 then

(iii) La (z) --> oo as z - OD, z E S+
(iv) La(z) --> 0 as z - OD, z E S- -

Hence, La can have no asymptotic values at 8D. However, it has jump
discontinuities all along I' and so does not directly suite our purpose .
Our main task will be to construct an analytic function sufficiently Glose
to La that it inherits the same behavior in S+ and S_ .

Step 1 . We begin by mollifying La in the following way : For each
z E D let D, be the disk with center at z and radius 0(1-JzJ) . Here, 0 is

a small, but fixed, positive constant to be specified later . Next consider
the average

(2.6)

	

F ( z ) = J 1 1 La(~)dAC .

Although F is still not analytic in D, if Q is chosen properly we can
arrange that

(4) F(z) = La(z) for z E ro = J o G-1 (R)
( 5 ) IF(z)I <- CM(I z1)

(6) l&F(z)j < const < oo .
Because F(z) --> oo as z --> óD along Fo and lF(z)j is bounded on I',
there can again be no asymptotic values on 8D.

Step 2 consists in selecting an analytic component of F defined by
setting

(2.7)

	

A(z) = F(z)

	

-'
1D

F (
z)
dAC .

Since, by virtue of properly (6), IF - Al < const < oo all the requisite
growth restrictions are preserved and A(z) is the function we are looking
for .
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3. Technicalities of the construction

Our task here is to verify assertions (4), (5) and (6) of Section 2 . And,
we can assume without loss of generality that

( 1) -YN¿, (y) ~ CP(y), c > 0

for some positive c . Otherwise, we could simply replace w(y) by

2y m(t) dtN~1(y) = f

	

iy

taking tare to check that M(y) and ul (y) are comparable and that (i) is
satisfied by virtue of property (2) . Let us also recall that = X-1 , so
that if y = O(x), then by (1)

0'(x) __ -1
-0(x)

	

yt¿(y) --,-> -1>0

as x ---> oo or, equivalently, as y ---> 0 . Hence, *0(x12, , 0 as x -, co~P(x)
and it follows that for any e > 0,

(3.1)

	

0(x) < 0(x) < (1 + 6 )0(x),

	

x > x(e)

where B(x) = O(x) - O(x + 27r) is the vertical width of 0 at the point x.
To establish property (4) it is sufficient to prove that if z E Po then

the disk Dz of radius ,l(1 - Iz1) does not meet I' if 0 is small (and
fixed) and z is near aD. To this end let us suppose that z E I'o and
let ( = G(-¡ log z) be the corresponding point in II, which, of course,
lies on the real axis 1(8 . Denote by Q the family of curves lying in II and
separating ( from rl = 7r/2, that is, from the top ; Q* is the conjugate
family defined relative to the bottom . The length-width ratio of Q is

P(Q) =
l(Q)
1(Q*)'

where l(Q) and l(Q*) denote the infimúm of the lengths of the rectifiable
members of Q and Q*, respectively . Evidently, p(Q) is bounded and
bounded away from zero as ( ---> +oo along I[8 . Since this is a conformally
invariant property of p, (cf. McMillan [17], [18]), it follows from (3.1)
that 0 can be chosen as indicated ; hence (4) .
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To confirm assertion (5) we appeal to a theorem of Warshawski (cf.
[24, p . 296] and [9, p . 761]) according to which

x(l~g 1/I=I)

	

dt
(3 .2)

	

Re G(-i log z) = 7r

	

9~t)
+ C + O(1)

i

as z ---> aD, since property (3) assures that the crucial assumption

(3.3)

	

l' ~
9~x)s

dx + f' Ol(B~x)7r)2
dx <

kJ

	

~
O(x)2

dx =

is satisfied . Note that (3 .1) has also been used . Hence, it follows that
for z near áD
(3.4)

¡x(1091/Izl) dt
La (z) _ exp exp aG(-i log z) < exp exp C7raJ

	

9(t)
+ Ca

and, again taking (i) and (3.1) into account, we conclude that

I La (z) 1 < exp exp (Kf
X(1/2(1- z1 )

	

dt
(t)

)
(3.5)

	

< expexpKp(1/2(1 - lzi))
< M(IZI) .

The constants K, C are, of course, absolute and with no loss of generality
we have assumed that K = 1 . Consequently, these estimates and the faca
that

jF(z)j <

	

sup

	

ILa(b)I
IC-zI<NI-Izl)

lead directly to.the desired inequality (5) .
Thus, it remains only to prove (6) or, equivalently, that IbF(z)j <_

K < oo throughout D. To accomplish this we first express La as the
sum of an analytic function H and the Cauchy integral of a measure v
supported on I' :

()(3.6)

	

La(~) = H(~) + 27ri I dy ( .

k

	

dy

	

< 00
YM(y)

The important thing to note here is that dv(z) = j(z)dz where, for each
z E I', the density

j(z) = ±(La(z+ ) - La (z ))



from which we easily conclude that

IL. (~) I = I exp exp aG(-i log ~) I <

FYom this it follows easily that if ( E F then

(3.8)

	

¡L.(S)¡ <-
e-sewc°~l-i<I))

,
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is the jump of Lo, across F, the sign being chosen to agree with the
orientation of F . Introducing the kernel

K(z,t) _
ID.¡ D

_

	

dAC(

and integrating (3.6) with respect to area it follows that

(3.7)

	

F(z) = H(z) + 2~i 1 K(z, t)dv(t) .
r

On the other hand, it is a relatively simple matter to check that
1

t

	

z

	

t§¿ D,
-

K(z, t)

	

7r(t - z)
(_-

ID.¡

	

,

	

t E Dz

IaF(z ) I `

	

aK27r

	

L(z, t) Idl vl (t) <

	

IvIDDI.)

The last expression vanishes unless D z n F

	

and so we have the
estimate

1

	

sup

	

ILo «) I ,

	

if Dz n F g~o
IOF(z)I < f IDzI CEDznr

0,

	

otherwise .

And, moreover, when ( E F Warshawski's estimate (3.2) takes the par-
ticularly convenient form

p

	

I

	

-

	

p

	

x()og 1/ICI)

	

dt

	

.
<_ ex

	

- cos -al
.
ex

	

ira

	

O(t)1

	

+ Ca

where S = I cos 'al and c > 0 is suitably chosen, since by (3.1)

x( 1-9 1/1(1) dt

	

x(2(1-ICI)

	

dt
0(t) >

	

~(t)
>

2(1-ICI) M(s)

-ICI

	

s

	

ds > M(2(1 - Ir;I))

	

log 2
f,
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provided, of course, that ( is close to aD. Therefore, adjusting the
constant in (3.8) to a account for the fact that z E D., but perhaps
z ¢ I', we conclude that

then f E A.

everywhere in D, and so is trivially bounded, since M(r) - 1/r° as r ---> 0
by way of assumption (i) .

4 . Functions belonging to class A

Our goal here is to give a short proof of the following theorem of
Homblower [10] .

Theorem 2 . Let f(z) be analytic and nonconstant in D and let
M(r) = sup 1 f(z) 1 . If

Izl=r

1

(4.1)

	

log+ - log+ M(r)dr < co
0

All known proos, including Homblower's, are based on a result of
Levinson [12, p . 135], concerning the growth of harmonic measure in a
cusp (cf. also Beurling [2, p . 381]) . We are able to avoid any xnention
of harmonic measure by making use of the following result of Dyn'kin,
the details of which can be found in [7] .

Lemma. Let M(r) be a monotonically increasing funetion defned for
0 < r < 1 such that (4 .1) is satisfied and let y', -y be two subares of áD
with y' C -y . Then there exists a function 0 E Cl such that

(1) 0 - 1 on -y'
(2) 0 - 0 outside a neighborhood of "y

(3) Ia0(z)I < mr ' ,~ , z E D .

To prove Theorem 2 let us suppose that f is analytic in D and that
(4.1) is satisfied . Assuming that f 1 A there is an arc y C OD, no
point of which is the endpoint of an asymptotic path for f. It follows,
without loss of generality, from our remarks in Section 1 (cf . (ii)) that
there exists a sequence of Koebe arcs y�, --> y such that f is bounded on
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U-ym . Now choose "y' C_ -y and corresponding function 0 as in Dyn'kin's
lemma . Extend each

Figure 3

are ryn, to a simple closed curve enclosing a region D� in such a way
that D�, ---> D as n -> oo . For each n = 1, 2, . . . let gn : Dn, --> D be a
conformal map with gn (0) = 0 . Applying Green's theorem to fgn0 we
conclude that, for each z in some fixed neighborhood of y',

1

	

n
Lf(z)gn(z)O(z)I c

Ia0(~)Ilfg1)I
~.~D~ I(-z1

dAS+

+lim
up
f

	

I~i~)II z(I~)I
Ig,(S)IId~I+

7

from which it follows that I f(z)g' (z)I _< Cl (1 - IzI)-1 + C2 in a neigh-
borhood of ¡y', since f7. Ig'(S) I IdSI < 27r and, by the Koebe distortion
theorem, fD n Ign(S)I2+EdA _< M with M depending only on diam (Dn) .
On the other hand, the Carathéodory convergente theorem implies that
Ign I - 1 pointwise and boundedly almost everywhere in D, and therefore

(4.2)

	

If(z)I <_
c1(1- IzI) -1 + C2

const .

in a neighborhood of "y' . This, together with the boundedness of f on
U-yn , implies immediately that f is in fact bounded near y' . To see this
just choose \1, ,\2 E y' and note that (z - \1)(z - \2)f is bounded . As
a result f must have radial limits almost everywhere en y', contrary to
assumption . Therefore, f E .A .
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